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Recall the certificate definition of NP. We can think of this characterization of NP as
an interaction between two entities P and V . For a language L ∈ NP, x is in L if and only
if P can send V a certificate (that depends on x) that V can use to check in polynomial
time that x is indeed in L. P is the “prover” and V is the “verifier.” For NP only one
interaction is allowed. We can expand the power of the verifier TM: let it be a probabilistic
TM that can make a polynomial number of queries of the prover. Now the verifier and the
prover exchange a polynomial number of polynomial length messages. Both the prover and
verifier see the input x. The prover is trying to convince the verifier that x ∈ L. Formally,
we define the class IP of languages that have such interactive proofs:

Definition 1 (IP) A language L is in IP if there is probabilistic, polynomial-time TM
V with coin flips r that interacts with an all-powerful prover, where in round i its query
qi(x, r, a1, . . . , ai−1) depends on the input, the random string, and the prover’s responses
a1, . . . , ai−1 in the previous rounds. The verifier has the property that:

(i) x ∈ L⇒ ∃P Prr[V accepts x after interaction with P ] ≥ 2/3

(ii) x �∈ L⇒ ∀P Prr[V rejects x after interacting with P ] ≥ 2/3.

Since P cannot see the coin flips of V , we say the protocol is private coin. We further
define IP[k] (for k ≥ 2) be the set of all languages that have a k round interactive proof in
this private coin model, where a “round” is either a query or a response.

If V were not allowed to be probabilistic it is easy to see that IP is equivalent to NP:
the prover can compute all the queries the verifier will make ahead of time and offer this
entire transcript to the verifier straightaway. By allowing V random bits, we get a more
powerful class.

The probabilities of correctly classifying an input can be made arbitrarily large by using
the same boosting technique we used for BPP: sequentially repeat the protocol k times.
If x ∈ L then the same prover can be used on each repetition. If x �∈ L then on each
repetition, the chance that the verifier will accept x is less than 1/3.

We can define similar classes AM and AM[k] in which P does see the coin flips of V —
this is the public coin model. We state the following comments about IP[·],AM[·], without
proof:

(i) IP[k] ⊆ AM[k + 2] for all constants k.

(ii) For constants k ≥ 2 we have AM[k] = AM[2]. This is surprising because AM[k]
seems similar to PH with the ∀ quantifiers changed to “probabilistic ∀” quantifiers,
where most of the branches lead to acceptance. See figure 1.

It is open whether there is any nice characterization of AM[σ(n)], where σ(n) is a
suitably slow growing function of n, such as log log n.
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Figure 2: Two isomorphic graphs.

(iii) Changing 2/3 to 1 in the definition of IP does not change the class. That is, defining
the IP in a manner similar to coRP is equivalent to defining it like BPP.

Whereas BPP is a probabilistic version of P, AM[2] is as probabilistic version of
NP. AM[2] can be thought of as “BP-NP”—languages for which there is a bounded
probabilistic nondeterministic TM.

(iv) It is relatively easy to see that AM[poly(n)] ⊆ PSPACE; the proof is left as an
exercise. It is possible, in PSPACE, to come up with a good strategy for choosing
the ∃ edges in figure 1.

Let us look at an example of a language in IP.

Example 1 (Graph non-isomorphism) Given two graphs G1 and G2 we say they are
isomorphic to each other if there is a permutation π of the labels of the nodes of G1 such
that πG1 = G2. The graphs in figure 2, for example, are isomorphic with π = (12)(3654).
If G1 and G2 are isomorphic, we write G1 ≡ G2. The Graph Non-isomorphism problem
is this: given two graphs, are they not isomorphic?

It is clear that the complement of Graph Non-isomorphism is in NP— a certificate is
simply the permutation π that is an isomorphism. What is more surprising is that Graph
Non-isomorphism is in IP. To show this, we give a private-coin protocol that satisfies
definition 1:
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Non-isomorphism is in IP. To show this, we give a private-coin protocol that satisfies
definition 1:



3

Protocol: Private-coin Graph Non-isomorphism

V : pick i ∈ {1, 2} uniformly randomly. Randomly permute the vertices of Gi to
get a new graph H. Send H to P .

