
princeton university cos 522: computational complexity

Lecture 9: One-way functions and hard-core bit theorem

Lecturer: Sanjeev Arora Scribe:Edith Elkind

1 Examples and definitions

Definition 1 (Informal definition) A family of functions {fn : {0, 1}n �→ {0, 1}n} is
called one-way, if fn are

• easy to compute, but

• hard to invert for “many” inputs.

Example 1 f(p, q) = pq, where pq is n bit long. This function seems hard to invert, when
p and q are roughly the same size and p ≡ q ≡ 3 (mod 4). By Prime Number Theorem,
about 1/n2 of all integers of n bits are products of two such primes.

Definition 2 (Formal definition) A family of functions {fn : {0, 1}n �→ {0, 1}n} is
one-way with security s(n) if there is a polynomial time Turing machine that computes
them and furthermore for every algorithm A that runs in time s(n),

Prx∈{0,1}n [A inverts fn(x)] ≤ 1
s(n)

. (1)

Remark 1 Here by inverting a (possibly many-to-one) function we mean finding any preim-
age of a given element. Also, we can define one-way functions with other classes of adver-
saries, such as probabilistic Turing machines, or deterministic circuits.

A more general definition of a one-way function would allow the inversion probability of
the adversary to be a general function δ(n), instead of demanding that it should be at most
1/s(n). In fact, it may seem risky to use our stringent definition, since a function satisfying
it may not exist! For example, the multiplication function in Example 1 is hard to invert
only occasionally (on 1/n2 of the outputs, as noted) and hence does not satisfy Definition 2
with even S(n) = n. Luckily, Yao has proven for us (although we will not show this) that
if factoring or some other function is hard to invert on 1/poly(n) fraction of inputs then
a one-way function exists that is hard to invert on almost all inputs, and hence satisfies
Definition 2 with some s(n) = Ω(nc) for every c > 1..

2 Goldreich-Levin Theorem

A a one-way function family {fn} is from {0, 1}n to {0, 1}n is called a one-way permutation
if each fn is one-to-one and onto.

1

2

Example 2 The following is a conjectured one-way permutation. Let p1, p2, . . . be a se-
quence of primes where pi has i bits. Let gi be the generator of the group Z∗

p the set of
numbers that’re nonzero mod p. Since gi is a generator, for every y ∈ 1, .., pi − 1, there is
a unique x ∈ {1, .., p − 1} such that

gx
i ≡ y (mod pi).

Then x → gx
i (mod pi) is a permutation on 1, .., pi − 1 and is conjectured to be one-way.

The inversion problem is called the Discrete Log problem.

Consider two random strings x and r, |x| = |r| = n. We use f as a shorthand for fn.
Consider the string (f(x), r, x � r), where x � r denotes the scalar product of x and r. As
f is a permutation, f(x) is information-theoretically equivalent to x, so the last bit of the
concatenated string is completely determined by the first 2n bits. However, it turns out
that this string looks completely random to any reasonable adversary.

Theorem 1 (Goldreich, Levin ’86)
Suppose that fn is a one-way permutation and has security s(n). Then for all algorithms
A running in time s1/4(n)

Prx,r∈{0,1}n [A(fn(x), r) = x � r] ≤ 1
2

+ O(
1

s(n)
). (2)

Proof: Suppose that A can predict x� r with probability 1/2+ δ. We show how to invert
fn(x) for O(δ) fraction of the inputs in O(n/δ2) time, from which the theorem follows.

Lemma 2
Suppose that

Prx,r∈{0,1}n [A(fn(x), r) = x � r] ≥ 1
2

+ δ. (3)

Then for at least δ fraction of x’s

Prr∈{0,1}n [A(fn(x), r) = x � r] ≥ 1
2

+
δ

2
. (4)

Proof: We use an averaging argument. Suppose that p is the fraction of x’s satisfying (4).
We have p · 1 + (1 − p)(1/2 + δ/2) ≥ 1/2 + δ. Solving this with respect to p, we obtain

p ≥ δ

2(1/2 − δ/2)
≥ δ.

�

We construct an inversion algorithm that given fn(x), where x ∈R {0, 1}n, will try to
recover x. It “succeeds” with high probability if x is such that (4) holds. Note that the
algorithm can always check the correctness of its answer, since it has fn(x) available to it
and it can apply fn to its answer and see if this gives fn.

Today, we give the proof for the simpler case (which nevertheless contains all essential
ideas) when Prr∈{0,1}n [A(r) = x � r] ≥ 3

4 + δ. In this case, for each i, i = 1, . . . , n, we
pick a random string r and query A to obtain A(r) and A(r ⊕ ei), where ei is the ith

3

basis vector, and ⊕ denotes addition modulo 2. We know that A(r) is “often” equal to
x � r and A(r ⊕ ei) is “often” equal to x � (r ⊕ ei), so with a high enough probability
A(r)⊕A(r⊕ei) = (x�r)⊕ (x� (r⊕ei) = x�ei = xi. More formally, the algorithm guesses
that xi = A(r) ⊕ A(r ⊕ ei) and Prr[the guess for xi is incorrect] ≤ 2(1/4 − δ) = 1/2 − 2δ.
(Here we use the fact that if r is random, then r ⊕ ei is random as well, and apply the
union bound). We can repeat this experiment sufficient number of times and take the
majority vote to amplify the probability of guessing correctly. Furthermore, the probability
of guessing the whole word correctly can then be bounded from below by using the union
bound once again. �

