
-11

princeton university cos 522: computational complexity

Lecture 10-11: One-way permutations and Goldreich-Levin
bit theorem

Lecturer: Sanjeev Arora Scribe:Edith Elkind

1 Proof of Goldreich–Levin theorem (continued)

In the last lecture, we formulated Goldreich–Levin theorem, which says that if {fn} is a
one-way permutation, then the mapping (x, r) �→ (f(x), r, x � r) extends 2n bits to 2n + 1
bits in a pseudorandom fashion. More formally, for all algorithms A running in time s1/4(n)

Prx,r∈{0,1}n [A(fn(x), r) = x � r] ≤ 1
2

+ O

(
1

s(n)

)
. (1)

Proof:[continued from Lecture 9] Last time, we gave a proof for the case when RHS of (1)
is 3/4 + δ. The idea for the general case is very similar, the only difference being that this
time we want to pick r1, . . . , rm so that we already “know” x� ri. The preceding statement
may appear ridiculous, since knowing the inner product of x with m ≥ n random vectors
is, with high probability, enough to reconstruct x (check this!). The catch will of course be
that the ri’s will not be completely random. Instead, they will be pairwise independent.

Definition 1 Random variables x1, . . . , xm are pairwise independent if

∀i, j ∀a, b Pr[xi = a, xj = b] = Pr[xi = a]Pr[xj = b]. (2)

Pairwise independent random variables are useful because of the Chebyshev inequality.
Suppose that x1, . . . , xm are pairwise independent with E(xi) = μ, V ar(xi) = σ2. Then we
have

V ar(
∑

xi) = E[(
∑

i

xi)2] − E[
∑

i

xi]2 =
∑

i

(E[x2
i] − E[xi]2),

where we have used pairwise independence in the last step. Thus V ar(
∑

xi) = mσ2. By
the Chebyshev inequality, Pr[|∑xi − mμ| > k

√
mσ] ≤ 1/k2. So, the sum of the variables

is somewhat concentrated about the mean. This is in contrast with the case of complete
independence, when Chernoff bounds would give an exponentially stronger concentration
result (the 1/k2 would be replaced by exp(Θ(−k2))).

Example 1 In Zp, choose a and b randomly and independently. Then the random variables
a + b, a + 2b, . . . , a + (p − 1)b are pairwise independent. Indeed, for any t, s, j 	= k ∈ Zp,
Pr[a + jb = t] = 1/p, and Pr[a + jb = t, a + kb = s] = 1/p2, because this linear system is
satisfied by exactly one (a, b)-pair out of p2.

Example 2 Let m = 2k−1. The set [1 . . . m] is in 1−1 correspondence with the set 2[1...k]\∅.
We will construct m random variables corresponding to all nonempty subsets of [1 . . . k].

1

2

Pick uniformly at random k binary strings t1, . . . , tk of length n and set YS =
∑

i∈S ti
(mod 2), where S ⊂ [1 . . . k], S 	= ∅. For any S1 	= S2, the random variables YS1 and YS2

are independent, because one can always find an i such that i ∈ S2 \ S1, so the difference
between YS1 and YS2 is always a sum of several uniformly distributed random vectors, which
is a uniformly distributed random vector itself. That is, even if we fix the value of YS1 , we
still have to toss a coin for each position in YS2 , and

Pr[YS1 = �s, YS2 = �t] = Pr[YS1 ⊕ YS2 = �t ⊕ �s|YS1 = �s] =
1

22n
.

Now let us return to the proof of Goldreich–Levin theorem and describe the observation
at the heart of the proof. Suppose that our random strings r1, . . . , rm are {YS} from the
previous example. Then x � YS = x � (

∑
i∈S ti) =

∑
i∈S x � ti. Now, if we know x � ti for

i = 1, . . . , k, we also know x � YS . Of course, we don’t know x � ti for i = 1, . . . , k, but we
can just try all 2k possibilities for this vector and run the rest of the algorithm for each of
them. This multiplies the running time by a factor 2k, which is only m. This is how we can
assume that we know x � YS for each subset S.

The details of the rest of the algorithm are similar to before. By Lemma 2, we know
that if the theorem were not true, then for at least δ = α/s(n) fraction of x’s, where α is
some constant, the probability over r that A gives the correct answer is at lest 1/2 + δ/2.
We now concentrate our attention on those x’s. Pick m pairwise independent vectors YS ’s
as described above, calculate A(fn(x), YS ⊕ ei) − x � YS , and take the majority vote. The
expected number of correct answers is m(1/2+δ/2), so for the majority vote to result in the
incorrect answer it must be the case that the number of incorrect values deviates from its
expectation by more than mδ/2. Now, we can bound the variance of this random variable
and apply Chebyshev’s inequality.

