In this lecture, we will use \(\text{NP} \subseteq \text{PCP}((\log n), O(1)) \) to prove the following theorem:

Theorem 1 it is \(\text{NP-hard to approximate Max-Clique within } n^\epsilon \) for some \(\epsilon > 0 \)

We will start with something easier. We will show hardness within a factor of 2.

Approximating Max-Clique

The basic idea

- \(3\text{SAT} \in \text{PCP}(\log, 1) \Rightarrow \exists \) Prime verifier \(V \), input \(\Pi, \phi \), and \(V^\Pi(\phi) \) that uses \(\log n \) random bits, reads \(O(1) \) bits of proof s.t.

\[
\phi \in 3\text{SAT} \Rightarrow \exists \Pi \Pr[V^\Pi(\phi) \text{ accepts}] = 1 \\
\phi \notin 3\text{SAT} \Rightarrow \forall \Pi \Pr[V^\Pi(\phi) \text{ accepts}] < \frac{1}{2}
\]

- want to transform \(\phi \rightarrow \) graph if \(\phi \) satisfiable, then the graph has a large clique

\(V \): random bits choose the bits to read \(\Rightarrow \) non-adaptive. Let us assume that \(V \) is non-adaptive, \(V \) uses \(R \) random bits, and it makes \(Q \) queries. We will construct the reduction in the following way:

Graph nodes

Graph nodes indexed by \(\{0, 1\}^R \times \{0, 1\}^Q \Rightarrow 2^{R+Q} \), where \(r \) corresponds to the random string on string \(r \), \(V \) reads bits \(\Pi_{b_{r, 1}}, \ldots, \Pi_{b_{r, Q}} \), where \(b_{r, i} \) are indices. now given \(Q \) bits \(\Rightarrow 2^Q \) ways of setting these bits. node \((r, q) \) corresponds to setting \(\Pi_{b_{r, i}} \) to \(q_i \) for \(i \in 1..Q \)

Graph edges

put an edge from \((r, q) \) to \((r', q') \) if it corresponds to a consistent settings of bits in proof. i.e. there do not exist \(i, j \) s.t. \(b_{r, i} = b_{r', j'} \) and \(q_i \neq q_j \)

\(\Rightarrow \) nodes in a row are inconsistent

\(\Rightarrow \) bits read on \(r \) and \(r' \) are disjoint

\(\Rightarrow \) only let settings that cause verifiers to accept

Example:

\(\Pi_1, \Pi_2, \Pi_3, R=1, Q=2 \)

- \(V \) reads \(\Pi_1 \) and \(\Pi_2 \), accept if they are equal
- \(V \) reads \(\Pi_2 \) and \(\Pi_3 \), accept if they are NOT equal

Fact 1:

if \(\phi \in 3\text{SAT}, \exists \Pi \) s.t. verifier accepts: \(\Pr[V \text{ acc}] = 1 \)

from \(\Pi_1 \), get clique of size \(2^R \)

(get one node in every row)
Fact2:

a clique in a graph corresponds to a partial assignment of \(\Pi_1, \ldots, \Pi_N \), moreover, if clique-size is \(S \), then this assignment can be extended to a \(\Pi \) s.t.

\[
Pr[V^n(\phi)] \geq \frac{S}{2^R}
\]

extend the assignment arbitrarily \(\rightarrow \) at most one node in each row, each node represents one setting of random bits for which \(V \) will accept \(\Pi \)

but need \(P < \frac{1}{2} \) if \(\phi \notin 3\text{SAT} \)

\(\phi \notin 3\text{SAT} \Rightarrow \text{MaxClique} \leq \frac{2^R}{2^k} \)

In this reduction, input \(\phi \), output graph \(G \), important that \(V \) runs in Ptime, number nodes in \(G \subseteq poly(n) = 2^{R+Q} = 2^{O(\log n) + O(1)} = n^{O(1)} \)

\[
\phi \in 3\text{SAT} \Rightarrow \text{MaxClique}(G) = 2^R
\]

