Today we will talk about Randomized Complexity classes.

Last time we showed BPP \(\subseteq \text{P/poly} \). Today we will show BPP \(\subseteq \Sigma_2P \cap \Pi_2P \)

BPP error amplification

Error amplification means decreasing the probability of error. The key tool in this regard is the use of Chernoff bounds.

Theorem 1 Let \(X_1, X_2, \ldots, X_n \) be independent, identically distributed random variables taking values in \([0,1]\). Let \(Y = \sum_{i=0}^{n} X_i \), \(\mu = E[Y] \).

Then \(\Pr[|Y - \mu| > \varepsilon \mu] < e^{-\varepsilon^2/3} \), for \(\varepsilon \in [0,1] \).

Proof: See handout on probability.

Amplification Lemma: Let \(L \) be a language such that there is a randomized polynomial-time TM \(M \) such that,

\[
\begin{align*}
 x \in L &\implies Pr[M(x)\text{accepts}] \geq C(|x|) \\
 x \notin L &\implies Pr[M(x)\text{accepts}] \leq S(|x|)
\end{align*}
\]

where \(C(n) - S(n) \geq \frac{1}{p(n)} \) for some \(p() \)

Then \(\forall b > 0, \exists a \) a random ptme TM \(M' \) such that

\[
\begin{align*}
 x \in L &\implies \Pr[M'(x)\text{accepts}] \geq 1 - 2^{-|x|^b} \\
 x \notin L &\implies \Pr[M'(x)\text{accepts}] \leq 2^{-|x|^b}
\end{align*}
\]

(Remark: This is reasonably tight)

Proof:\(M' \) runs \(M \) \(k = 12(p(n))^b + n^b \) times, \(n = |x| \). Accepts if \(M \) accepted more than \(k \cdot \frac{s(n)+c(n)}{2} \) times. Applying Chernoff’s bound, we get the desired behaviour of \(M' \).

Theorem 2 (Sipser) \(BPP \subseteq \Sigma_2P \).

Note: This implies co-BPP \(\subseteq \Pi_2P \), but co-BPP = BPP since definition of BPP is symmetric.

Proof:

Let \(L \) be a language in BPP. We know \(\exists A \in \text{P} \) and a function \(f(n) = n^{O(1)} \) such that

If \(w \in L \) then \(\Pr_{r \leftarrow [f(n)]}[(r,w) \in A] > 1 - 2^{-n} \), and

if \(w \notin L \) then \(\Pr_{r \leftarrow [f(n)]}[(r,w) \in A] < 2^{-n} \).

where \(n = |w| \).

Def. Define \(R_w = \{ r : |r| = f(n) \text{ such that } (r,w) \in A \} \). Correspondingly,

If \(w \in L \) then \(|R_w| > (1 - 2^{-n})2^{f(n)} \) and

if \(w \notin L \) then \(|R_w| < 2^{-n}2^{f(n)} \).
The idea here is to take a number of translations of R_w, and see if they cover the entire space \{0,1\}^{f(n)}$. Each translation of R_w has the same size as R_w, and if R_w is most of the space (ie, $w \in L$) then this collection of translations would be likely to cover the space. However, if R_w is very small (ie, $w \not\in L$) then this collection could never cover the space. More formally,

Def. (translation) Let $S \subseteq \{0,1\}^{f(n)}$. For $t \in \{0,1\}^{f(n)}$ let the translation $S \oplus t$ be defined as

$$\{x : x \oplus t \in S\}$$

where $x \oplus t$ is defined as the XOR of the two strings (or, the bitwise sum modulo 2).

Claim. (1) If $|S| > (1 - 2^{-n})2^{f(n)}$ then $\exists \tau = \{t_1, \ldots, t_{f(n)}\}$ such that

$$\bigcup_{i=1}^{f(n)} (S \oplus t_i) = \{0,1\}^{f(n)}$$

(2) If $|S| < 2^{-n}2^{f(n)}$ then $\forall \tau = \{t_1, \ldots, t_{f(n)}\}$,

$$\bigcup_{i=1}^{f(n)} (S \oplus t_i) \neq \{0,1\}^{f(n)}$$

First, we show that the claim proves the theorem. If the claim is true, we can design a Σ_2P machine M to solve L as follows:

1. Use \exists states to generate τ.
2. Use \forall states to generate $r \in \{0,1\}^{f(n)}$.
3. Check if $r \in \bigcup \{R_x \oplus t_i\}$ and accept if so, otherwise, reject.