Formally, let ξS denote the event that A produces the correct answer on YS ; we have
E(ξS) = 1/2+δ/2 and V ar(ξS) = E(ξS)(1−E(ξS)) < 1. Let ξ =

∑
S ξS denote the number

of correct answers on a sample of size m. By linearity of expectation, E[ξ] = m(1/2 + δ/2).
Furthermore, the YS ’s are pairwise independent, which implies that the same is true for
the outputs ξS ’s produced by the algorithm A on them. Hence by pairwise independence
V ar(ξ) < m. Now, by Chebyshev’s inequality, the probability that the majority vote is
incorrect is at most 4V ar(ξ)

m2δ2 ≤ 4
mδ2 . Recalling that δ = α/s(n), we see that if we set

m = Ω(ns2(n)), the probability of guessing the ith bit incorrectly is at most 1/2n, and
by the union bound, the probability of guessing the whole word incorrectly is at most 1/2.
Hence, on a “good” x, we can find the preimage of f(x) with a good probability, and the
number of “good” x’s is non-negligible, which contradicts our assumption that f is one-way.
�

2 Applications

2.1 Playing poker over the phone

How can two parties A and B play poker over the phone? Specifically, how do they deal
the cards in a fair way? Clearly, they need a way to toss a fair coin over the phone. If only
one of them actually tosses a coin, there is nothing to prevent him from lying about the

3

result. The following fix suggests itself: both players toss a coin and they take the XOR as
the shared coin. Even if B does not trust A to use a fair coin, he knows that as long as his
bit is random, the XOR is also random. Unfortunately, this idea does not work because the
player who reveals his bit first is at a disadvantage: the other player could just “adjust” his
answer to get his desired coin toss.

This problem is addressed by the following scheme, which assumes that A and B are
polynomial time turing machines that cannot invert one-way permutations. The protocol
itself is called bit commitment. First, A chooses two strings xA and rA of length n and
sends a message (fn(xA), rA), where fn is a one-way permutation. This way, A commits
the string xA without revealing it. Similarily, B chooses xB and rB and sends A a message
(fn(xB), rB). After that, both parties are ready to reveal their strings, so A sends B a
message (xA, xA �rA), and B sends A a message (xB, xB �rB). Here, xA �rA serves as A’s
coin toss; B can verify that xA is the same as in the first message by applying fn, therefore
A cannot change her mind after learning B’s bit. On the other hand, by Goldreich–Levin
theorem, B cannot predict xA � rA from A’s first message, so this scheme is secure.

Note that the second stage of this protocol is redundant: B can simply announce his
bit after receiving A’s first message.

2.2 Pseudorandom generation

Now we describe another application of one-way functions: to “stretch” n truly random
bits to obtain nc random-looking bits?

First, we have to define what it means for a string to look random. Kolmogorov gave
one definition (“the length of the smallest Turing machine that outputs this string when
started on an empty tape”) but that is not very useful because of noncomputability issues.
Blum and Micali proposed instead that we should define randomness for distributions rather
than for strings. The distribution is declared pseudorandom if its samples “look” random
to every polynomial time Turing machine. The next definition (due in this form to Yao)
formalizes this notion.

Definition 2 (Yao’82) A family {gn}, gn {0, 1}n �→ {0, 1}nc
, is called a pseudorandom

generator if for any algorithm A running in time s(n) and for all large enough n

|Pry∈{0,1}nc [A(y) = accept] − Prx∈{0,1}n [A(gn(x)) = accept]| ≤ δ(n), (3)

where δ(n) is the distinguishing probability and s(n) is the security parameter.

Suppose that fn is a one-way permutation with security s(n), and distinguishing proba-
bility 1/s(n), say. Then a pseudorandom generator can be built as follows. Take 2n random
bits; denote the first n bits by x and the last n bits by r. Construct a string (fn(x), r, x�r);
repeat the same procedure with the last 2n bits of this string; keep doing this until you get
nc bits.

Theorem 1
No algorithm running in time s(n)1/4

nc can distinguish a string obtained in this way from a
random string with probability higher than 2nc

s(n) .

4

Proof:[Yao’s hybrid argument] By D0 denote the distribution {g(z)}, z ∈ {0, 1}2n, and
by F denote the uniform distribution on nc bits. We are going to construct a sequence
of distributions that starts with D0 and gradually transforms it to F . Namely, let Di,
i = 1, . . . , nc be a distribution in which the first i bits are random, while other bits are
obtained by applying g to the 2n bits that precede them, just as we did for D0 (or, if
i ≤ 2n, the bits from i + 1st to 2nth position are the last 2n − i bits of fn(z)). Note that
Dnc = F . Also, since fn is a permutation, the first 2n bits of D0 are uniformly distributed,
so D1 = . . . = D2n = D0.

