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Notes for Lecture 22

Notes on Reingold’s Theorem, Part I

Today we begin a proof that the undirected (s, t)-connectivity problem can be solved in
deterministic logarithmic space. We give a number of preliminary definitions and results.
We will get to the actual algorithm next time.

1 Review of Linear Algebra

We think of vectors as row vectors, or 1 × n matrices. If v = (v1, . . . , vn) ∈ Rn is a real
vector, then its length is defined as ||v|| =

√
v2
1 + · · · v2

n. If v1, . . . ,vn ∈ Rn are mutually
orthogonal vectors of length one, then they are called an orthonormal basis of Rn. Every
vector v can then be written in a unique way as v = α1v1 + · · · + αnvn, and we have
||v|| =

√
α2

1 + · · ·+ α2
n.

Let A ∈ Rn×n be a matrix. A (left) eigenvalue of A is a value λ ∈ C such that, for some
non-zero vector v ∈ Cn,

v ·A = λv

and, if so, the vector v is called an eigenvector. If λ is an eigenvalue of A, then we have

v · (A− λI) = 0

where I is the identity matrix and 0 is the all-zero vector. This implies that the columns
of the matrix (A− λI) are not linearly independent, and so

det(A− λI) = 0

where det denotes the determinant. The value det(A−λI), as a function of λ, is a polynomial
of degree n, and so A can have at most n eigenvalues. Note also that if det(A − λI) = 0,
then the columns of A cannot all be linearly independent, and so there must be a nonzero
vector v such that v · (A− λI) = 0. It follows that λ is an eigenvalue of A if and only if it
is a root of the polynomial det(A− λI). If we count multiplicities, then there are precisely
n eigenvalues for A

If A ∈ Rn×n is a symmetric matrix, that is, a matrix such that Ai,j = Aj,i for every
i, j, then there are precisely n real eigenvalues of A, counting multiplicities. Furthermore,
several additional results hold (all the results from now on assume that A is symmetric).

Let λ be an eigenvalue of A, and let v and w be eigenvectors of λ. Then if a, b ∈ R are
reals, we have that

(av + bw) ·A = avA + bwA = aλv + bλw = λ(av + bw)

and so (av + bw) is an eigenvector. This means that set of eigenvectors of λ (plus the
all-zero vector) form a linear subspace of Rn. We have the following theorems:
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1. The dimension of the space of eigenvectors of λ is equal to the multiplicity of λ as a
root of det(A− λI);

2. If λ 6= λ′ are two eigenvalues, then the space of eigenvectors of λ is orthogonal to the
space of eigenvectors of λ′.

This means that if λ1, . . . , λn are the eigenvalues of A, with multiplicities, then we can
find mutually orthogonal unit vectors v1, . . . ,vn such that each vi is an eigenvector of λi.
Such eigenvectors form a basis for Rn.

We finally come to an observation that will be important later. Consider the matrix
A2 = A ·A. If λ is an eigenvalue of A with eigenvector v, then

v ·A2 = (v ·A) ·A = λv ·A = λ2v

so that λ2 is an eigenvalue of A2 with eigenvector v.
If λ1, . . . , λn are eigenvalues of A and v1, . . . ,vn are the respective eigenvectors, then

λt
1, . . . , λ

t
n are eigenvalues of At and v1, . . . ,vn are the respective eigenvectors.

If A is a symmetric matrix, λ1, . . . , λn are its eigenvalues, and v1, . . . ,vn are their
respective eigenvectors, then for every vector v we can write in a unique way v = α1v1 +
. . . + αnvn. Now, note that

v ·At = (α1v1 + · · ·+ αnvn) = α1λ
t
1v1 + . . . + αnλt

nvn

that is, we can compute v · At very easily without having to actually compute the matrix
At.

2 Graphs and Eigenvalues

Let G = (V,E) be an undirected regular graph of degree d. We allow G to have multiple
edges and self-loops. We identify V with {1, . . . , n}.

We define the “random walk” matrix (normally it is called the normalized adjacency
matrix) of G to be the matrix A ∈ RV×V obtained by dividing each entry of the adjacency
matrix of G by d. Another way to look at it is as follows: let i and j be vertices of G, and
consider the probabilistic process of picking at random one of the edges that are incident
on i; then Ai,j is the probability that j is the other endpoint of the selected edge.

Consider now the matrix A2. It should be clear that A2
i,j is the probability that, starting

from i, a two-step random walk will land on j. In general, At
i,j is the probability of going

from i to j in a t-step random walk.
Let p = (p1, . . . , pn) ∈ RV be a probability distribution, that is pi ≥ 0 for all i, and∑

i pi = 1. Then the vector p ·A is also a probability distribution, and it is the distribution
that we get in the following way: pick a vertex i at random according to probability p, then
move to a random neighbor. Similarly, pAt is the probability distribution that we get by
picking a start vertex according to distribution p and then performing t steps of a random
walk.

