
princeton university cos 522: computational complexity

Lecture 22: Natural Proofs

Lecturer: Sanjeev Arora Scribe:Iannis Tourlakis

Why have we not been able to prove strong lower bounds for circuits? In this lecture
we consider the notion of “natural proofs” for separating complexity classes as put forth
by Razborov and Rudich in 1994. In their paper, Razborov and Rudich show that current
lowerbound arguments involve “natural” techniques, and show that obtaining strong lower-
bound with such techniques would violate a widely believed cryptographic assumptions.

Basically, a natural technique is one that proves a lowerbound for a random function
and is “constructive.” We will formalize “constructive” later but let us consider why current
techniques apply to random functions.

1 Formal Complexity Measures

We begin with an example.

Example 1 Recall that a formula is a circuit with one output and in which each gate has
in-degree 2 and outdegree 1. How would one go about proving lower bounds on formula size?
Perhaps by induction? To that end, suppose we have a function like the one in Figure 1
that we believe to be “hard”. If the function computed at the output is “complicated”,
intuitively it should be that at least one of the functions on the incoming edges to the
output should also be complicated.

Let’s try to formalize our intuition in the above example. Let μ be a function that maps
each boolean function on {0, 1}n to a nonnegative integer. (The input to μ is the truth table
of the function.) We say that μ is a formal complexity measure if it satisfies the following
properties: First, μ(xi) ≤ 1 and μ(x̄i) ≤ 1 for all i. Second, we require that

• μ(f ∧ g) ≤ μ(f) + μ(g) for all f, g; and

• μ(f ∨ g) ≤ μ(f) + μ(g) for all f, g.

For instance, the following function ρ is trivially a formal complexity measure

ρ(f) = the smallest formula size for f. (1)

In fact, it is easy to prove the following by induction.

Theorem 1
If μ is a formal complexity measure, then μ(f) is a lowerbound on the formula complexity
of f .

Thus to prove a lowerbound for the formula size complexity of the CLIQUE, we would
define a measure μ that is high for CLIQUE. For example, one could try “fraction of inputs
for which the function agrees with the CLIQUE function” or some suitably scaled version

1

2

V�

V� V�

x�1� x�1� x�2� x�n�x�2� x�n�. . .�

Figure 1: A formula for a hard function.

of this. Unfortunately, such simple measures don’t do the job, as you should check using
the next few paragraphs. In general, one would imagine that a measure that lets us prove
a good lowerbound for CLIQUE would involve some deep theorem about the CLIQUE
function. The next lemma seems to show, however, that even though all we care about is
the CLIQUE function, we have to in fact reason about random functions.

Lemma 2
Suppose that μ is a formal complexity measure and that there exists a function f : {0, 1}n →
{0, 1} such that μ(f) ≥ c for some large number c. Then for at least 1/4 of all functions
g : {0, 1}n → {0, 1} we must have that μ(g) ≥ c/4.

Proof: Let g : {0, 1}n → {0, 1} be random. Write f as f = h ⊕ g where h = f ⊕ g. Note
that h is also random. So f = (h̄∧ g)∨ (h∧ ḡ). Now suppose that {g : μ(g) < c/4} contains
more than 3/4 of all functions. Then Pr[All of h, h̄, g, ḡ have μ < c/4] > 0. Hence μ(f) < c,
which contradicts the assumption. Thus the lemma is proved. �

In fact, the following stronger theorem holds:

Theorem 3
If μ(f) > c then for all ε > 0 and for at least 1 − ε of all functions g we have that,

μ(g) ≥ Ω
(

c

(n + log(1/ε))2

)
.

The idea behind the proof of the theorem is to write f as the boolean combination of a
small number of functions and then proceed similarly to the proof of the lemma.

2 Natural Properties

A property Φ is a map from boolean functions to {0, 1}. A P-natural property useful against
P/poly is a property Φ such that:

3

1. Φ(f) = 1 for at least a 1/2n fraction of all functions on n bits (recall that there are
22n

functions on n bits);

2. Φ(f) = 1 implies that f �∈ P/poly (or concretely, say, f has circuit complexity nlog n);
and

3. Φ is computable in 2O(n) time.

Note that the property is called P-natural because of requirement (3). The property is
useful against P/poly because of requirement (2). Note that requirement (3) is somewhat
controversial in that there is no broad consensus on whether it is reasonable.