Now, suppose that there is an algorithm that can distinguish between D0 and Dnc .
Then this algorithm can also distinguish between Di and Di+1 for some i, which means
that it can predict Goldreich–Levin bit. More formally, suppose that there is an algorithm
A such that

|Pry∈Dnc [A(y) = accept] − Pry∈D0 [A(y) = accept]| ≥ δ. (4)

Then there exists an i such that

|Pry∈Di [A(y) = accept] − Pry∈Di+1 [A(y) = accept]| ≥ δ

nc
. (5)

The only difference between Di and Di+1 is in the ith bit: in Di, it is obtained from 2n
previous bits by Goldreich–Levin construction, while in Di+1 it is random.

Consider an algorithm B that given f(x), r, and a bit b0 (allegedly, x � r) constructs a
string that starts with i − 2n random bits followed by f(x), r, and b0; the remaining bits
are produced as described above. Obviously, for random x and r if, indeed, b0 = x � r,
this string is distributed according to Di, while if b0 is uniformly distributed over {0, 1},
this string is distributed according to Di+1. Then B runs A on this string and accepts iff
A accepts.

We have Prx,r,r′ [B(f(x), r, x � r) = accept] = p1, Prx,r,b,r′ [B(f(x), r, b) = accept] = p2,
where r′ stands for B’s internal coin tosses. Without loss of generality, p2 < p1, hence p2 <
p1 − δ/nc. Note that Prx,r,b[B(f(x), r, b) = accept]= Prx,r[B(f(x), r, x� r) = accept]× 1

2+
Prx,r[B(f(x), r, x � r) = accept] × 1

2 , nence if p2 < p1 − δ, then Prx,r[B(f(x), r, x � r) =
accept] ≤ p1 − 2δ. An averaging argument similar to the one given in the previous lecture
shows that for a non-negligible fraction of x’s we can find the Goldreich-Levin bit with a
significant probability by the following procedure. Run B several times and accept if B
accepts on at least p1 − δ fraction of the input. The correctess of this approach can be
justified by Chernoff or Chebyshev inequality. �

As a corollary, Yao could give another definition of pseudorandom generators: they are
distributions that pass the “next bit test” (i.e., that given the first i bits, a polynomial time
algorithm cannot predict the i + 1th bit with good probability).

Corollary 2
A pseudorandom generator is secure if and only if it passes the next bit test.

Proof: A hybrid argument again, only this time the random bits are shifted in from right
to left. �

Theorem 3
If there is a pseudorandom generator that is secure against circuits of size nc, then BPP ⊆
∩ε>0DTIME(2nε

).

5

In words, pseudorandom generators imply subexponential algorithms for BPP. For this
reason, this theorem is usually referred to as derandomization of BPP.
Proof: Let us fix an ε > 0 and show that BPP ⊆ DTIME(2nε

).
Suppose that M is a BPP machine running in nk time. We can build another probabilis-

tic machine M ′ that takes nε random bits, streches them to nk bits using the pseudorandom
generator and then simulates M using this nk bits as a random string. Obviously, M ′ can
be simulated by going over all binary strings nε, running M ′ on each of them, and taking
the majority vote.

It remains to prove that M and M ′ accept the same language. Suppose otherwise. Then
there exists an infinite sequence of inputs x1, . . . , xn, . . . on which M distinguishes a truly
random string from a pseudorandom string with a high probability, because for M and M ′

to produce different results, the probability of acceptance should drop from 2/3 to below
1/2. Hence we can build a distinguisher similar to the one described in the previous theorem
by hardwiring these inputs into a circuit family. �

The relationship between hardness and randomness is a subject of recent research.

3 Average-case hardness

One-way functions and pseudorandom generators were covered in this course to give some
idea of complexity theory as applied to the “average” case. Leonid Levin has developed a
more general theory of average-case complexity. The main difference from the above study
is that he defines a distribution over all (infinitely many) input strings rather than just
a distribution over strings of a fixed length as we have done here (and which suffices for
cryptography since typically the key-size used in a publicly available package such as DES
is fixed).

Levin (1986) defines a distributional problem as a pair (π, D), where π is a decision
problem and D is a polynomial-time samplable distribution on inputs1. Levin’s class Avg-
P contains π for which (π, D) has a polynomial-time average case algorithm for every D.
There are some subtleties in this definition that we will not explore.

Interestingly, Levin can prove that certain distributional problems are complete for this
class under probabilistic polynomial time reductions. Many of these problems are specialized
and not very natural. A very interesting and largely open problem is whether TSP or any
other natural hard problem is complete (or hard) for Levin’s class.

1The restriction to polynomial-time samplable distributions seems reasonable if we believe in the strong
form of the Church-Turing thesis, which asserts that the probabilitic Turing machine can simulate every
physically realizable computational model with polynomial slowdown. Then we can view the world as a
simulatable system, and the instances produced by it it would then come from a polynomial-time samplable
distribution.

