
CS 294-2 Search Algorithms & Quantum Walks 3/19/07
Spring 2007 Lecture 16

This lecture was given by Ashwin Nayak and is based on the paper ”Search via Quantum Walk” by Magniez, Nayak,
Roland, and Santha (2006).

1 Element Distinctness
The search for an item in an unsorted list can be interpreted as the search for a collision. Given a set of n numbers
{x1, ...,xn}, a collision is a pair (i, j) so that xi = x j, i 6= j.

A deterministic algorithm would solve this problem as follows: First it would sort the list (time: O(n · log(n)) and then
scan it to spot a collision. This algorithm can be shown to be optimal in the number of comparisons.

1.1 Cast as a graph search algorithm
This problem can be reformulated as a search problem on a graph G. The vertices of G are all possible r-subsets of [n].
Two vertices are connected whenever the corresponding subsets differ in a single element (i.e. the intersection has size
r− 1). This graph is a Johnson Graph with parameters n, r, and r− 1. The interesting vertices (called the ”marked”
vertices) are those that contain two indices i and j so that i 6= j and xi = x j (i.e. a collision).

Example: Let n = 10, r = 3. Then the number of vertices is
(10

3

)
and the number of edges is

1
2
·
(

10
3

)
︸ ︷︷ ︸

N

· degree︸ ︷︷ ︸
r(n−r)=3·7

.

2 A random walk algorithm
Given the formulation as a graph search problem, the following classical (probabilistic) algorithm finds a collision
using random walks on the graph:

1. Start in a uniformly random vertex
(pick r elements from [n] and the corresponding numbers xi from the list, sort the numbers)

2. Repeat for T1 steps:

(a) Random Walk on the graph G for T2 steps:

• Pick i ∈R S, j ∈R S̄ (where S is the subset corresponding to the current vertex)
• insert j into S and x j into the sorted list
• delete i from S and xi from the sorted list

(b) If the state reached in (a) contains a collision, stop and output the pair.

3. If no collision is found, output ”no collision”.

The algorithm starts at a node x, takes T2 random steps leading to a new node x′ and checks whether this new node
contains a collision. If not, it repeats this procedure a maximum of T1 times. Hence, it will check at most T1 different
nodes (i.e. subsets) for collisions.

Analysis of the complexity:

• Cost of 2(a): log(r) per step in the random walk (so T2 · log(r) in a total)

CS 294-2, Spring 2007, Lecture 16 1

• T1 ≈ expected number of samples of uniformely random r-subsets needed to locate a collision, assuming that

the nodes reached are uniformely distributed. We have p = Pr[subset has a collision]≈
(r

n

)2
. So, T1 = O(n2

r2).

• T2 ≈ r steps (roughly the time required to randomize any fixed r-subset by performing a random walk starting
at that vertex)

2.1 Formal Analysis using Probability Transition Matrices
Let P = (PXY) be the probability transition matrix of a random walk on a graph G. Assume G is regular, undirected,
non-bipartite and connected. For the Johnson Graph we have:

PXY =


1

degree
=

1
r(n− r)

if |X ∩Y |= r−1

0 otherwise

Properties of P:

1. P has a left 1-eigenvector, the uniform distribution over the vertices and this is the unique 1-eigenvector

2. Every other eigenvector has eigenvalue < 1 in magnitude

The Spectral Gap of a matrix P is defined as δ (P) = 1−|λ2(P)| where λ2(P) is the second largest eigenvalue of P (in
magnitude). The following theorem corresponds to Proposition 1 in the original paper:

Theorem 16.1: Let P be a symmetric, ergodic random walk on state space X, with spectral gap δ (P) = δ . Let M be
a subset of X (the marked elements) so that |M| ≥ ε|X |= εN. Then an algorithm analogous to the one above finds a
marked element in time O

(1
δε

)
with probability ≥ 2

3 (if one exists).

The proof shows that roughly it holds that T1 ≈ 1
ε

and T2 ≈ 1
δ

(the complete proof is given in the paper).

2.2 Cost of the random walk algorithm for Element Distinctness
For Element Distinctness, given a Johnson Graph with parameters n,r,r− 1, where r = O(n), we have ε ≈ r2

n2 and
δ = 1

r . This gives us

Total Cost = r · log(r)+T1 · (T2 · log(r))

= r · log(r)+
n2

r2 · (r · log(r))

Optimized over r this gives O(n · log(n)) (for r = n), i.e. the same deterministic algorithm presented in the beginning.
However, the random walk algorithm can be speeded up using quantum algorithms.

