CS 294-2 Search Algorithms & Quantum Walks 3 / 19 / 07
Spring 2007 Lecture 16

This lecture was given by Ashwin Nayak and is based on the paper ”Search via Quantum Walk” by Magniez, Nayak,
Roland, and Santha (2006).

1 Element Distinctness

The search for an item in an unsorted list can be interpreted as the search for a collision. Given a set of n numbers
{x1,...,xn}, a collision is a pair (i, j) so that x; = x;, i # j.

A deterministic algorithm would solve this problem as follows: First it would sort the list (time: O(n-log(n)) and then
scan it to spot a collision. This algorithm can be shown to be optimal in the number of comparisons.

11 Castasa graph search algorithm

This problem can be reformulated as a search problem on a graph G. The vertices of G are all possible r-subsets of [n].
Two vertices are connected whenever the corresponding subsets differ in a single element (i.e. the intersection has size
r—1). This graph is a Johnson Graph with parameters n, r, and r — 1. The interesting vertices (called the “marked”
vertices) are those that contain two indices i and j so that i # j and x; = x; (i.e. a collision).

1 /10
Example: Letn = 10, r = 3. Then the number of vertices is (130) and the number of edges is — - - degree .
2 \3) = —
T r(n—r)=3-7

2 A random walk algorithm

Given the formulation as a graph search problem, the following classical (probabilistic) algorithm finds a collision
using random walks on the graph:

1. Start in a uniformly random vertex
(pick r elements from [n] and the corresponding numbers x; from the list, sort the numbers)
2. Repeat for T; steps:
(a) Random Walk on the graph G for T; steps:

* Picki€g S,j €r S (where S is the subset corresponding to the current vertex)
* insert j into S and x; into the sorted list
e delete i from S and x; from the sorted list

(b) If the state reached in (a) contains a collision, stop and output the pair.

3. If no collision is found, output ’no collision”.
The algorithm starts at a node x, takes 7> random steps leading to a new node x’ and checks whether this new node

contains a collision. If not, it repeats this procedure a maximum of 7 times. Hence, it will check at most 7 different
nodes (i.e. subsets) for collisions.

Analysis of the complexity:

¢ Cost of 2(a): log(r) per step in the random walk (so 73 - log(r) in a total)

CS 294-2, Spring 2007, Lecture 16 1

* T1 = expected number of samples of uniformely random r-subsets needed to locate a collision, assuming that

2
the nodes reached are uniformely distributed. We have p = Pr[subset has a collision] ~ (K) .So, Th = O(é)
n r

* T, = r steps (roughly the time required to randomize any fixed r-subset by performing a random walk starting
at that vertex)

2.1 Formal Analysis using Proba]oility Transition Matrices

Let P = (Pyy) be the probability transition matrix of a random walk on a graph G. Assume G is regular, undirected,
non-bipartite and connected. For the Johnson Graph we have:

1 1
= if | XNY|=r—1
Pyy = degree r(n—r) if| |=r

0 otherwise

Properties of P:

1. P has a left 1-eigenvector, the uniform distribution over the vertices and this is the unique 1-eigenvector

2. Every other eigenvector has eigenvalue < 1 in magnitude

The Spectral Gap of a matrix P is defined as 6 (P) = 1 — |A,(P)| where A,(P) is the second largest eigenvalue of P (in
magnitude). The following theorem corresponds to Proposition 1 in the original paper:

Theorem 16.1: Let P be a symmetric, ergodic random walk on state space X, with spectral gap 6(P) = 6. Let M be
a subset of X (the marked elements) so that |M| > €|X| = €N. Then an algorithm analogous to the one above finds a
marked element in time O (5'—8) with probability > % (if one exists).

The proof shows that roughly it holds that 7} ~ é and Tr = % (the complete proof is given in the paper).

2.2 Cost of the random walk algorithm for Element Distinctness

- . . 2
For Element Distinctness, given a Johnson Graph with parameters n,r,r — 1, where r = O(n), we have € ~ ;—2 and
o= % This gives us

Total Cost = r-log(r)+Ti-(T»-log(r))
2
— rlog()+ ’rL2 (r-log(r))

Optimized over r this gives O(n-log(n)) (for r = n), i.e. the same deterministic algorithm presented in the beginning.
However, the random walk algorithm can be speeded up using quantum algorithms.