P : identify which of G1, G2 was used to produce H. Let Gj be that graph. Send
j to V .

V : accept if i = j; reject otherwise.

To see that definition 1 is satisfied by the above protocol, note that if G1 �≡ G2 then
there exists a prover such that Pr[V accepts] = 1, because if the graphs are non-isomorphic,
an all-powerful prover can certainly tell which one of the two is isomorphic to H. On the
other hand, if G1 ≡ G2 the best any prover can do is to randomly guess, because a random
permutation of G1 looks exactly like a random permutation of G2; that is Pr[V accepts] ≤
1/2.

The above example depends crucially on the fact that P cannot see the random bits
of V . If P knew those bits, P would know i and so could trivially always guess correctly.
By comment (i), any problem with a private-coin interactive proof with a constant number
of rounds has a public-coin proof. We now present such a protocol for Graph Non-
isomorphism.

Example 2 (Public-coin protocol for Graph Non-isomorphism) To develop a public-
coin protocol, we need to look at the problem in a different way. Consider the set S =
{H : H ≡ G1 or H ≡ G2}. The size of this set depends on whether G1 is isomorphic to G2.
For a graph of n vertices, there are n! possible ways to label the vertices, so we have

if G1 �≡ G2 then |S| = 2n!
if G1 ≡ G2 then |S| = n!

We can amplify the gap between the two cases. Choose an integer m such that n! ≤ 2m.
Let S′ be the Cartesian product of S with itself a sufficient number of times so that the
following hold:

if G1 �≡ G2 then
∣∣S′∣∣ ≥ 100 · 2m (A)

if G1 ≡ G2 then
∣∣S′∣∣ ≤ 1

10
2m (B)

We can now use the size of S′ to determine if G1 ≡ G2. The question that remains is: how
do we design an interactive protocol that can distinguish between cases (A) and (B) above?

Let H be a set of 2-universal hash functions from U to {0, 1}m, where U is a superset
of S′. Given h ∈ H, if S′ is much bigger than {0, 1}m, as it is in case (A), then for every
y ∈ {0, 1}m it is very likely that there is some x ∈ S′ such that h(x) = y. Conversely, if the
size of S′ is much smaller than {0, 1}m, —if (B) holds— then for most y ∈ {0, 1}m there is
no x ∈ S′ such that h(x) = y. This is the basis of our protocol: V gives P an h ∈ H and
y ∈ {0, 1}m, and if P can find an x ∈ S′ that h maps to y, the verifier guesses that the set
is large, otherwise, we guess that the set is small. See figure 3. More formally, we have:
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Protocol: Private-coin Graph Non-isomorphism
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other hand, if G1 ≡ G2 the best any prover can do is to randomly guess, because a random
permutation of G1 looks exactly like a random permutation of G2; that is Pr[V accepts] ≤
1/2.

The above example depends crucially on the fact that P cannot see the random bits
of V . If P knew those bits, P would know i and so could trivially always guess correctly.
By comment (i), any problem with a private-coin interactive proof with a constant number
of rounds has a public-coin proof. We now present such a protocol for Graph Non-
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Example 2 (Public-coin protocol for Graph Non-isomorphism) To develop a public-
coin protocol, we need to look at the problem in a different way. Consider the set S =
{H : H ≡ G1 or H ≡ G2}. The size of this set depends on whether G1 is isomorphic to G2.
For a graph of n vertices, there are n! possible ways to label the vertices, so we have
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We can now use the size of S′ to determine if G1 ≡ G2. The question that remains is: how
do we design an interactive protocol that can distinguish between cases (A) and (B) above?

Let H be a set of 2-universal hash functions from U to {0, 1}m, where U is a superset
of S′. Given h ∈ H, if S′ is much bigger than {0, 1}m, as it is in case (A), then for every
y ∈ {0, 1}m it is very likely that there is some x ∈ S′ such that h(x) = y. Conversely, if the
size of S′ is much smaller than {0, 1}m, —if (B) holds— then for most y ∈ {0, 1}m there is
no x ∈ S′ such that h(x) = y. This is the basis of our protocol: V gives P an h ∈ H and
y ∈ {0, 1}m, and if P can find an x ∈ S′ that h maps to y, the verifier guesses that the set
is large, otherwise, we guess that the set is small. See figure 3. More formally, we have: 4
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Figure 3: The bigger S′ is, the more likely h(S′) will hit a given point in {0, 1}m.

