
princeton university cos 522: computational complexity

Lecture 5: Circuits

Lecturer: Sanjeev Arora Scribe:Scribename

The boolean circuit model mimics a silicon chip. A circuit with n inputs is a directed
acyclic graph with n leaves (called the input wires) and each internal node is labelled with
∨, ∧, ¬. The ∨ and ∧ nodes have fanin (i.e., number of incoming edges) of 2 and the ¬
nodes have fanin 1. There is a designated output node. We think of n bits being fed into
the input wires. Each internal node/gate applies the boolean operation it is labeled with on
its incoming wires to produce a single bit. Thus bits filter through the circuit —remember
that it is acylic, so feedback effects are absent— until a single output bit emerges at the
output node. Thus the circuit implements a function from {0, 1}n → {0, 1}. The size of
the circuit is the number of nodes in it.

A circuit family (Wn)n≥1 is a sequence of circuits where Wn is a circuit with n inputs.
We say that the family decides a language L if for every input x,

x ∈ L ⇔ W|x|(x) = 1. (1)

Note that every language is decidable by a circuit family of size O(n2n), since the circuit
for input length n could contain 2n “hardwired” bits indicating which inputs are in the
language. Given an input, the circuit looks up the answer from this table. (The reader may
wish to work out an implementation of this circuit.)

Definition 1 The class P/poly consists of every language that is decidable by a circuit
family of size O(nc) for some c > 0.

Theorem 1
P ⊆ P/poly.

Proof: We show that every language that is decidable in t(n) time has circuits of size
O(t(n)2). (A more careful argument can actually yield circuits of size O(t(n) log t(n)). The
main idea is similar to that in the Cook-Levin theorem, where we noticed that computation
is very local, since the machine affects its tape only in the cell currently occupied by its
head.

On any input of size n, the tableau of the machine’s computation is a matrix of size t(n)×
t(n). Assume wlog that the machine enters the leftmost cell before accepting. Construct a
circuit in which use a wire for each bit of the tableau. The bits of the machine’s input enter
at the input wires of the circuit. Construct a “next step” module, which is a circuit that,
given the contents of three adjacent cells in a row of the tableau, computes the contents
of the cell below the middle cell. Since the machine has a fixed transition diagram and
alphabet, each tableau cell is represented by k = O(1) bits, so the the next-step circuit
has size O(1) (could be exponential in k). Replicate this next-step module everywhere as
needed so that all the bits in the tableau are computed correctly. (See Figure 1.) The
output of the overall circuit is computed by examining the cell in the lower left corner of
tableau; it is 1 iff the machine is in an accept state. �

1

2

q0

x1 x2 3x

next
state

next
state

next
state

next
state

next
state

next
state

.

.

.
.
.
.

.

.

.

next
state

next
state

next
statek bits

k bits k bits k bits

. . .

next state
circuit

xn. . .

. . .

check for accepting state

.

Figure 1: Circuit to simulate a Turing machine computation by constructing the tableau.

Can we give a good upperbound on the computational power represented by P/poly?
The next example shows this is difficult since P/poly contains an undecidable language.

Example 1 Every unary language has linear size circuits since the circuit for an input
size n only needs to have a single “hardwired” bit indicating whether or not 1n is in the
language. The following unary language is undecidable:

{
1<M,w> : TM M accepts w

}
, (2)

where < M, w > is an encoding that encodes strings with integers.

1 Karp-Lipton Theorem

Is SAT in P/poly? If so, one could imagine a government-financed project to construct
a small circuit that solves SAT on, say, 10, 000 variables. Upon discovering such a circuit
we could incorporate it in a small chip, to be used in all kinds of commercial products. In
particular, such a chip would jeopardise all current cryptographic schemes.

The next theorem seems to dash such hopes, at least if you believe that the polynomial
hierarchy does not collapse.

Theorem 2 (Karp-Lipton, with improvements by Sipser)
If NP ⊆ P/poly then PH = Σp

2.

Note that if NP ⊆ P/poly then SAT has a polynomial-size circuit family. Namely, for
some k > 0 there is a sequence of circuits W1, W2, W3, . . ., where Wn is a circuit of size nk

that decides satisfiability of all boolean formulae whose encoding size is ≤ n. Of course,
NP ⊆ P/poly merely implies the existence of such a family; there may be no easy way to
construct the circuits.

Lemma 3 (Self-reducibility of SAT)
There is a polynomial-time computable function h such that if {Wn}n≥1 is a circuit family
that solves SAT, then for all boolean formulae ϕ:

ϕ ∈ SAT iff h(ϕ, W|ϕ|) is a satisfying assignment for ϕ. (3)

3

Proof: The main idea in the computation of h is to use the provided circuit to generate
a satisfying assignment. Ask the circuit if ϕ is satisfiable. If so, ask it if ϕ(x1 = T) (i.e.,
ϕ with the first variable assigned True) is satisfiable. The circuit’s answer allows us to
reduce the size of the formula. If the circuit says no, we can conclude that ϕ(x1 = F) is
true, and have thus reduced the number of variables by 1. If the circuit says yes, we can
substitute x1 = T and again reduced the number of variables by 1. Continuing this way, we
can generate a satisfying assignment. This proves the Lemma. (Aside: The formal name
for the above property of SAT is downward self-reducibility. All NP-complete languages
have this property.) �

Now we prove the Theorem.

Proof:(Theorem 2) We show NP ⊆ P/poly implies Πp
2 ⊆ Σp

2.
Let L ∈ Πp

2. Then there is a language L1 ∈ NP and c > 0 such that

L = {x ∈ {0, 1}∗ : ∀ y, |y| ≤ |x|c , (x, y) ∈ L1} . (4)

Since L1 ∈ NP, there is a polynomial-time reduction, say g, from L1 to SAT. Thus

∀ z ∈ {0, 1}∗ : z ∈ L1 iff g(z) ∈ SAT.

Suppose further that d > 0 is such that |g(z)| ≤ |z|d .
Now we can rewrite (4) as

L = {x ∈ {0, 1}∗ : ∀ y, |y| ≤ |x|c1 , g(x, y) ∈ SAT} .

Note that |g(x, y)| ≤ (|x|+ |y|)d. Let us simplify this as |x|cd. Thus if Wn≥1 is a nk-sized
circuit family for SAT, then by (3) we have

L =
{

x : ∀ y, |y| ≤ |x|c1 , h(g(x, y), W|x|cd) is a satisfying assignment for g(x, y)
}

.

Now we are almost done. Even though there may be no way for us to construct the
circuit for SAT, we can just try to “guess” it. Namely, an input x is in L iff

∃W, a circuit with |x|cd inputs and size |x|cdk such that
∀ y, |y| ≤ |x|c1 , h(g(x, y), W) is a satisfying assignment for g(x, y).

Since h is computable in polynomial time , we have thus shown L ∈ Σp
2. �

2 Circuit lowerbounds

Theorem 1 implies that if NP �⊆ P/poly, then P �= NP. The Karp-Lipton theorem gives
hope that NP �⊆ P/poly. Can we resolve P versus NP by proving NP �⊆ P/poly? There is
reason to invest hope in this approach as opposed to proving direct lowerbounds on Turing
machines. By representing computation using circuits (Theorem 1) we seem to actually
peer into the guts of it rather than treating it as a blackbox. Thus we may be able to get
around the relativization results of Lecture 3.

4

Sadly, such hopes have not come to pass. After two decades, the best circuit size
lowerbound for an NP language is only 4n. (However, see the Problems for a better
lowerbound for a language in PH.) On the positive side, we have had notable success in
proving lowerbounds for more restricted circuit models, as we will see later in the course.

By the way, it is easy to show using counting arguments that for large enough n, almost
every boolean function on n variables requires circuits of size at least 2n/10n. The reason
is that there are at most s3s circuits of size s (just count the number of labelled directed
graphs, where each node has indegree at most 2). For s = 2n/10n, this number is minis-
cule compared 22n

, the number of boolean functions on n variables. Hence most boolean
functions do not have such small circuits.

Of course, such simple counting arguments do not give an explicit boolean function that
requires large circuits.

3 Turing machines that take advice

There is a way to define P/poly using TMs. We say that a Turing machine has access to
an advice family {an}n≥0 (where each an is a string) if while computing on an input of size
n, the machine is allowed to examine an. The advice family is said to have polynomial size
if there is a c ≥ 0 such that |an| ≤ nc.

Theorem 4
L ∈ P/poly iff L is decidable by a polynomial-time Turing machine with access to an advice
family of polynomial size.

Proof: If L ∈ P/poly, we can provide the description of its circuit family as advice to a
Turing machine. When faced with an input of size n, the machine just simulates the circuit
for this circuit provided to it.

Conversely, if L is decidable by a polynomial-time Turing machine with access to an
advice family of polynomial size, then we can use the construction of Theorem 1 to construct
an equivalent circuit for each input size with the corresponding advice string hardwired into
it. �

Exercises

§1 Show for every k > 0 that PH contains languages whose circuit complexity is Ω(nk).
(Hint: First show that such a language exists in SPACE(2poly(n)).)

§2 Show that if some unary language is NP-complete, then P = NP.

§3 (Open) Suppose we make a stronger assumption than NP ⊆ P/poly: every language
in NP has linear size circuits. Can we show something stronger than PH = Σp

2?

