Lecture 5-1. The Incompressibility Method, continued

- We give a few more examples using the incompressibility method. We avoid ones with difficult and long proofs, only give short and clean ones to demonstrate the ideas.
- These include:
 - ✤ Tournaments
 - ✤ Fast Adders for random input
 - ✤ Coin-weighing problem
 - Turing Machines with Bounded numbers of Heads
 - Pushdown Machines
- Then we will survey the ideas of the solutions of some major open questions. They have difficult proofs, but it is sufficient show you just the ideas.

Fast adder

- Example. Fast addition on average.
 - Ripple-carry adder: n steps adding n-bit numbers.
 - Carry-lookahead adder: 2 log n steps.
 - Burks-Goldstine-von Neumann (1946): logn expected steps.

S= x \oplus y; C= carry sequence; while (C \neq 0) { S= S \oplus C; C= new carry sequence; }

Average case analysis: Fix x, take random y s.t. $C(y|x) \ge |y|$

 $\begin{array}{c} x = \dots u1 \dots \\ y = \dots \hat{u}1 \dots, \end{array} \quad (Max such u is carry length) \\ \hat{u} is complement of u \\ If |u| > log n, then C(y|x) < |y|. Average over all y, get logn. QED \\ \end{array}$

Coin weighing problem

- A family D={D₁,D₂,..., D_j} if subsets of N={1,...,n} is called a distinguishing family for N, if for any two distinct subsets M and M' of N there exists an i (1≤i≤j) s.t. |D_i ∩ M| is different from |D_i ∩ M'|.
- Let f(n) denote the minimum of |D| over all distinguishing families for N.
- To determine f(n) is known as coin-weighting problem.
- Erdos, Renyi, Moser, Pippenger:
 - $f(n) \ge (2n/logn)[1+O(loglogn/logn)]$

Combinatorics

Example There is a tournament (complete directed graph) T of n players that contains no large transitive subtournaments (>1 + 2 log n).

Proof by Picture: Choose a random T.

- One bit codes an edge. $C(T) \ge n(n-1)/2$.
- If there is a large transitive subtournament, then a large number of edges are given for free!

C(T)< n(n - 1)/2 - subgraph-edges + overhead

Theorem: $f(n) \ge (2n/\log n)[1+O(\log \log n/\log n)]$

Proof. Choose M such that $C(M|D) \ge n.$ Let $d_i=|D_i|$ and $m_i=|D_i \cap M|$. Value m_i is within the range $d_i / 2 \pm O(\sqrt{d_i} \log i)$. Therefore, given d_i , each m_i can be described by its discrepancy with $d_i / 2$, with gives $C(m_i|D_i) \le \frac{1}{2} \log d_i + O(\log \log i)$ $\le \frac{1}{2} \log n + O(\log \log n)$ Since D is a distinguishing family for N, given D, the values of m_1, \dots, m_j determine M. Hence $C(M|D) \le C(m_1, \dots, m_j|D) \le \sum_{i=1,j} [\frac{1}{2} \log n + O(\log \log n)]$ This implies $f(n) \ge (2n/\log n)[1 + O(\log \log n / \log n)]$. QED