
princeton university cos 522: computational complexity

Lecture 6: Randomized Computation

Lecturer: Sanjeev Arora Scribe:Manoj

A randomized Turing Machine has a transition diagram similar to a nondeterministic
TM: multiple transitions are possible out of each state. Whenever the machine can validly
more than one outgoing transition, we assume it chooses randomly among them. For now we
assume that there is either one outgoing transition (a deterministic step) or two, in which
case the machine chooses each with probability 1/2. (We see later that this simplifying
assumption does not effect any of the theory we will develop.) Thus the machine is assumed
to have a fair random coin.

The new quantity of interest is the probability that the machine accepts an input. The
probability is taken over the coin flips of the machine.

1 RP and BPP

Definition 1 RP is the class of all languages L, such that there is a polynomial time
randomized TM M such that

x ∈ L ⇔ Pr[M accepts x] ≥ 1
2

(1)

x �∈ L ⇔ Pr[M accepts x] = 0 (2)

We can also define a class where we allow two-sided errors.

Definition 2 BPP is the class of all languages L, such that there is a polynomial time
randomized TM M such that

x ∈ L ⇔ Pr[M accepts x] ≥ 2
3

(3)

x �∈ L ⇔ Pr[M accepts x] ≤ 1
3

(4)

As in the case of NP, we can given an alternative definiton for these classes. Instead of
the TM flipping coins by itself, we think of a string of coin flips provided to the TM as an
additional input.

Definition 3 BPP is the class of all languages L, such that there is a polynomial time
deterministic TM M and c > 0 such that

x ∈ L ⇔ Pr
r∈{0,1}|x|c [M accepts x] ≥ 2

3
(5)

x �∈ L ⇔ Pr
r∈{0,1}|x|c [M accepts x] ≤ 1

3
(6)

1

2

We make a few observations about randomized classed. First, RP ⊆ NP, since a
random string that causes the machine to accept is a certificate that the input is in the
language. We do not know if BPP is in NP. Note that BPP is closed under complemen-
tation. We do not know of any complete problems for these classes. One difficulty seems
to be that the problem of determining whether or not a given randomized polynomial time
TM is an RP machine is undecidable.

1.1 Probability Amplification

In the definition of BPP above the actual values in the place of 2
3 and 1

3 are not crucial,
as we observe below. These two numbers can be replaced by 1 − 1/2n and 1/2n without
changing the class.

By repeatedly running a machine M accepting a BPP language L with probabilities
as above, and taking the majority vote of the different decisions it makes, we can get a
much better probability of a correct answer. Using a polynomial (in input size) number
of repeated trials, we get an exponentially small probability of deciding the input wrongly.
This follows from bounding the tail of a binomial distribution using Chernoff bounds.

2 Theorems about BPP

Now we show that all BPP languages have polynomial sized circuits.

Theorem 1
BPP ⊆ P/poly

Proof: For any language L ∈ BPP consider a TM M (taking a random string as additional
input) which decides any input x with an exponentially low probability of error; such an M
exists by the probability amplification arguments mentioned earlier. In particular let the
probability M(x, r) being wrong (taken over r) be ≤ 1/2(n+1), where n = |x|. Say that an
r is bad for x if M(x, r) is an incorrect answer. Let t be the total number of choices for r.
For each x, at most t/2(n+1) values of r are bad. Adding over all x, we conclude that at
most 2n × t/2(n+1) values of r are bad for some x. In other words, at least t/2 choices of
r not bad for every x. In particular there is some one value of r for which M(x, r) decides
x correctly. We can hard-wire this r into a polynomial size circuit. Given an input x, the
circuit simulates M on (x, r). Hence L ∈ P/poly. �

The next theorem relates BPP to the polynomial hierarchy.

Theorem 2
BPP ⊆ Σp

2 ∩ Πp
2

Proof: It is enough to prove that BPP ⊆ Σp
2 because BPP is closed under complemen-

tation.
Suppose L ∈ BPP, and M is a randomized TM for L, that uses m random bits such

that x ∈ L ⇒ Prr[M(x, r) accepts] ≥ 1 − 2−n and x �∈ L ⇒ Prr[M(x, r) accepts] ≤ 2−n.
Fix an input x, and let Sx denote the set of r for which M accepts (x, r). Then either

|Sx| ≥ (1 − 2−n)2m or |Sx| ≤ 2−n2m, depending on whether or not x ∈ L. We will show
how to guess, using two alternations, which of the two cases is true.

Proof (completed)

Q. How many ha ’s cause x and y to collide?
A. There are m choices for each of a1 , a2 , …, ar ,
but once these are chosen, exactly one choice
for a0 causes x and y to collide, namely

⎛
⎞⎟⎟

⎛
⎞⎟⎟

r ∑
⋅ (x0 − y 0 −) 1

⎜⎜⎝ ⎜⎜ =
−

ai (xi − y i)
mod m .

a0
⎠

⎝
⎠

i 1 =

Thus, the number of h ’s that cause x and y
a

to collide is m r ·1 = m r = |H|/m.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15

2

We make a few observations about randomized classed. First, RP ⊆ NP, since a
random string that causes the machine to accept is a certificate that the input is in the
language. We do not know if BPP is in NP. Note that BPP is closed under complemen-
tation. We do not know of any complete problems for these classes. One difficulty seems
to be that the problem of determining whether or not a given randomized polynomial time
TM is an RP machine is undecidable.

1.1 Probability Amplification

In the definition of BPP above the actual values in the place of 2
3 and 1

3 are not crucial,
as we observe below. These two numbers can be replaced by 1 − 1/2n and 1/2n without
changing the class.

By repeatedly running a machine M accepting a BPP language L with probabilities
as above, and taking the majority vote of the different decisions it makes, we can get a
much better probability of a correct answer. Using a polynomial (in input size) number
of repeated trials, we get an exponentially small probability of deciding the input wrongly.
This follows from bounding the tail of a binomial distribution using Chernoff bounds.

2 Theorems about BPP

Now we show that all BPP languages have polynomial sized circuits.

Theorem 1
BPP ⊆ P/poly

Proof: For any language L ∈ BPP consider a TM M (taking a random string as additional
input) which decides any input x with an exponentially low probability of error; such an M
exists by the probability amplification arguments mentioned earlier. In particular let the
probability M(x, r) being wrong (taken over r) be ≤ 1/2(n+1), where n = |x|. Say that an
r is bad for x if M(x, r) is an incorrect answer. Let t be the total number of choices for r.
For each x, at most t/2(n+1) values of r are bad. Adding over all x, we conclude that at
most 2n × t/2(n+1) values of r are bad for some x. In other words, at least t/2 choices of
r not bad for every x. In particular there is some one value of r for which M(x, r) decides
x correctly. We can hard-wire this r into a polynomial size circuit. Given an input x, the
circuit simulates M on (x, r). Hence L ∈ P/poly. ✷

The next theorem relates BPP to the polynomial hierarchy.

Theorem 2
BPP ⊆ Σp

2 ∩ Πp
2

Proof: It is enough to prove that BPP ⊆ Σp
2 because BPP is closed under complemen-

tation.
Suppose L ∈ BPP, and M is a randomized TM for L, that uses m random bits such

that x ∈ L ⇒ Prr[M(x, r) accepts] ≥1 − 2−n and x ̸∈ L ⇒ Prr[M(x, r) accepts] ≤ 2−n.
Fix an input x, and let Sx denote the set of r for which M accepts (x, r). Then either

|Sx| ≥ (1 − 2−n)2m or |Sx| ≤ 2−n2m, depending on whether or not x ∈ L. We will show
how to guess, using two alternations, which of the two cases is true.

Hence if we choose a random element r of these t/2 choices, then the probability that there is any x for which

r is bad is < 1. This provides a nonconstructive proof that there is some one value of r for which M(x,r) decides

2

We make a few observations about randomized classed. First, RP ⊆ NP, since a
random string that causes the machine to accept is a certificate that the input is in the
language. We do not know if BPP is in NP. Note that BPP is closed under complemen-
tation. We do not know of any complete problems for these classes. One difficulty seems
to be that the problem of determining whether or not a given randomized polynomial time
TM is an RP machine is undecidable.

1.1 Probability Amplification

In the definition of BPP above the actual values in the place of 2
3 and 1

3 are not crucial,
as we observe below. These two numbers can be replaced by 1 − 1/2n and 1/2n without
changing the class.

By repeatedly running a machine M accepting a BPP language L with probabilities
as above, and taking the majority vote of the different decisions it makes, we can get a
much better probability of a correct answer. Using a polynomial (in input size) number
of repeated trials, we get an exponentially small probability of deciding the input wrongly.
This follows from bounding the tail of a binomial distribution using Chernoff bounds.

2 Theorems about BPP

Now we show that all BPP languages have polynomial sized circuits.

Theorem 1
BPP ⊆ P/poly

Proof: For any language L ∈ BPP consider a TM M (taking a random string as additional
input) which decides any input x with an exponentially low probability of error; such an M
exists by the probability amplification arguments mentioned earlier. In particular let the
probability M(x, r) being wrong (taken over r) be ≤ 1/2(n+1), where n = |x|. Say that an
r is bad for x if M(x, r) is an incorrect answer. Let t be the total number of choices for r.
For each x, at most t/2(n+1) values of r are bad. Adding over all x, we conclude that at
most 2n × t/2(n+1) values of r are bad for some x. In other words, at least t/2 choices of
r not bad for every x. In particular there is some one value of r for which M(x, r) decides
x correctly. We can hard-wire this r into a polynomial size circuit. Given an input x, the
circuit simulates M on (x, r). Hence L ∈ P/poly. ✷

The next theorem relates BPP to the polynomial hierarchy.

Theorem 2
BPP ⊆ Σp

2 ∩ Πp
2

Proof: It is enough to prove that BPP ⊆ Σp
2 because BPP is closed under complemen-

tation.
Suppose L ∈ BPP, and M is a randomized TM for L, that uses m random bits such

that x ∈ L ⇒ Prr[M(x, r) accepts] ≥1 − 2−n and x ̸∈ L ⇒ Prr[M(x, r) accepts] ≤ 2−n.
Fix an input x, and let Sx denote the set of r for which M accepts (x, r). Then either

|Sx| ≥ (1 − 2−n)2m or |Sx| ≤ 2−n2m, depending on whether or not x ∈ L. We will show
how to guess, using two alternations, which of the two cases is true.

