Lecture 5-1. The Incompressibility Method, continued

* We give a few more examples using the incompressibility method. We avoid ones with difficult and long proofs, only give short and clean ones to demonstrate the ideas.
* These include:
* Tournaments
* Fast Adders for random input
* Coin-weighing problem
* Turing Machines with Bounded numbers of Heads
* Pushdown Machines
* Then we will survey the ideas of the solutions of some major open questions. They have difficult proofs, but it is sufficient show you just the ideas.

Fast adder

- Example. Fast addition on average.
- Ripple-carry adder: n steps adding n -bit numbers.
- Carry-lookahead adder: $2 \log n$ steps.
- Burks-Goldstine-von Neumann (1946): logn expected steps.

```
S=x\oplusy;C=carry sequence;
while (C\not=0) {
    S=S }\oplus\textrm{C}
    C= new carry sequence; }
```

Average case analysis: Fix x, take random y s.t. $C(y \mid x) \geq|y|$
$\mathrm{x}=\ldots \mathrm{u} 1 \ldots$
(Max such u is carry length)
$y=\ldots \hat{u} 1 \ldots, \quad$ û is complement of u
If $|u|>\log n$, then $C(y \mid x)<|y|$. Average over all y, get logn. QED

Combinatorics

Example There is a tournament (complete directed graph) T of n players that contains no large transitive subtournaments $(>1+2 \log n)$.
Proof by Picture: Choose a random T.
One bit codes an edge. $C(T) \geq n(n-1) / 2$.
If there is a large transitive subtournament, then a large number of edges are given for free!

$$
C(T)<n(n-1) / 2 \text { - subgraph-edges + overhead }
$$

Theorem: $\mathrm{f}(\mathrm{n}) \geq(2 \mathrm{n} / \operatorname{logn})[1+\mathrm{O}(\log \operatorname{logn} / \log n)]$

Proof. Choose M such that

$$
C(M \mid D) \geq n .
$$

Let $d_{i}=\left|D_{i}\right|$ and $m_{i}=\left|D_{i} \cap M\right|$.
Value m_{i} is within the range $d_{i} / 2 \pm O\left(\sqrt{d_{i}} \log i\right)$.
Therefore, given d_{i}, each m_{i} can be described by its
discrepancy with $d_{i} / 2$, with gives
$C\left(m_{i} \mid D_{i}\right) \leq 1 / 2 \log d_{i}+O(\log \log i)$
$\leq 1 / 2 \log n+O(\log \log n)$
Since D is a distinguishing family for N, given D, the values of m_{1}, \ldots, m_{j} determine M. Hence $C(M \mid D) \leq C\left(m_{1}, \ldots, m_{j} \mid D\right) \leq \Sigma_{i=1 . . j}[1 / 2 \log n+O(\log \log n)]$
This implies $f(n) \geq(2 n / \log n)[1+O(\log \log n / \log n)]$. QED

