
DRAFT

Chapter 18

Hardness Amplification and
Error Correcting Codes

We pointed out in earlier chapters (e.g., Chapter ?? the distinction between
worst-case hardness and average-case hardness. For example, the problem
of finding the smallest factor of every given integer seems difficult on worst-
case instances, and yet is trivial for at least half the integers –namely, the
even ones. We also saw that functions that are average-case hard have many
uses, notably in cryptography and derandomization.

In this chapter we study techniques for amplifying hardness. First, we see
Yao’s XOR Lemma, which transforms a “mildly hard” function (i.e., one that
is hard to compute on a small fraction of the instances) to a function that is
extremely hard, for which the best algorithm is as bad as the algorithm that
just randomly guesses the answer. We mentioned Yao’s result in the chapter
on cryptography as a means to transform weak one-way functions into strong
one-way functions. The second result in this chapter is a technique to use
error-correcting codes to transform worst-case hard functions into average-
case hard functions. This transformation unfortunately makes the running
time exponential, and is thus useful only in derandomization, and not in
cryptography.

In addition to their applications in complexity theory, the ideas covered
here have had other uses, including new constructions of error-correcting
codes and new algorithms in machine learning.

Web draft 2006-09-28 18:10
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

369

DRAFT

370 18.1. HARDNESS AND HARDNESS AMPLIFICATION.

18.1 Hardness and Hardness Amplification.

We now define a slightly more refined notion of hardness, that generalizes
both the notions of worst-case and average-case hardness given in Defini-
tion 17.7:

Definition 18.1 (Hardness)
Let f : {0, 1}∗ → {0, 1} and ρ : N → [0, 1]. We define Hρ

avg(f) to be the func-
tion from N to N that maps every number n to the largest number S such that
Prx∈R{0,1}n [C(x) = f(x)] < ρ(n) for every Boolean circuit C on n inputs with size
at most S.

Note that, in the notations of Definition 17.7, Hwrs(f) = H1
avg(f) and

Havg(f)(n) = max
{
S : H1/2+1/S

avg (f)(n) ≥ S
}
. In this chapter we show the

following results for every two functions S, S′ : N → N:

Worst-case to mild hardness. If there is a function f ∈ E = DTIME(2O(n))
such that Hwrs(f)(n) = H1

avg(f)(n) ≥ S(n) then there is a function f ′ ∈ E
such that H0.99

avg (f)(n) ≥ S(εn)ε for some constant ε > 0 and every suf-
ficiently large n.

Mild to strong hardness. If f ′ ∈ E satisfies H0.99
avg (f ′)(n) ≥ S′(n) then

there is f ′′ ∈ E and ε > 0 such that Havg(f ′′)(n) ≥ S′(nε)ε.

Combining these two results with Theorem 17.10, this implies that if
there exists a function f ∈ E with Hwrs(f)(n) ≥ S(n) then there exists an
S(`ε)ε-pseudorandom generator for some ε > 0, and hence:

Corollary 1 If there exists f ∈ E and ε > 0 such that Hwrs(f) ≥ 2nε
then

BPP ⊆ QuasiP = ∪cDTIME(2log nc
).

Corollary 2 If there exists f ∈ E such that Hwrs(f) ≥ nω(1) then BPP ⊆
SUBEXP = ∩εDTIME(2nε

).

To get to BPP = P, we need a stronger transformation. We do this
by showing how to transform in one fell swoop, a function f ∈ E with
Hwrs(f) ≥ S(n) into a function f ′ ∈ E with Havg(f) ≥ S(εn)ε for some ε > 0.
Combined with Theorem 17.10, this implies that BPP = P if there exists
f ∈ E with Hwrs(f) ≥ 2Ω(n).

Web draft 2006-09-28 18:10

DRAFT

18.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA. 371

18.2 Mild to strong hardness: Yao’s XOR Lemma.

We start with the second result described above: transforming a function
that has “mild” average-case hardness to a function that has strong average-
case hardness. The transformation is actually quite simple and natural, but
its analysis is somewhat involved (yet, in our opinion, beautiful).

Theorem 18.2 (Yao’s XOR Lemma)
For every f : {0, 1}n → {0, 1} and k ∈ N, define f⊕k : {0, 1}nk → {0, 1} as follows:

f⊕k(x1, . . . , xk) =
∑k

i=1 f(xi) (mod 2).
For every δ > 0, S and ε > 2(1− δ/2)k, if H1−δ

avg (f) ≥ S then

H1/2+ε
avg (f⊕k) ≥ ε2

100 log(1/δε)S

The intuition behind Theorem 18.2 derives from the following fact. Sup-
pose we have a biased coin that, whenever it is tossed, comes up heads with
probability 1− δ and tails with probability δ. If δ is small, each coin toss is
fairly predictable. But suppose we now toss it k times and define a compos-
ite coin toss that is “heads” iff the coin came up heads an odd number of
times. Then the probability of “heads” in this composite coin toss is at most
1/2+(1−2δ)k (see Exercise 1), which tends to 1/2 as k increases. Thus the
parity of coin tosses becomes quite unpredictable. The analogy to our case
is that intuitively, for each i, a circuit of size S has chance at most 1− δ of
“knowing” f(xi) if xi is random. Thus from its perspective, whether or not
it will be able to know f(xi) is like a biased coin toss. Hence its chance of
guessing the parity of the k bits should be roughly like 1/2 + (1− 2δ)k.