Protocol: Goldwasser-Sipser Set Lowerbound

V: Randomly pick h ∈ H, and y ∈R {0, 1}m. Send h, y to P .

P: Try to find an x ∈ S′ such that h(x) = y. Send such an x to V , or send a
random element in U if no such x exists.

V: If x ∈ S′ and h(x) = y, accept; otherwise reject.

It remains to be shown that the above protocol fits Definition 1. Suppose (B) holds, then
since the domain (S′) is 1/10th the size of the range ({0, 1}m), we have Pr[V accepts if G1 ≡
G2] ≤ 1/10. To find the probability of acceptance if case (A) holds we need a lemma that
tells us that if S′ is bigger than a certain size, any hash function we pick will likely map S′

to a large fraction its range. The following lemma’s proof is left as an exercise:
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Here we have µ = 100. Even if the hash function that we choose in the protocol is good,
there is still a chance 1/

√
µ that we will pick a y ∈ {0, 1}m that is not mapped to by S.

Hence,

Pr[V accepts if G1 ≡ G2] ≥ 1− 1√
100
− 1√
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=

8
10

.

That Graph Non-isomorphism ∈ AM follows from the definition.

We now turn to our main theorem.

Theorem 2 (LFKN, Shamir, 1990)
IP = PSPACE.

Proof: By comment (iv), we need only show that PSPACE ⊆ IP[poly(n)]. To do so,
we’ll show that TQBF ∈ IP[poly(n)]. This is sufficient because every L ∈ PSPACE is
polytime reducible to TQBF.
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Protocol: Private-coin Graph Non-isomorphism

V : pick i ∈ {1, 2} uniformly randomly. Randomly permute the vertices of Gi to
get a new graph H. Send H to P .

P : identify which of G1, G2 was used to produce H. Let Gj be that graph. Send
j to V .

V : accept if i = j; reject otherwise.

To see that definition 1 is satisfied by the above protocol, note that if G1 "≡ G2 then
there exists a prover such that Pr[V accepts] = 1, because if the graphs are non-isomorphic,
an all-powerful prover can certainly tell which one of the two is isomorphic to H. On the
other hand, if G1 ≡ G2 the best any prover can do is to randomly guess, because a random
permutation of G1 looks exactly like a random permutation of G2; that is Pr[V accepts] ≤
1/2.

The above example depends crucially on the fact that P cannot see the random bits
of V . If P knew those bits, P would know i and so could trivially always guess correctly.
By comment (i), any problem with a private-coin interactive proof with a constant number
of rounds has a public-coin proof. We now present such a protocol for Graph Non-
isomorphism.

Example 2 (Public-coin protocol for Graph Non-isomorphism) To develop a public-
coin protocol, we need to look at the problem in a different way. Consider the set S =
{H : H ≡ G1 or H ≡ G2}. The size of this set depends on whether G1 is isomorphic to G2.
For a graph of n vertices, there are n! possible ways to label the vertices, so we have

if G1 "≡ G2 then |S| = 2n!
if G1 ≡ G2 then |S| = n!

We can amplify the gap between the two cases. Choose an integer m such that n! ≤ 2m.
Let S′ be the Cartesian product of S with itself a sufficient number of times so that the
following hold:

if G1 "≡ G2 then
∣∣S′∣∣ ≥ 100 · 2m (A)

if G1 ≡ G2 then
∣∣S′∣∣ ≤ 1

10
2m (B)

We can now use the size of S′ to determine if G1 ≡ G2. The question that remains is: how
do we design an interactive protocol that can distinguish between cases (A) and (B) above?

