
princeton university cos 522: computational complexity

Lecture 4: Polynomial Hierarchy

Lecturer: Sanjeev Arora Scribe:self

The polynomial hierarchy is a hierarchy of complexity classes that generalizes
P, NP, and coNP. Recall the definition of NP, coNP.

Definition 1 Language L is in NP if there is a language L0 ∈ P and constants
c, d > 0 such that

∀x ∈ {0, 1}∗
x ∈ L ⇐⇒ ∃y ∈ {0, 1}∗

, |y| ≤ d |x|c and (x, y) ∈ L0.

Language L in in coNP iff L ∈ NP. In other words, there is a language
L0 ∈ P and constants c, d > 0 such that

∀x ∈ {0, 1}∗
x ∈ L ⇐⇒ ∀y ∈ {0, 1}∗

, |y| ≤ d |x|c and (x, y) ∈ L0.

Definition 2 (polynomial hierarchy) The polynomial hierarchy is defined
as ∪i≥0Σ

p
i or equivalently ∪i≥0Π

p
i , where

1. Σp
0 = Πp

0 = P.

2. Σp
1 = NP, Πp

1 = coNP.

3. Σp
i consists of any language for which there is a language L0 ∈ Πp

i−1 such
that

∀x ∈ {0, 1}∗
x ∈ L ⇐⇒ ∀y ∈ {0, 1}∗

, |y| ≤ d |x|c and (x, y) ∈ L0.

4. Πp
i consists of any language for which there is a language L0 ∈ Σp

i−1 such
that

∀x ∈ {0, 1}∗
x ∈ L ⇐⇒ ∃y ∈ {0, 1}∗

, |y| ≤ d |x|c and (x, y) ∈ L0.

Example 1 To understand this definition, let us unwrap it for i = 2. Language
L is in Σp

2 if there is a language L0 ∈ P and constants c, d > 0 such that a string
x is in L iff

∃y1 ≤ d |x|c ∀y2 ≤ d |x|c (x, y1, y2) ∈ L0.

Similarly Language L is in Πp
2 if there is a language L0 ∈ P and constants

c, d > 0 such that a string x is in L iff

∀y1 ≤ d |x|c ∃y2 ≤ d |x|c (x, y1, y2) ∈ L0.

Clearly, L ∈ Πp
2 iff L ∈ Σp

i .
Similarly we can unwrap the definition for general i and directly define Σp

i

using i quantifiers, the first being ∃ and the rest alternating between ∃ and ∀.
The class Πp

i involves involves i quantifiers, alternating between ∃ and ∀ and
beginning with ∀.

1

2

What are some natural problems in these classes? Consider the language
EXACT-TSP, defined as

{< G,C >: G is a weighted graph and its shortest salesman tour has length C} .
(1)

= {< G,C >: ∃ salesman tour π s.t. cost(π) = C and ∀ tour π′ cost(π′) ≥ C}
(2)

Then EXACT-TSP ∈ Σp
2.

Now we describe a language MIN-CNF in Πp
2; this language is of interest

in electrical engineering, specifically, circuit minimization. We say that two
boolean formulae are equivalent if they have the same set of satisfying assign-
ments.

MIN-CNF = {< ϕ >: ϕ is not equivalent to any smaller formula} . (3)
= {< ϕ >: ∀ψ, |ψ| < |ϕ| ,∃ assignment s such that ϕ(s)
= ψ(s)} .

(4)

The class Σp
i has a complete problem involving quantified boolean formulae1

with limited number of alternations. Specifically, it is

Σi-SAT = ∃�x1∀�x2∃ · · ·Q�xi ϕ(�x1, �x2, . . . , �xi) = 1, (5)

where ϕ is a boolean formula, each �xi is a vector of boolean variables, and Q is
∃ or ∀ depending on whether i is odd or even.

The next simple theorem is the only theorem in this lecture.

Theorem 1
If P = NP then PH = P.

Proof: Easy. �

We strongly believe that not only is P
= NP but also that all levels of
PH are distinct. This latter conjecture will be useful in the rest of the course;
we will reduce other conjectures to it (that is to say, prove other conjectures
assuming this is true).

1 Alternating Turing machines

Alternating TMs are like nondeterministic TMs except the states are labelled
with either ∃ or ∀. A nondeterministic TM is a special case in which states are
labelled with only ∃. The acceptance criterion for such a machine is defined in
the obvious way by looking at the tree of all possible computation branches,
and propagating the YES/NO decisions at the leaves to the root using the

1The resemblance to TQBF is not coincidental. In the definition of Σp
i if we allow the

number of alternations i to be polynomial in the input, then we get a class called AP, which
is exactly PSPACE, and hence has TQBF as its complete problem. Verify this!

3

obvious semantics for ∃ and ∀. Then Σp
i is the class of languages accepted by

polynomial time alternating TMs in which each computation branches features
at most (i − 1) alternations between ∃ and ∀, and the machine starts in an ∃
state. The class Πp

i is similarly defined except the machine starts in a ∀ state.
It is easily checked that this definition is equivalent to our earlier definitions.

We note that the levels of the polynomial hierarchy can also be defined using
oracle turing machines. This is explored in the exercises.

Problems

§1 Show that the language in (5) is complete for Σp
i under polynomial time

reductions. (Hint use the NP-completeness of SAT.)

§2 Prove Theorem 1.

§3 Prove that AP = PSPACE, as claimed in the footnote.

§4 Suppose we define logspace computation.

§5 Show that Σp
2 = NPSAT.