3 Quantum Walk
Let P be a symmetric, ergodic random walk on state space X (nodes of a graph). With W (P) we denote the corre-
sponding quantum walk where W is a unitary operator (following Szegedy ’04). W (P) is defined as follows:

State Space: Instead of nodes, the state space is spanned by pairs
∣∣ x,y

〉
where x & y are neighbours in the underlying

graph (i.e. (x,y) is an edge).

Transition: For the basis state
∣∣ x,y

〉
, a step of the quantum walk is given by W (P) = R2 ·R1 where

(a) R1: mix the right hand point y using the Grover diffusion operator on the d neighbours of x

(b) R2: if y′ is the new right end point, similarly ”mix” the left endpoints over neighbours of y′

CS 294-2, Spring 2007, Lecture 16 2

As in the case of the classical random walk, we can extract properties of W (P). For that purpose we define
∣∣Px

〉
=

∑y
1√
d

∣∣y〉 (where y are neighbours of x) and let Ix be the identiy over the subspace
∣∣x〉〈x

∣∣⊗C|X |.

1. R1 and R2 are reflection operators:

• R1 is the reflection through the states
∣∣x〉∣∣Px

〉
: R1 = ∑x(2

∣∣x〉∣∣Px
〉〈

x
∣∣〈Px

∣∣ − Ix)

• R2 is the reflection through the states
∣∣Py

〉∣∣y〉 : R2 = ∑y(2
∣∣Py

〉∣∣y〉〈
Py

∣∣〈y
∣∣ − Iy)

2. (Spectrum of W (P))

(a) W (P) has a unique 1-eigenvector:
∣∣π〉

= ∑x∈X
1√
N

∣∣x〉∣∣Px
〉

= ∑y∈X
1√
N

∣∣Py
〉∣∣y〉

(b) For every eigenvalue λ of P, |λ | ∈ [0,1), W (P) has eigenvalues e±2iθ , where θ = cos−1|λ |.

Observation:

Hence, the phase gap of W (P) between the 1-eigenvector and the eigenvector corresponding to the second largest
eigenvalue is δ ′ = |0−θ |= |θ |. Using the above derived properties we get

θ = cos−1|λ2(P)|
cos(θ) = λ2 = 1−δ

With the approximation cos(θ) ≈ 1− θ 2

2
we get a phase gap of θ ≈

√
2δ . This implies that we can distinguish

between the 1-eigenvector and the remaining eigenvectors using phase estimation. The cost of the phase estimation is
1

phase gap
≈ 1√

delta
applications of W (P).

4 The Quantum Algorithm for Element Distinctness
Given the quantum walk we can modify the classical random walk algorithm. Our desired final state is

∣∣µ〉
=

∑x∈M
1√
N

∣∣x〉∣∣Px
〉

(normalized). As in Grovers search algorithm, the following algorithm approximates
∣∣µ〉

by two

different reflections in the 2-dimensional subspace spanned by
∣∣π〉

and
∣∣µ〉

:

1. Start with:
∣∣π〉

= ∑x∈X
1√
N

∣∣x〉∣∣Px
〉

2. Repeat for T steps:

CS 294-2, Spring 2007, Lecture 16 3

(a) Reflection through
∣∣π〉

:

• for any basis vector
∣∣x〉∣∣Px

〉
check if x ∈ M

• if yes, flip phase

(b) Reflection through
∣∣µ⊥〉

:

• run phase estimation on current state (which is a linear combination of eigenvectors)
• if the estimate for the phase is 6= 0, flip the sign of that state
• undo phase estimation

The angle ω between
∣∣π〉

and
∣∣µ⊥〉

is given by sin(ω) =
〈
π
∣∣µ

〉
=
√

ε =

√
|M|
N

. The product of the two reflections

above is a rotation by an angle of 2ω . Therefore, after T = O(1/ω) = O(1/
√

ε) iterations of this rotation starting with
state

∣∣π〉
, we will have approximated the target state

∣∣µ〉
.

The cost of the phase estimation in step 2(b) is
1√
δ

. The cost of error reduction (through repetions) is ∼ log(T) ∼

log
(

1√
ε

)
. Therefore, the total cost is

1√
δ
· 1√

ε
· log

(
1√
ε

)
. The last term, log

(
1√
ε

)
, can be eliminated by using a

recursive version of Grover search.

4.1 Applied to Element Distinctness
When we apply this result to the problem of Element Distinctness, we get

Total Cost = rlog(r)+
1√
ε

(
1√
δ
· log(r)

)

where ε ≈ r2

n2 , δ =
1
r

. Optimizing over r we get r = n
2
3 and a runtime complexity of O(n

2
3 log(n)).

CS 294-2, Spring 2007, Lecture 16 4