This is polynomial time, since we can check whether $r \in R_x$ in polynomial time, and $f(n)$ is polynomial in n. By the claim, if $x \in L$ then on any correct τ we accept. If $x \not\in L$ we reject, since there is no such τ. Therefore, we only have to prove the claim.

First, we prove part (2) of the claim. If $|S| < 2^{-n}2^{f(n)}$ then

$$\left| \bigcup_{i} (S \oplus t_i) \right| \leq f(n)2^{-n}2^{f(n)}.$$

Since $f(n) = n^{O(1)}$, $f(n)2^{n} < 1$ for sufficiently large n. Therefore, this union doesn’t cover $\{0,1\}^{f(n)}$.

Note that the "sufficiently large n" clause here doesn’t cause a problem. If we take this into account, we need only hard-code the correct answer for all words smaller than this bound into our Σ_2P machine.

Next, we prove part (1). Let

$$p = \Pr_{\tau}[\forall r \in \bigcup_{i=1}^{f(n)} (t_i \oplus S)]$$

$$= \Pr_{\tau}\left[\exists r \in \bigcup_{i=1}^{f(n)} (t_i \oplus S)\right]$$

$$\geq 1 - \Pr_{\tau}[r \not\in \bigcup_{i=1}^{f(n)} (t_i \oplus S)].$$

We choose the t_i’s independently, so we can consider them independently. Therefore,

$$p \geq 1 - \sum_{r \not\in f(n)} \prod_{i=1}^{f(n)} \Pr_{t_i}[r \not\in t_i \oplus S]$$

$$= 1 - \sum_{r \not\in f(n)} \prod_{i=1}^{f(n)} 2^{-n}$$

7-2
since \(r \in t_i \oplus S \) if and only if \(t_i \in r \oplus S \),

\[
= 1 - 2^{f(n)}(2^{-n})^f(n) = 1 - 2^{-f(n)(n-1)} > 0.
\]

Since this probability is nonzero, there must be at least some \(\tau \) for which the union of the translations determined by \(\tau \) covers \(\{0, 1\}^f(n) \). This completes the proof. ■

Verifying Polynomial identities

Let \(p \) be a given polynomial in \(k \) variables, \(q_1, \ldots, q_k \) given polynomials in \(m \) variables. The equation

\[
p(q_1(y_1, \ldots, y_m), \ldots, q_k(y_1, \ldots, y_m)) = 0
\]

can be difficult to check deterministically. Expanding the polynomial out would give us an exponential number of terms. However, if we use randomization there is an easy test. Choose \(x_1, \ldots, x_m \) at random and see if we get zero. If we choose \(x_i's \) in a large enough range, the probability that the test is passed but \(p \) is not identically zero becomes exponentially small. So we can check polynomial identities in co-RP.

Lemma 3 (Schwartz's Lemma) Let \(P(x_1, x_2, \ldots, x_n) \) be a polynomial of degree \(d \). Then if \(P \neq 0 \), then

\[
\Pr_{x_1, x_2, \ldots, x_n \in S}[P(x_1, x_2, \ldots, x_n) = 0] \leq \frac{dn}{|S|}.
\]

Proof: We use induction on \(n \).

Base case \((n = 1)\): If \(P \neq 0 \), then there are at most \(d \) zeroes in \(p \). At most \(d = d \cdot 1 \) of them are in \(S \).

Inductive step: Write

\[
P(x_1, x_2, \ldots, x_n) = \sum_{i=0}^{d_1} x_i^i P_i(x_2, \ldots, x_n).
\]

By hypothesis,

\[
\Pr_{x_2, \ldots, x_n}[P_i(x_2, \ldots, x_n) = 0] \leq \frac{(n-1)d}{|S|}.
\]

If \(P_{d_1}(x_2, \ldots, x_n) \neq 0 \), then \(\Pr_{x_1}[P(x_1, \ldots, x_n)] \leq \frac{d_1}{|S|} \). ■