This lecture will be on oracle quantum turing machines. We wish to compare Quantum complexity classes to ordinary complexity classes.

Fact 1 $BQP \subseteq PSPACE$

This is easy to prove, in fact it’s on the problem set. A harder proposition is the following.

Fact 2 $BQP \subseteq P^{\#P}$

Another result says

$$\exists A \text{ such that } NP^A \not\subseteq BQP^A.$$

So at least in its ability to access an oracle, NP can be more powerful than BQP.

We need to define the notion of accessing an oracle for a quantum computer. The idea is to put quantum gates in the circuit representing the oracle. An oracle is viewed as a function $A : \{0,1\}^n \rightarrow \{0,1\}$. We consider the quantum gate Q_{A_x}, as shown in the figure.

![Gate Q_{A_x}](image)

To describe the quantum gate Q_A, assume that A tells us what Q_A does on basis states $|x,y\rangle$, $x \in \{0,1\}^n, y \in \{0,1\}$. Q_A sends this to $|x,A(x) \oplus y\rangle$. Extend by linearity to get a unitary transformation.

Then an oracle quantum turing machine just means a quantum circuit which is allowed to incorporate some gates of this form.

Let $L(A) = \{w|\exists x \in A, |x| = |w|\}$. Clearly $L(A) \in NP^A$. We will see that quantum computers can’t decide $L(A)$ very well. Putting in one word of a given length makes very slight difference to the functioning of a quantum circuit trying to decide $L(A)$. The rough idea is that if $|A \cap \{0,1\}^n| = 0$ or 1, it doesn’t make much of a difference which of these values it is (to a Quantum circuit). The proof idea is similar to the proof of $P^A \subseteq NP^A$.

Theorem 3 $L(A) \not\in BQP^A$
Proof: Suffices to argue about one quantum circuit. The way we elude all quantum circuits is the same as in the proof of \(P^A \subseteq NP^A \). In fact, if a quantum circuit with \(T \) oracle gates accepts \(L(A) \) with error probability less than a fixed constant, then \(T = \Omega(2^{n/2}) \) (this bound is tight - see Grover’s algorithm). Define let the initial state be \(|\phi_0\rangle \).

\[
|\phi_T\rangle := U_T Q_A \ldots Q_A U_1 |\phi_0\rangle
\]

where \(U_i \)'s are unitary matrices, \(T \) refers to time steps for the circuit, the language \(A \) acts as an oracle: if \(x \in \{0,1\}^n \), then \(A(x) = 0 \) if \(x \in A \), 1 if \(x \notin A \). Note that if \(|A \cap \{0,1\}^n| = 0 \), then \(Q_{A_n} \), is the identity. We will compare two cases: no words against exactly one word. Define

\[
|\theta_i\rangle := U_i \ldots U_1 |\phi_0\rangle
\]

Our goal is to find \(x \in \{0,1\}^n \) such that if \(A_n = \{x\} \), then \(||\phi_T - \theta_T|| > \) const. \(\Rightarrow T \) is huge.

Lemma 4 \(\exists x \in \{0,1\}^n \) such that \(||\phi_T - \theta_T|| \leq \sqrt{\frac{2T^2}{2^n}} \)

Before we prove the lemma, we state a corollary:

Claim: If \(T = o(2^{n/2}) \) then this circuit can’t distinguish between \(|A \cap \{0,1\}^n| = 0 \) or 1.

Now our goal is to find \(x \) so that it’s not queried in a meaningful way. Assume w.l.o.g. that there is a distinguished set of wires that are inputs to the \(Q_A \) gate, i.e., assume dedicated input wires for \(Q_A \). For a state

\[
|\psi\rangle = \sum_{c \text{ basis state}} \alpha_c |c\rangle
\]

we define the query magnitude of \(x \) in \(\psi \) to be \(\sum_{c \in S_x} |\alpha_c|^2 \), where

\[
S_x = \{ \text{basis states with } x \text{ on oracle wires} \}
\]

Def. The query magnitude of \(x \) at time \(i \) is \(q_{i,x} \) = the query magnitude of \(x \) in \(\theta_i \).