\(\phi \notin 3\text{SAT} \Rightarrow \text{MaxClique}(G) \leq \frac{2^R}{2^{k^2}} \Rightarrow \text{NP-hard} \)

how do we raise ratio higher?
to get a factor better than 2, alter PCP system modify verifier to repeat \(k \) times, accept only if accept on each run.

\[
\phi \in \text{SAT} \Rightarrow \exists \Pi \ Pr[\text{acc}] = 1
\]

\(\phi \in \text{SAT} \Rightarrow \forall \Pi \ Pr[\text{acc}] < 2^{-k} \)

\(\rightarrow (2^R, \frac{2^R}{2^k}) \)

as long as \(k = O(1) \), okay

if naively repeat it \(O(\log n) \) times, now use \(O(\log^2 n) \) random bits, \(O(\log n) \) queries

\(2^{O(\log^2 n)} \) ... no longer polynomial... but can reuse random bits by walk-on-expander! \(O(\log n + k(n)) \) bits to produce \(O(k(n)) \) pseudo-random strings and error probability \(2^{-k(n)} \). Setting

\[
k(n) = O(\log n) \ldots \text{say} k(n) = \log(n)
\]

we get:

\[
R = O(\log n) \text{ random bits}
\]

\[
Q = O(\log n) \text{ queries}
\]

\(\phi \in \text{SAT} \Rightarrow \Pr[\text{acc}] = 1 \)

\(\phi \in \text{SAT} \Rightarrow \Pr[\text{acc}] < \frac{1}{n} \)

If \(N = \# \) nodes in graph

\[
\leq 2^{R+Q} = 2^{O(\log n)} = n^c \text{ for some } c
\]

So NP-hard to distinguish between MaxClique of \(2^R \) or \(\frac{2^R}{n} \) where \(n = N^{1/2} \), \(\epsilon = \frac{1}{c} \)

22-2
Reducing satisfiable clauses in 3CNF

Recall from before, showed MAX 3SAT hard to approximate reduction:
\[\phi \rightarrow \phi', 3\epsilon : \]

\[\phi \in 3SAT \Rightarrow \phi' \in 3SAT \]
\[\phi \notin 3SAT \Rightarrow \forall \text{ settings of vars, of most } (1 - \epsilon) \text{ fraction of clauses of } \phi' \text{ were satisfiable.} \]

Moreover, each var in \(\phi' \) appears in at most 3 clauses.

first show this 3SAT is NP hard

Lemma: can take any 3CNF \(\phi \) and transform it to \(\phi' \) such that each var appears at most 3 times in \(\phi' \),

\[\phi \in 3SAT \leq \Rightarrow \phi' \in 3SAT \]

consider \(x \), say appears \(k \) times (k clauses), create \(X_{1,1}, ..., X_{1,k} \) put in clauses. Add clauses \(X_{1,1} \rightarrow X_{1,2} \rightarrow ... \rightarrow X_{1,k} \rightarrow X_{1,1}(\neg X_{1,1} \vee X_{1,2}) \)

Problem:
if at most \(1 - \epsilon \) fraction of clauses satisfiable in \(\phi \), at most \(1 - \frac{\epsilon}{k} \) clauses satisfiable in \(\phi' \).

idea:
put constant degree \(d \) expander on \(X_{1,1}, ..., X_{1,k} \)
for each edge, do implications both ways

property:
if \(s \leq \frac{\epsilon}{k} \), then every set of \(s \) nodes has at least \(s \) edges connecting it to rest of graph

example: hypercube

Say \(\phi \) had \(M \) clauses, could not satisfy more than \((1 - \epsilon) \times m \). \(\phi' \) has \(m + 3m + 2d \) clauses, again conclude it’s impossible to simultaneously satisfy all but \(\epsilon \times m \) of them: \(6 \times d + 1 \) clauses \(\Rightarrow (1 - \frac{\epsilon}{6d+1}) = frac \)