
princeton university cos 522: computational complexity

Lecture 2: Space Complexity

Lecturer: Sanjeev Arora Scribe:scribename

Today we discuss space-bounded computation. A space-bounded machine has a read-
only input tape, and a read-write work tape. We say that it runs in S(n) space if the
work tape has O(S(n)) cells when the input has n bits. (See Figure 1.) We denote by
SPACE(S(n)) the class of languages that can be decided in O(S(n)) space. We will
restrict attention to S(n) ≥ log n, so the machine has enough space to maintain a pointer
into the input tape. Note that DTIME(t(n)) ⊆ SPACE(t(n)) since a TM running in time
t(n) can only use t(n) cells in the work tape. Also, SPACE(s(n)) ⊆ DTIME(2O(t(n))),
since a machine with a work tape of size s(n) only has O(n · 2O(s(n))) = 2O(s(n)) different
configurations, and it cannot enter the same configuration twice since that would mean it
is in an infinite loop. (Recall that the machine is required to halt on every input.)

We can similarly define nondeterministic space-bounded machines, and the class NSPACE(s(n)).
The following definitions are similar to the definitions of P and NP.

Definition 1 PSPACE = ∪c>0SPACE(nc).
NPSPACE = ∪c>0NSPACE(nc).

Note that NP ⊆ PSPACE, since polynomial space is enough decide 3SAT (just cycle
through all 2n assignments, where n is the number of variables).

Let TQBF be the set of quantified boolean formulae that are true.

Example 1 The formula ∀x∃y (x ∧ y) ∨ (x ∧ y) is in TQBF but ∀x∀y (x ∧ y) ∨ (x ∧ y) is
not in TQBF.

For a proof of the following theorem, see Sipser Chapter 8.

Theorem 1
TQBF is complete for PSPACE under polynomial-time reductions.

1 Two suprising algorithms

Now we describe two surprising algorithms for space-bounded computation. Let PATH be
the language

PATH = {< G, s, t >: G is a directed graph in which there is a path from s to t} (1)

PATH has a trivial polynomial time algorithm that uses depth-first search. It is unclear
how to implement decide PATH in sublinear space, though. Note that PATH ∈ NL,
since a nondeterministic machine can take a “nondeterministic walk” starting at s, always
maintaining the index of the vertex it is at, and using nondeterminism to select an outgoing
edge out of this vertex for the next vertex to go to. The machine accepts iff the walk ends

1



2

INPUT  TAPE

FINITE  CONTROL

WORK   TAPE

N   BITS

S(N)  BITS

Figure 1: A TM running in space O(S(n))

at t in at most n steps, where n is the number of nodes. Thus it needs to keep track of the
current vertex, which it can do using O(log n) bits.

The next theorem says that this computation can be made deterministic with quadratic
blowup in space.

Theorem 2 (Savitch)
PATH ∈ SPACE(log2 n).

Proof: Let < G, s, t > be the input. We describe a recursive procedure reach?(u, v, l)
that returns “YES” if there is a path from u to v of length at most l and “NO” otherwise.
The procedure uses the observation that if there is a path from u to v of length at most l,
there is a “middle” node z along this path such that there is a path of length 
l/2� from u
to z and �l/2 from z to v.

The procedure is as follows. If l = 1, return YES iff (u, v) is an edge. Otherwise for
each node z, run reach?(u, z, 
l/2�) and reach?(u, z, �l/2) and return YES if both return
YES.

The main observation is that all recursive calls in this description can reuse the same
space. Also, keeping track of the current value of z takes only O(log n) space. Thus if S(l)
denotes the space requirement, we have

S(l) ≤ O(log n) + S(
 l

2
�). (2)

This yields S(l) = O(log n log l).
The final answer is reach?(s, t, n), so the space required is S(n) = O(log2 n). �

The next result concerns PATH, the complement of PATH. A decision procedure for
this language must accept when there is no path from s to t in the graph. The following
result is quite surprising.

Theorem 3 (Immerman-Szlepcsenyi)
PATH ∈ NL.

Proof: How can a nondeterministic computation decide that there is no path from s to t?
Let us first consider an easier problem. Suppose somebody gives the machine a number c,
which is exactly the number of nodes reachable from s. Then the machine’s task becomes



3

easier. It keeps aside t and for every other nodes, it sequentially tries to guess —using a
nondeterministic walk —a path from s to that node. It accepts at the end iff it succeeds
for c nodes, since that means that t is not one of the c nodes connected to s. Note that if e
very branch of this nondeterministic computation fails (i.e., does not accept) then there do
not exist c nodes different from t that are reachable from s, which means that then t must
be reachable from s.

Now we can describe the nondeterministic computation for PATH. We use an induc-
tive counting technique to calculate c, whereby step i determines ci, the number of nodes
reachable from s in i steps. (Thus cn is the same as c.) Clearly, c0 = 1. To compute ci+1
from ci we use a modification of the idea in the previous paragraph. For each node u we
perform a nondeterministic computation which succeeds iff u has distance exactly i+1 from
s. Our basic “nondeterministic walk” is used over an over. The following nondeterministic
procedure omputes ci+1 − ci:

Maintain a counter, initialized to 0. Enumerate nodes one by one. For each node u,
start a nondeterminstic computation that accepts iff the distance of u from s is exactly i+1
(namely, if you can enumerate exactly ci nodes different from u whose distance to s is at
most i, and one of them has an edge to u). If this nondeterministic computation succeeds,
increment the counter and continue. If it rejects, HALT immediately and reject.

�

2 Picture of Space-Bounded Complexity Classes

The following two are simple corollaries of the two algorithms, since the PATH problem is
complete for NL.

Theorem 4 (Savitch)
NSPACE(s(n)) ⊆ SPACE(s(n)2).

(Thus in particular, PSPACE = NPSPACE, in contrast to the conjecture P �= NP.)

Theorem 5 (Immerman-Szlepcsenyi)
NSPACE(s(n)) = coNSPACE(s(n)).

(This is in contrast to the conjecture that NP �= coNP.)
Thus the following is our understanding of space-bounded complexity.

DTIME(s(n)) ⊆ SPACE(s(n)) ⊆ NSPACE(s(n)) = coNSPACE(s(n)) ⊆ DTIME(2O(s(n))).

Exercises

§1 In analogy with the characterization of NP in terms of certificates, show that we can
define NSPACE(s(n)) as the set of languages for which certificates can be checked
deterministically using O(S(n)) space, where the certificate is provided on a read-only
tape of size 2O(S(n)) and the verifier can scan it only once from left to right.