3 Quantum Walk

Let P be a symmetric, ergodic random walk on state space X (nodes of a graph). With W (P) we denote the corre-
sponding quantum walk where W is a unitary operator (following Szegedy *04). W (P) is defined as follows:

State Space: Instead of nodes, the state space is spanned by pairs | X,y > where x & y are neighbours in the underlying
graph (i.e. (x,y) is an edge).

Transition: For the basis state ’ X,y > , a step of the quantum walk is given by W(P) = R; - Ry where

(a) Rj: mix the right hand point y using the Grover diffusion operator on the d neighbours of x

(b) Rs: if y is the new right end point, similarly mix” the left endpoints over neighbours of y’

CS 294-2, Spring 2007, Lecture 16 2

As in the case of the classical random walk, we can extract properties of W (P). For that purpose we define |Px> =
Y, ﬁ ‘ y> (where y are neighbours of x) and let I, be the identiy over the subspace |x> <x| QCHI,

1. R; and R, are reflection operators:

* R; is the reflection through the states |x> |Px> "R =):x(2|x> |Px> <x| <Px| —I)
* R; is the reflection through the states |Py> |y> "Ry =):},(2|Py> |y> <Py| <y’ —1)
2. (Spectrum of W (P))
1 1
(a) W (P) has a unique 1-eigenvector: |7) =Y, cx N |X) [Py = Xyex N 1P |y)

(b) For every eigenvalue A of P, |A| € [0,1), W(P) has eigenvalues e*%°, where 8 = cos™!|A|.

Observation:

i*
e2| Gl

Hence, the phase gap of W(P) between the 1-eigenvector and the eigenvector corresponding to the second largest
eigenvalue is 8’ = |0 — 6| = |0|. Using the above derived properties we get

0 = cos ! a(P)|
cos(0) = Mh=1-6
62
With the approximation cos(0) ~ 1 — > we get a phase gap of 6 ~ v/28. This implies that we can distinguish

between the 1-eigenvector and the remaining eigenvectors using phase estimation. The cost of the phase estimation is
1

phase gap - Vdelta

applications of W (P).

4 The Quantum Algorithm for Element Distinctness

Given the quantum walk we can modify the classical random walk algorithm. Our desired final state is ‘[J> =

1
Yiem N |x

different reflections in the 2-dimensional subspace spanned by |77:> and] ,u> :

> ’Px> (normalized). As in Grovers search algorithm, the following algorithm approximates ‘ u> by two

1. Start with: |7t> =Y ex

1
N) [Px)
2. Repeat for T steps:

CS 294-2, Spring 2007, Lecture 16 3

(a) Reflection through |7):
« for any basis vector |x) |P;) check if x € M
* if yes, flip phase
(b) Reflection through | /.H> :
* run phase estimation on current state (which is a linear combination of eigenvectors)
« if the estimate for the phase is # 0, flip the sign of that state
* undo phase estimation

>

[b>

[|M
The angle @ between |7r> and |[.LL> is given by sin(w) = <7r‘ [,L> =\E= % The product of the two reflections

above is a rotation by an angle of 2. Therefore, after T = O(1/w) = O(1/+/€) iterations of this rotation starting with
state |7), we will have approximated the target state |p).

1
The cost of the phase estimation in step 2(b) is —=. The cost of error reduction (through repetions) is ~ log(T) ~

1 11 1
log | —= |. Therefore, the total cost is — - — -log [—= |. The last term, / (L, be eliminated by usi
og(\/g> crerore. ¢ total cost 1s \/g \E 0g<\/§> € last term, log \/E) can be eliminate yusmga

recursive version of Grover search.

4.1 Applied to Element Distinctness

When we apply this result to the problem of Element Distinctness, we get

Total Cost = rlog(r) +

£ (Gym)

2
r 1
where € = —, § = —. Optimizing over r we get r = n3 and a runtime complexity of O(n% log(n)).
n r

CS 294-2, Spring 2007, Lecture 16 4