3

Consider r as an element of GF(2)m. For a set S ⊂ GF(2)m we define the shift of S
by r0 as {r + r0|r ∈ S} (where the addition is as in GF(2)m, i.e., bit-wise XOR).

Suppose x ∈ L, so |Sx| ≥ (1 − 2−n)2m. We shall show that there are a small number of
vectors such that the set of shifts of S by these vectors covers the whole space GF(2)m.

Lemma 3
∃r1, r2, . . . , rk, where k = �m

n + 1 such that
⋃k

i=1(S + ri) = GF(2)m.

Proof: We shall show that Pr(r1,r2,...,rk)[
⋃k

i=1(S + ri) �= GF(2)m] < 1/2.
Let z ∈ GF(2)m. If r1 is a random vector, then so is z + r1. So Prr1 [z �∈ S + r1] =

Prr1 [z + r1 �∈ S] ≤ 2−n. So, for each z,

Prr1,r2,...,rk
[z �∈

k⋃

i=1

S + ri] ≤ 2−nk

So, Prr1,r2,...,rk
[some z �∈ ⋃k

i=1 S + ri] ≤ 2m−nk < 1/2 < 1. �

Now suppose x �∈ L. Now |Sx| ≤ 2−n2m. This is a small set, and the union of any k
shifts of S can be of size at most k2m−n < 2m, and hence cannot equal GF(2)m.

Thus we have established that

x ∈ L ⇔ ∃r1, r2, . . . , rk ∈ GF(2)m such that
∀ z ∈ GF(2)m M accepts x using at least one of z + r1, z + r2, . . . , z + rk

(7)

Thus L is in Σp
2. �

3 Model Independence

Now we argue that our specific assumptions about randomized TMs do not affect the classes
RP and BPP.

We made the assumption that the Turing machine uses a two-sided fair coins for ran-
domization. Now we shall see that it can use these to simulate a machine that uses k-sided
coins. To simulate a k-sided fair coin do as follows: flip our two-sided coin for �log2 k times.
If the binary number generated is in the range [0, k − 1] output it as the result, else repeat
the experiment. This terminates in expected O(1) steps, and the probability that it does
not halt in O(k) steps is at most 2−k. Since the machine needs to simulate only poly(n)
coin tosses, the probability that this simulation does not work can be made 2−n, and so it
does not substantially affect the probability of acceptance (which is something like 1/2 or
2/3).

Another issue that arises in real life is that one may not have an unbiased coin, and the
probability it comes up heads is an unknown quantity p. But we can simulate a an unbiased
coin as follows: flip the (biased) coin twice (we are assuming independence of different flips).
Interpret 01 as 0 and 10 as 1; on a 00 or 11 repeat the experiment. The probability that
we fail to produce a 0 or 1 is at most 1 − p2 − (1 − p)2. Since p is constant, this failure
probability is a constant. The expected number of repetitions before we produce a bit is
O(1).

4

4 Recycling Entropy

Randomness may be considered a resource, because it is likely that a random bit generator
is much slower than the rest of the computer. So one would like to minimize the number of
random bits used. One place where we can recycle random bits is while repeating a BPP
or RP algorithm.

Consider running an RP-machine on some input x. If it accepts x we know x is in the
language L. But if it rejects x, we repeat the experiment, up to k times. But to repeat
the experiment each time, it is not necessary to acquire all new random bits all over again.
Intuitively, we can “recycle” most of the randomness in the previous random string, because
when the experiment fails to detect x being in L, all we know about the random string used
is that it is in the set of bad random strings. Thus it still has a lot of “randomness” left in
it.

Definition 4 If d > 2 and β > 0, a family of (d, β)-expanders is a sequence of graphs
{Gn} where Gn is a d-regular graph on i nodes, and has the property that every subset S of
at most n/2 nodes has edges to at least β |S| nodes outside S.

Deep mathematics (and more recently, simpler mathematics) has been used to construct
expanders. These constructions yield algorithms that, given n and an index of a node in
Gn, can produce the indices of the neighbors of this node in poly(log n) time.

Suppose the RP algorithm uses m random bits. The näıve approach to reduce its error
probability to 2−k uses O(mk) random bits. A better approach involving recycling is as
follows. Pick the first random string as a node in an expander graph on 2m nodes, take
a random walk of length k from there, and use the indices of the nodes encounted in this
walk (a total of mk bits) in your RP algorithm. Since the graph has constant degree,
each step of the random walk needs O(1) random bits. So a random walk of length k
takes m + O(k) random bits; m to produce the first node and O(1) for each subsequent
step. A surprising result shows that this sequence will be random enough to guarantee the
probability amplification, but we will not give a proof here.

Of course, the same approach works for any randomized algorithm, such as a Monte
Carlo simulation.

