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Notes for Lecture 27

Learning Bounded-Depth Circuits

In this lecture we discuss a quasi-polynomial time algorithm to learn bounded-depth circuits
with queries under the uniform distribution. As in Lecture 15 and 16, we denote bits using
the set {−1, 1} instead of {0, 1}.

The main result is

Theorem 1 (Main) Given oracle access to a function f : {−1, 1}n → {−1, 1} computed
by a circuit of size S and depth d, and given parameters ε and δ, in time polynomial in
nO((14 log S/ε)d−1) and log 1/δ we can output a circuit that, with probability at least 1− δ, is
ε-close to f .

As in Lectures 15 and 16, we divide the proof in two parts. We show that every function
whose Fourier coefficients satisfy certain properties can be efficiently learned, and then we
show that functions computed by bounded depth circuits satisfy these properties.

Lemma 2 Given oracle access to f : {−1, 1}n → {−1, 1} such that∑
S:|S|≤t

|f̂S | ≤ m

and ∑
S:|S|>t

f̂2
S ≤ α

and given parameters ε, δ > 0, it is possible to construct in time polynomial in n, m, 1/ε,
log 1/δ, a circuit C that, with probability at least 1− δ, is ε + α-close to f .

Lemma 3 If f : {−1, 1}n → {−1, 1} is computed by a circuit of size S and depth d, then∑
S:|S|>t

f̂2
S ≤ 2α

for t := 28 · (14 log(S/α))d−1.

Given the two Lemmas, we just need to observe that
∑

|S|≤t |f̂S |
(
n
t

)
< nt for every

boolean function f , and the proof of Theorem 1 follows.
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1 More on Learning and Fourier Analysis

In this section we prove Lemma 2. First recall the version of the Goldreich-Levin algorithm
we presented in Lecture 15.

Lemma 4 There is a probabilistic algorithm that given oracle access to a function f :
{−1, 1}n → {−1, 1}, a threshold parameter τ , a confidence parameter δ and an accuracy
parameter γ, runs in time polynomial in n, γ−1, τ−1 and log δ−1 and outputs a list L of
O(τ−2 log τ−1δ−1) sets, and a value f̄S for every set S ∈ L, such that, with probability at
least 1− δ the following conditions hold:

• Every set S such that |f̂S | ≥ τ is in the list;

• For every set S in the list, |f̂S − f̄S | ≤ γ.

We fix τ = ε/2m. If ` = O(τ−2 log(τ−1δ−1) is an upper bound to the size of the list
returned by the Goldreich-Levin algorithm with threshold τ and confidence δ, then we fix
γ =

√
ε/2` and we run the Goldreich-Levin algorithm with threshold τ , confidence δ and

accuracy γ. We find a list L of sets and values f̄S for each set in the list such that, with
probability ≥ 1− δ over the internal coin tosses of the algorithm, we have:

• Every set S such that |f̂S | ≥ τ is in the list;

• For every set S in the list, |f̂S − f̄S | ≤ γ.

Then we define the function h(x) =
∑

S∈L, |S|≤t f̄SuS . The Fourier coefficients of the
difference d(x) := f(x)− h(x) are as follows.

• If |S| > t, then ĥS = 0 and so d̂S = f̂S .

• If |S| ≤ t and S 6∈ L, then ĥS = 0 and so d̂S = f̂S , and also |d̂S | = |f̂S | ≤ τ .

• If |S| ≤ t and S ∈ L, then |ĥS | ≤ γ.

We now want to estimate E[(f(x)− h(x))2]. We have

E[(f(x)− h(x))2] = E[d2(x)]

=
∑
S

d̂2
S

=
∑
|S|>t

d̂2
S +

∑
|S|≤t, S 6∈L

d̂2
S +

∑
|S|≤t, S∈L

d̂2
S

≤
∑
|S|>t

f̂2
S + τ

∑
|S|≤t,S 6∈L

|d̂S |+
∑

|S|≤t, S∈L

γ2

≤ α + τm + |L|γ2

≤ α + ε

Define g : {−1, 1}n → {−1, 1} such that g(x) = 1 if h(x) ≥ 0 and g(x) = −1 if h(x) < 0.
We see that

Pr[g(x) 6= f(x)] ≤ E[(f(x)− h(x))2] ≤ α + ε

We output the circuit that computes g.
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2 The Fourier Spectrum of Functions Computed by Bounded-
Depth Circuits

In this section we prove Lemma 3.
We state without proof the following result of Linial, Mansour and Nisan. Denote by

DTD(f) the depth of the shallowest decision tree that computes f .

Lemma 5 (Linial-Mansour-Nisan) Let Rp be the distribution over random restrictions
with parameter p, and let f : {−1, 1}n → {−1, 1} be a function.∑

|S|>t

f̂2
S ≤ 2Prρ∼Rp [DTD(fρ) ≥ tp/2]

In other words, if f is a function that is very likely to be computable by a shallow
decision tree after a random restriction, then f has low weight on large coefficient.

Lemma 6 If f can be computed by a circuit of size C and depth d, then for p = 1/196 ·
(log S/α)d−2

Prρ∼Rp [DTD(fρ) ≥ log(S/α)] ≤ α

Proof: Define k := (log S/α), and let s1, . . . , sd be the number of gates at depth 1, . . . , d in
C. First apply a random restriction with parameter 1/14, and consider the s1 top gates, that
we can think of as being 1-DNF (respectively, 1-CNF). Then, after the random restriction,
each gate has probability at least 1− 2−k of being expressible as a decision tree of depth k,
and so as a k-CNF (respectively, k-DNF). Substitute such an expression in each gate, and
obtain a circuit of depth d+1 with top gates of fan-in k and two consecutive layers of AND
gates (respectively, OR gates). By using associativity, we get a circuit of depth d, with top
gates of fan-in k, and with s2, . . . , sd gates at levels 2, . . . , d. (With probability ≤ s1/2k,
this first step fails.) The circuit has n/14 inputs

Then we apply a random restriction with parameter 1/(14k), and consider the s2 level-2
gates. Each of them computed a k-CNF (respectively, k-DNF) before the restriction. After
the restriction, each such gate computes a function computable by a depth-k decision tree,
except with probability at most 2−k. By replacing each gate with a k-DNF (respectively,
k-CNF) and collapsing level 2 with level 3, we get a circuit of depth d−1, with top gates of
fan-in k, and with s3, . . . , sd gates at levels 2, . . . , d1. (with probability ≤ s2/2k, this second
step fails.) The circuit has now n/(14 · (14k)) inputs.

After d− 3 steps like the one above, we get a circuit of depth 2, with top gates having
fan-in ≤ k. The circuits has n/(14 · (14k)d−2) inputs. There is a probability at most
((s1 + · · ·+ sd−1)/2k) that the construction failed at any point. We apply one more random
restriction with p = 1/14, and the circuit finally becomes a depth-k decision tree, except
with probability at most 2−k. Putting every together, and recalling S = s1 + · · ·+ sd−1 + 1
and 2k = S/α, we have that for p = 1/(196 · (14k)d−2

Prρ∼Rp [DTD(fρ) ≥ k] ≤ α

as desired. 2
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In order to prove Lemma 3, it now remains to fix t = 28 · (14 log(S/α)d−1) and p =
1/(196(14 log(S/α))d−2), and deduce

∑
|S|>t

f̂2
S ≤ 2Prρ∼Rp [DTD(fρ) ≥ tp/2] = 2Prρ∼Rp [DTD(fρ) ≥ log S/α] ≤ 2α

3 References

These results are due to Linial, Mansour and Nisan [LMN93].
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