Def. The query magnitude of \(x \), \(q_x = \sum_{i=1}^{T} q_{i,x} \).

Idea: take \(x \) of minimal query magnitude so \(q_x < \frac{T}{2^n} \), because \(\sum_x q_{i,x} = 1 \) for every \(i \).

Claim: \(||\theta_T - \phi_T|| \leq \sqrt{T \cdot 2q_x} \) (this \(\Rightarrow \) Lemma 4).

Proof of claim:

Let \(V_i = U_i Q_A \).

\[
|\phi_T\rangle = (V_T \ldots V_1) |\phi_0\rangle \\
|\theta_T\rangle = (U_T \ldots U_1) |\phi_0\rangle \\
\psi_{k,i} = V_i \ldots V_{k+1} U_{k+1} \ldots U_1 |\phi_0\rangle \text{ (called the } k \text{'th hybrid at time } i \text{)} \\
\text{so } \psi_{0,T} = V_T \ldots V_1 |\phi_0\rangle \\
\psi_{k,T} = V_T \ldots V_{k+1} U_{k+1} \ldots U_1 |\phi_0\rangle \\
\psi_{T,T} = U_T \ldots U_1 |\phi_0\rangle
\]

Compare \(\psi_{k+1,k+1} \) with \(\psi_{k+1,k+1} \).

\(\theta_k = \psi_{k,k} \), we apply either \(V_k \) or \(U_k \). It is easily verified that

\[
||\psi_{k,k+1} - \psi_{k+1,k}|| \leq 2q_{k,x}
\]

13-2
because unitary transformations preserve norms. Therefore
\[
\sum_{k=0}^{T-1} \|\psi_{k,T} - \psi_{k+1,T}\|^2 \leq \sum_{k=0}^{T-1} 2q_{k,z} \leq 2q_z
\]
By Cauchy-Schwartz,
\[
\|\phi_T - \phi_T\| = \|\psi_{0,T} - \psi_{T,T}\| \leq \sum_k \|\psi_{k,T} - \psi_{k+1,T}\| \leq \sqrt{2q_z T}
\]

Grover’s Algorithm

Search in $O(\sqrt{N})$ time. Let H be the Hadamard matrix
\[
H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
\]
Also, let us consider the matrix corresponding to the gate NOT,
\[
Q_{NOT} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]
We shall use the matrices H and NOT to get a unitary transformation that flips the sign of one bit, namely $U = H \cdot NOT \cdot H$.
\[
U = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]
Using this machinery, we can construct a gate Q'_A for an oracle A, which takes $|x > \rightarrow |x >$ if $x \in A$, and leaves $|x >$ unchanged otherwise (note this is a unitary transformation, since it is unitary on the orthogonal basis vectors, and takes them to orthogonal vectors).

So if $A = 01$, $Q'_A|01 > = -|01 >$. Suppose we apply this transform to a uniform linear combination of states
\[
|x_0 > = \frac{1}{2} (|00 > + |01 > + |10 > + |11 >)
\]
We get out
\[
\frac{1}{2} (|00 > - |01 > + |10 > + |11 >)
\]
Now suppose to the result we apply a Hadamard transform to each bit, then apply the matrix
\[
\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}
\]
(reflection about mean)
to it, and again the Hadamard transform to it. We get out just $|01 >$!
The Hadamard transform acts as a Fourier transform. The general algorithm is based on these lines, the idea is to iterate, applying these two gates (the diffusion transform and Q'_A), when we have more than 2 inputs.
\[
RQ'_A RQ'_A \ldots |x_0 > = \left(\frac{4}{\pi} \sqrt{2^n} \right) \text{times}
\]
the dominant term will be the word we want to select. This takes time $O(\sqrt{N})$ since $N \approx 2^n$. 13-3