Let H be a set of 2-universal hash functions from U to {0, 1}m, where U is a superset
of S′. Given h ∈ H, if S′ is much bigger than {0, 1}m, as it is in case (A), then for every
y ∈ {0, 1}m it is very likely that there is some x ∈ S′ such that h(x) = y. Conversely, if the
size of S′ is much smaller than {0, 1}m, —if (B) holds— then for most y ∈ {0, 1}m there is
no x ∈ S′ such that h(x) = y. This is the basis of our protocol: V gives P an h ∈ H and
y ∈ {0, 1}m, and if P can find an x ∈ S′ that h maps to y, the verifier guesses that the set
is large, otherwise, we guess that the set is small. See figure 3. More formally, we have:
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Figure 3: The bigger S′ is, the more likely h(S′) will hit a given point in {0, 1}m.

Protocol: Goldwasser-Sipser Set Lowerbound

V: Randomly pick h ∈ H, and y ∈R {0, 1}m. Send h, y to P .

P: Try to find an x ∈ S′ such that h(x) = y. Send such an x to V , or send a
random element in U if no such x exists.

V: If x ∈ S′ and h(x) = y, accept; otherwise reject.

It remains to be shown that the above protocol fits Definition 1. Suppose (B) holds, then
since the domain (S′) is 1/10th the size of the range ({0, 1}m), we have Pr[V accepts if G1 ≡
G2] ≤ 1/10. To find the probability of acceptance if case (A) holds we need a lemma that
tells us that if S′ is bigger than a certain size, any hash function we pick will likely map S′

to a large fraction its range. The following lemma’s proof is left as an exercise:

Lemma 1
Suppose S ≥ µ2m. Then Prh∈H

[
|h(S)| ≥

(
1− 1√

µ

)
2m

]
≥ 1− 1√

µ .

Here we have µ = 100. Even if the hash function that we choose in the protocol is good,
there is still a chance 1/

√
µ that we will pick a y ∈ {0, 1}m that is not mapped to by S.

Hence,

Pr[V accepts if G1 ≡ G2] ≥ 1− 1√
100
− 1√

100
=

8
10

.

That Graph Non-isomorphism ∈ AM follows from the definition.

We now turn to our main theorem.

Theorem 2 (LFKN, Shamir, 1990)
IP = PSPACE.

Proof: By comment (iv), we need only show that PSPACE ⊆ IP[poly(n)]. To do so,
we’ll show that TQBF ∈ IP[poly(n)]. This is sufficient because every L ∈ PSPACE is
polytime reducible to TQBF.

Again, we change the representation of the problem. For any Boolean formula of n
variables φ(b1, b2, . . . , bn) there is a polynomial Pφ(x1, x2, . . . , xn) that is 1 if φ is true and 0
if φ is false. To see that this is true, consider the following correspondence between formulas
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Protocol: Private-coin Graph Non-isomorphism

V : pick i ∈ {1, 2} uniformly randomly. Randomly permute the vertices of Gi to
get a new graph H. Send H to P .

P : identify which of G1, G2 was used to produce H. Let Gj be that graph. Send
j to V .

V : accept if i = j; reject otherwise.

To see that definition 1 is satisfied by the above protocol, note that if G1 "≡ G2 then
there exists a prover such that Pr[V accepts] = 1, because if the graphs are non-isomorphic,
an all-powerful prover can certainly tell which one of the two is isomorphic to H. On the
other hand, if G1 ≡ G2 the best any prover can do is to randomly guess, because a random
permutation of G1 looks exactly like a random permutation of G2; that is Pr[V accepts] ≤
1/2.

The above example depends crucially on the fact that P cannot see the random bits
of V . If P knew those bits, P would know i and so could trivially always guess correctly.
By comment (i), any problem with a private-coin interactive proof with a constant number
of rounds has a public-coin proof. We now present such a protocol for Graph Non-
isomorphism.

Example 2 (Public-coin protocol for Graph Non-isomorphism) To develop a public-
coin protocol, we need to look at the problem in a different way. Consider the set S =
{H : H ≡ G1 or H ≡ G2}. The size of this set depends on whether G1 is isomorphic to G2.
For a graph of n vertices, there are n! possible ways to label the vertices, so we have

if G1 "≡ G2 then |S| = 2n!
if G1 ≡ G2 then |S| = n!