Example 2 We have seen a natural property useful against AC0: this is the property that
there does not exist a restriction on n − nε inputs function that turns the function into a
constant function.

In fact, all known combinatorial techniques for obtaining circuit lowerbounds essentially
involve constructing a natural property useful against the circuit class in question. In the
case of AC0, the natural property is quite explicit in the proof, whereas for other classes,
the natural property is hidden deeper inside the proof.

The following theorem by Razborov and Rudich possibly explains why we have not been
able to use the same techniques to obtain an upper bound on P/poly: constructing a natural
property useful against P/poly violates widely believed cryptographic assumptions.

Theorem 4 (Razborov, Rudich)
Suppose there exists a P-natural property Φ useful against P/poly. Then there are no strong
pseudorandom function generators. In particular, there exist subexponential algorithms for
factoring and discrete log.

Before giving the proof we define pseudorandom function generators. Note that we
will be tailoring a more general definition for our narrow purposes. We begin by defining
pseudorandom function ensembles (again tailored to our needs).

Definition 1 A function ensemble is a sequence F = {Fn}∞
n=1 of random variables where

Fn assumes values in the set of functions mapping {0, 1}n to {0, 1}. In the special case where
Fn is uniformly distributed over all such functions, F is called the uniform function ensemble
and is denoted by H = {Hn}∞

n=1. A function ensemble F = {Fn}∞
n=1 is pseudorandom if

for each Turing machines M running in time 2O(n), and for all sufficiently large n,

| Pr[M(Fn) = 1] − Pr[M(Hn) = 1]| <
1

2n2 .

Definition 2 A pseudorandom function generator is a function f(k, x) computable in poly-
nomial time where the key k has nc bits and the input x has n bits with the following property:
if we let Fn be the random variable defined by uniformly selecting k ∈ {0, 1}nc

and setting
Fn to f(k, ·), then the function ensemble F = {Fn}∞

n=1 is pseudorandom. We will denote
f(k, ·) by fk.

4

n�c�

n�c� n�c�

n�c� n�c� n�c� n�c�

g�

g� g�

x�0�

x�1�

Figure 2: Constructing a pseudorandom function generator from a pseudorandom generator.

Intuitively, the above definition says that given a pseudorandom function generator f , if
we fix k randomly, then with high probability the function fk “looks like a random function”
to all Turing machines running in time 2O(n). Note that it takes 2O(nc) time to guess a key
whereas the adversary Turing machine is only allowed time 2O(n).

As an aside, note that we can construct a pseudorandom function generator f(k, x) using
a pseudorandom generator g that stretches nc random bits to 2nc pseudorandom (also see
Figure 2): Let g0(k) and g1(k) denote, respectively, the first and last nc bits of g(k). Then
the following function is a pseudorandom function generator, where MSB(x) refers to the
first bit of a string x:

f(k, x) = MSB(gxn ◦ gxn−1 ◦ · · · ◦ gx2 ◦ gx1(k)).

This construction is correct if the security parameter of g is large enough. Such a pseu-
dorandom generator exists —by the Goldreich Levin theorem— if a oneway permutation
exists that is extremely hard to invert. The discrete log problem —a permutation— is
conjectured to be oneway. Many researchers believe that there is a small ε > 0 such that
the discrete log problem cannot be solved in 2nε

time. (They also believe the same for
factoring.) If this belief is correct, then pseudorandom function generators exist as outlined
above. (Exercise.)

We can now give the proof of the above theorem:

Proof:[Theorem 4] Suppose the property Φ exists, and f is a pseudorandom function
generator. We show that a Turing machine can use Φ to distinguish fk from a random
function. First note that fk ∈ P/poly for every k (just hardwire k into the circuit for fk) so
the contrapositive of property (2) implies that Φ(fk) = 0. In addition, property (1) implies
that PrHn [Φ(Hn) = 1] ≥ 1/2n. Hence,

Pr
Hn

[Φ(Hn)] − Pr
k∈{0,1}nc

[Φ(fk)] ≥ 1/2n,

and thus Φ is a distinguisher against f . �

We finish by noting that there is one technique that we have seen for proving lower
bounds that does not fall under the category of natural proofs: diagonalization. Sadly, as
we saw in Lecture 3, diagonalization can only be used to prove relativizing results.