Since, as we saw above, it is easy to compute a product of the form p · At given the
eigenvalues and eigenvectors of A, it is no wonder that eigenvalues and eigenvectors play an
important role in the study of random walks.
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First, note that A is a symmetric matrix (because we assumed that G was an undirected
graph), and so all its eigenvalues are real numbers.

It is easy to see that 1 is an eigenvalue of A, with eigenvector the uniform distribution
u := (1/n, . . . , 1/n). (Recall that we assumed that G was a regular graph, otherwise this
would not be true.) It is also a theorem that for every other eigenvalue λ we have |λ| ≤ 1.

If G is not connected, then the multiplicity of 1 as an eigenvalue is more than 1, that
is, there are at least two linearly indpendent eigenvectors of 1. (For example, think of
the distribution that is uniform in one connected component, and zero elsewhere.) If G is
connected, then the eigenvalue 1 has multiplicity 1. It is however possible that −1 could
be an eigenvalue, and, for example, this happens if the graph is bipartite: if (S, V − S) a
bipartition of the vertices such that all the edges go between S and V − S, then we can
construct an eigenvector of −1 by defining a vector v such that vi = 1 if i ∈ S and vi = −1
otherwise. Fortunately, it is a theorem that these are the only cases.

Theorem 1 Let G be an undirected, regular, connected, non-bipartite, graph of degree d
with n vertices, and let A be the random walk matrix of G. Then if λ1 ≥ λ2 ≥ λn are the
eigenvalues of A, with multiplicities, in sorted order, we have λ1 = 1 and |λi| ≤ 1− 1/dn2

for i = 2, . . . , n.

Finally, we are ready to study random walks in G, where G is, as in the theorem above,
an undirected, regular, connected, non-bipartite, graph of degree d with n vertices.

Let A be the random walk matrix of G, let 1 > λ2 ≥ · · · ≥ λn be the eigenvalues of A
and v1, . . . ,vn the respective eigenvectors, chosen to be orthogonal and of length 1. Note
that v1 is a multiple of the uniform distribution. Let λ(G) = maxn

j=2 |λj | be the second
largest eigenvalue in absolute value. Recall that λ < 1− 1/dn2.

Let p ∈ Rn be a distribution. We can write p = u+(p−u), where u := (1/n, · · · , 1/n)
is the uniform distribution and where (p−u) is orthogonal to the uniform distribution. (It
is easy to verify this last claim.) The vectors v2, · · · ,vn are a basis for the set of vectors
orthogonal to u, and so we can then write, for some coefficients α2, · · · , αn,

p = u + α2v2 + · · ·αnvn .

Consider now p ·A, that is the distribution obtained by picking a vertex according to p and
then doing a one-step random walk. We have

p ·A = u ·A +
n∑

j=2

αjvjA = u +
n∑

j=2

αjλjvj .

in other words, the distribution that we obtain is uniform, up to an error term, and the
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error term is
∑n

j=2 αjλjvj . As a vector, how long is this error term? We can compute

||p ·A− u|| = ||
n∑

j=2

αjλjvj ||

=

√√√√ n∑
j=2

α2
jλ

2
j

≤ n
max
j=2

|λj | ·

√√√√ n∑
j=2

α2
j

= λ · ||p− u||

That is, the new distribution is closer by a factor of λ to the uniform distribution. After
t steps we clearly have ||pAt − u|| ≤ λt||p− u||.

For a vertex i ∈ V , define pi = 1 and pj = 0 for j 6= 1. This corresponds to the
distribution that gives probability one to vertex i. As before, we have ||pAt−u|| ≤ λt||p−u||
and it can be seen that ||p− u|| =

√
1− 1/n < 1. So we get

||pAt − u|| ≤ λt

Pick a value of t such that λt ≤ 1/2n, for example t = O( 1
1−λ log n) is enough. Now we have

||pAt − u|| < 1/2n, from which it follows that every entry of pAt must be at least 1/2n.
This also implies that every vertex of G is reachable from i in O( 1

1−λ log n) steps, and since
i was arbitrary we have actually proved that the diameter of G is at most O( 1

1−λ log n).
For general graphs, we only know λ ≤ 1 − 1/dn2, so the above proof only shows that

the diameter is at most O(dn2 log n), which is not very interesting. The argument does,
however, show that if λ is a constant, for example .9, then the diameter is logarithmic.

An expander is a graph such that λ(G) is a constant bounded away from 1.1 Expanders
have a lot of applications in computer science in general and in complexity theory in par-
ticular. For this lecture, the only property we use is that the diameter is logarithmic.

It is known that there is a constant d such that for every n there is a d-regular expander
with n vertices and λ(G) ≤ 1/2. In fact, it is known how to get λ(G) ≤

√
2d− 1/d for

certain values of d.

1This, of course, does not make sense as a definition because for fixed graph λ is always a “constant
bounded away from one.” In the formal definition, we think of an infinite family of graphs {Gn}, where Gn

has n vertices, such that there is a fixed constant λ such that λ(Gn) ≤ λ for every n.
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