We can amplify the gap between the two cases. Choose an integer m such that n! ≤ 2m.
Let S′ be the Cartesian product of S with itself a sufficient number of times so that the
following hold:

if G1 "≡ G2 then
∣∣S′∣∣ ≥ 100 · 2m (A)

if G1 ≡ G2 then
∣∣S′∣∣ ≤ 1

10
2m (B)

We can now use the size of S′ to determine if G1 ≡ G2. The question that remains is: how
do we design an interactive protocol that can distinguish between cases (A) and (B) above?

Let H be a set of 2-universal hash functions from U to {0, 1}m, where U is a superset
of S′. Given h ∈ H, if S′ is much bigger than {0, 1}m, as it is in case (A), then for every
y ∈ {0, 1}m it is very likely that there is some x ∈ S′ such that h(x) = y. Conversely, if the
size of S′ is much smaller than {0, 1}m, —if (B) holds— then for most y ∈ {0, 1}m there is
no x ∈ S′ such that h(x) = y. This is the basis of our protocol: V gives P an h ∈ H and
y ∈ {0, 1}m, and if P can find an x ∈ S′ that h maps to y, the verifier guesses that the set
is large, otherwise, we guess that the set is small. See figure 3. More formally, we have:
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Figure 3: The bigger S′ is, the more likely h(S′) will hit a given point in {0, 1}m.

Protocol: Goldwasser-Sipser Set Lowerbound

V: Randomly pick h ∈ H, and y ∈R {0, 1}m. Send h, y to P .

P: Try to find an x ∈ S′ such that h(x) = y. Send such an x to V , or send a
random element in U if no such x exists.

V: If x ∈ S′ and h(x) = y, accept; otherwise reject.

It remains to be shown that the above protocol fits Definition 1. Suppose (B) holds, then
since the domain (S′) is 1/10th the size of the range ({0, 1}m), we have Pr[V accepts if G1 ≡
G2] ≤ 1/10. To find the probability of acceptance if case (A) holds we need a lemma that
tells us that if S′ is bigger than a certain size, any hash function we pick will likely map S′

to a large fraction its range. The following lemma’s proof is left as an exercise:

Lemma 1
Suppose S ≥ µ2m. Then Prh∈H

[
|h(S)| ≥

(
1− 1√

µ

)
2m

]
≥ 1− 1√

µ .

Here we have µ = 100. Even if the hash function that we choose in the protocol is good,
there is still a chance 1/

√
µ that we will pick a y ∈ {0, 1}m that is not mapped to by S.

Hence,

Pr[V accepts if G1 ≡ G2] ≥ 1− 1√
100
− 1√

100
=
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.

That Graph Non-isomorphism ∈ AM follows from the definition.

We now turn to our main theorem.

Theorem 2 (LFKN, Shamir, 1990)
IP = PSPACE.

Proof: By comment (iv), we need only show that PSPACE ⊆ IP[poly(n)]. To do so,
we’ll show that TQBF ∈ IP[poly(n)]. This is sufficient because every L ∈ PSPACE is
polytime reducible to TQBF.

Again, we change the representation of the problem. For any Boolean formula of n
variables φ(b1, b2, . . . , bn) there is a polynomial Pφ(x1, x2, . . . , xn) that is 1 if φ is true and 0
if φ is false. To see that this is true, consider the following correspondence between formulas
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Protocol: Private-coin Graph Non-isomorphism

V : pick i ∈ {1, 2} uniformly randomly. Randomly permute the vertices of Gi to
get a new graph H. Send H to P .

P : identify which of G1, G2 was used to produce H. Let Gj be that graph. Send
j to V .

V : accept if i = j; reject otherwise.

To see that definition 1 is satisfied by the above protocol, note that if G1 "≡ G2 then
there exists a prover such that Pr[V accepts] = 1, because if the graphs are non-isomorphic,
an all-powerful prover can certainly tell which one of the two is isomorphic to H. On the
other hand, if G1 ≡ G2 the best any prover can do is to randomly guess, because a random
permutation of G1 looks exactly like a random permutation of G2; that is Pr[V accepts] ≤
1/2.

The above example depends crucially on the fact that P cannot see the random bits
of V . If P knew those bits, P would know i and so could trivially always guess correctly.
By comment (i), any problem with a private-coin interactive proof with a constant number
of rounds has a public-coin proof. We now present such a protocol for Graph Non-
isomorphism.

Example 2 (Public-coin protocol for Graph Non-isomorphism) To develop a public-
coin protocol, we need to look at the problem in a different way. Consider the set S =
{H : H ≡ G1 or H ≡ G2}. The size of this set depends on whether G1 is isomorphic to G2.
For a graph of n vertices, there are n! possible ways to label the vertices, so we have

if G1 "≡ G2 then |S| = 2n!
if G1 ≡ G2 then |S| = n!

We can amplify the gap between the two cases. Choose an integer m such that n! ≤ 2m.
Let S′ be the Cartesian product of S with itself a sufficient number of times so that the
following hold:

if G1 "≡ G2 then
∣∣S′∣∣ ≥ 100 · 2m (A)

if G1 ≡ G2 then
∣∣S′∣∣ ≤ 1

10
2m (B)

We can now use the size of S′ to determine if G1 ≡ G2. The question that remains is: how
do we design an interactive protocol that can distinguish between cases (A) and (B) above?

Let H be a set of 2-universal hash functions from U to {0, 1}m, where U is a superset
of S′. Given h ∈ H, if S′ is much bigger than {0, 1}m, as it is in case (A), then for every
y ∈ {0, 1}m it is very likely that there is some x ∈ S′ such that h(x) = y. Conversely, if the
size of S′ is much smaller than {0, 1}m, —if (B) holds— then for most y ∈ {0, 1}m there is
no x ∈ S′ such that h(x) = y. This is the basis of our protocol: V gives P an h ∈ H and
y ∈ {0, 1}m, and if P can find an x ∈ S′ that h maps to y, the verifier guesses that the set
is large, otherwise, we guess that the set is small. See figure 3. More formally, we have:

5

and polynomials:

x ∧ y ←→ X · Y

x ∨ y ←→ 1− (1−X)(1− Y )
¬x ←→ 1−X

For example, φ = x ∨ y ∨ ¬z ←→ 1 − (1 − X)(1 − Y )Z. If φ is a 3CNF formula with n
variables and m clauses then we can write such a polynomial for each clause and multiply
those polynomials to get a polynomial Pφ in n variables, with degree at most m in each
variable. This conversion of φ to Pφ is called arithmetization and will be useful in our
protocol.

Rather than tackle the job of finding a protocol for TQBF right away, we first present
a protocol for #SATL, where

#SATL = {〈φ, K〉 : K is the number of sat. assignments of φ} .

and φ is a 3CNF formula of n variables and m clauses.

Theorem 3
#SATL ∈ IP

Proof: Given φ, we construct, by arithmetization, Pφ. The number of satisfying assign-
ments #φ of φ is:

#φ =
∑

b1∈{0,1}

∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

Pφ(b1, . . . , bn) (1)

There is a general protocol, Sumcheck, for verifying equations such as (1).

Sumcheck protocol. Given a degree d polynomial g(x1, . . . , xn) and an integer K, we present
an interactive proof for the claim

K =
∑

b1∈{0,1}

∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(x1, . . . , xn). (2)

V simply needs to be able to arbitrarily evaluate g. Define

h(x1) =
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(x1, b2 . . . , bn).

If (2) is true, it must be the case that h(0) + h(1) = K.
To start, V randomly picks a prime p in the interval [n3, n4] and instructs the prover to

reduce all numbers modulo p in the remaining protocol. (For instance, if the prover wants
to send a polynomial, it only needs to send the coefficients modulo p.) All computations
described below are also modulo p. Consider the following protocol:
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Protocol: Sumcheck protocol to check claim (2)

V: If n = 1 check that g(1) + g(0) = K. If so accept, otherwise reject. If n ≥ 2,
ask P to send h(x1) as defined above.

P: Send h(x1).

V: Let s(x1) be the polynomial received. Reject if s(0)+s(1) "= K; otherwise pick
a random a. Recursively use this protocol to check that

s(a) =
∑

b∈{0,1}

· · ·
∑

bn∈{0,1}

g(a, b2, . . . , bn).

If Claim (2) is true, the prover that always returns the correct polynomial will always
convince V . We prove by induction on n that if (2) is false, V rejects with high probability;
we prove

Pr[V rejects 〈K, g〉] ≥
(

1− d

p

)n

. (3)

With our choice of p, the right hand side is about 1− dn/p, which is very close to 1 since
p ≥ n3.

We prove (3) by induction on n. The statement is true for n = 1 since V simply evaluates
g(0), g(1) and rejects with probability 1 if their sum is not K. Assume the hypothesis is
true for degree d polynomials in n− 1 variables.

In the first round, the prover P is supposed to return the polynomial h. Suppose that
P returns s "= h. If s(0) + s(1) "= K, then V rejects with probability 1. So assume that
s(0) + s(1) = K. In this case, V picks a random a. If s and h are two different degree d
polynomials, then there are at most d values of x1 such that s(x1) = h(x1). Thus,

Pr
a

[s(a) "= h(a)] ≥ 1− d

p
. (4)

If s(a) "= h(a) then the prover is left with an incorrect claim to prove in the recursive step.

By the induction hypothesis, with probability ≥
(
1− d

p

)n−1
, P cannot prove this false

claim. Thus we have

Pr[V rejects] ≥
(

1− d

p

)
·
(

1− d

p

)n−1
=

(
1− d

p

)n

(5)

This finishes the induction.
We still have to justify why it is OK to perform all operations modulo p. The fear, of

course, is that equation (2) might be false over the integers, but true over p, which happens
if p divides the difference of the two sides of (2). The following lemma implies that the
chance that this happens for a random choice of p is small, since an n-bit integer (which is
what K is) has at most n prime divisors.

Lemma 4 (Fingerprinting)
Suppose x, y, x "= y are n-bit integers. Then there are at most n primes that divide |x− y|.
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Protocol: Sumcheck protocol to check claim (2)

V: If n = 1 check that g(1) + g(0) = K. If so accept, otherwise reject. If n ≥ 2,
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Lemma 4 (Fingerprinting)
Suppose x, y, x �= y are n-bit integers. Then there are at most n primes that divide |x− y|.
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An interactive proof for #SATL is obtained by letting g = Pφ. �

We use a very similar idea to obtain a protocol for TQBF. Given a true, fully qualified
Boolean formula ∃x1∀x2∃x3 · · · ∀xnφ(x1, . . . , xn), we use arithmetization to construct the
polynomial Pφ. We have that φ ∈ TQBF if and only if

0 <
∑

b1∈{0,1}

∏
b2∈{0,1}

∑
b3∈{0,1}

· · ·
∏

bn∈{0,1}
Pφ(b1, . . . , bn)

A first thought is that we could use the same protocol as in the #SATL case, except check
that s(0) ·s(1) = K when you have a

∏
. But, alas, multiplication, unlike addition, increases

the degree of the polynomial — after n steps when V must evaluate g directly, the degree
could be 2n. There could be exponentially many coefficients. The solution is to observe
that we are only interested in {0, 1} values. You can always approximate a polynomial with
a multi-linear function if you only evaluate it at {0, 1}n. Let Rxi be a linearization operator
defined as

Rx1[p(x1, . . . , xn)] = (1− x1)p(0, x2, . . . , xn) + (x1)p(1, x2, . . . , xn). (6)

Now, instead of working with ∃x1∀x2∃x3 · · · ∀xnφ(x1, . . . , xn), work with

∃x1Rx1∀x2Rx1Rx2∃x3Rx1Rx2Rx3 · · ·φ(x1, . . . , xn) (7)

The size of the expression is 1+2+3+ · · ·+n ≈ n2. The protocol for #SATL can be used
suitably modified, where in rounds involving the linearization operator, the verifier uses (6).
The use of the linearization operator ensures that the polynomial which the prover needs
to send at every round is linear, and hence the blowup in degrees is avoided. �
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