We transform this intuition into a proof via an elegant result of Impagli-
azzo, that provides some fascinating insight on mildly hard functions.

Definition 18.3 (δ-density distribution)
For δ < 1 a δ-density distribution H over {0, 1}n is one such that for every
x ∈ {0, 1}n, Pr[H = x] ≤ 2−n

δ .

Remark 18.4
Note that in Chapter 17 we would have called it a distribution with min
entropy n− log 1/δ.

The motivating example for this definition is the distribution that is
uniform over some subset of size δ2n and has 0 probability outside this set.

Web draft 2006-09-28 18:10

DRAFT

372 18.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA.

A priori, one can think that a function f that is hard to compute by
small circuits with probability 1− δ could have two possible forms: (a) the
hardness is sort of “spread” all over the inputs, and it is roughly 1− δ-hard
on every significant set of inputs or (b) there is a subset H of roughly a δ
fraction of the inputs such that on H the function is extremely hard (cannot
be computed better than 1

2 + ε for some tiny ε) and on the rest of the inputs
the function may be even very easy. Such a set may be thought of as lying
at the core of the hardness of f and is sometimes called the hardcore set.
Impagliazzo’s Lemma shows that actually every hard function has the form
(b). (While the Lemma talks about distributions and not sets, one can
easily transform it into a result on sets.)

Lemma 18.5 (Impagliazzo’s Hardcore Lemma)
For every δ > 0, f : {0, 1}n → {0, 1}n, and ε > 0, if H1−δ

avg (f) ≥ S then there
exists a distribution H over {0, 1}n of density at least δ/2 such that for every

circuit C of size at most ε2S
100 log(1/δε) ,

Pr
x∈RH

[C(x) = f(x)] ≤ 1/2 + ε ,

Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma.

We now use Lemma 18.5 to transform the biased-coins intuition discussed
above into a proof of the XOR Lemma. Let f : {0, 1}n → {0, 1} be a function
such that H1−δ

avg (f) ≥ S, let k ∈ N and suppose, for the sake of contradiction,
that there is a circuit C of size ε2

100 log(1/δε)S such that

Pr
(x1,...,xk)∈RUk

n

[
C(x1, . . . , xk) =

k∑
i=1

f(xi) (mod 2)

]
≥ 1/2 + ε , (1)

where ε > 2(1− δ/2)k.
Let H be the hardcore distribution of dens ity at least δ′ = δ/2 that

is obtained from Lemma 18.5, on which every circuit C ′ fails to compute f
with probability better than 1/2+ε/2. Define a distribution G over {0, 1}n as
follows: for every x ∈ {0, 1}n, Pr[G = x] = (1− δ′ Pr[H = x])/(1− δ′). Note
that G is indeed a well-defined distribution, as H has density at least δ′.
Also note that if H was the uniform distribution over some subset of {0, 1}n

of size δ′2n, then G will be the uniform distribution over the complement of
this subset.

We can think of the process of picking a uniform element in {0, 1}n as
follows: first toss a δ′-biased coin that comes up “heads” with probability δ.

Web draft 2006-09-28 18:10

DRAFT

18.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA. 373

Then, if it came up “heads” choose a random element out of H, and with
probability 1 − δ′, and otherwise choose a random element out of G. We
shorthand this and write

Un = (1− δ′)G + δ′H . (2)

If we consider the distribution (Un)2 of picking two random strings, then
by (2) it can be written as (1−δ′)2G2 +(1−δ′)δ′GH +δ′(1−δ′)HG+δ′2H2.
Similarly, for every k

(Un)k = (1− δ′)kGk + (1− δ′)k−1δ′Gk−1H + · · ·+ δ′kHk . (3)

For every distribution D over {0, 1}nk let PD be the probability of the event
of the left-hand side of (1) that C(x1, . . . , xk) =

∑k
i=1 f(xi) (mod 2) where

x1, . . . , xk are chosen from D. Then, combining (1) and (3),

1/2 + ε ≤ P(Un)k = (1− δ′)kPGk + (1− δ′)k−1δ′PGk−1H + · · ·+ δ′kPHk .

But since δ′ = δ/2 and ε > 2(1− δ/2)k and PGk ≤ 1 we get

1/2 + ε/2 ≤ 1/2 + ε− (1− δ′)k ≤ (1− δ′)k−1δ′PGk−1H + · · ·+ δ′kPHk .

Notice, the coefficients of all distributions on the right hand side sum up to
less than one, so there must exist a distribution D that has at least one H
component such that PD ≥ 1/2 + ε/2. Suppose that D = Gk−1H (all other
cases are handled in a similar way). Then, we get that

Pr
X1,...,Xk−1∈RG,Xk∈RH

[C(X1, . . . , Xk−1, Xk) =
k∑

i=1

f(Xi) (mod 2)] ≥ 1/2+ε/2 .

(4)
By the averaging principle, (4) implies that there exist k−1 strings x1, . . . , xk−1

such that if b =
∑k−1

i=1 f(xi) (mod 2) then,

Pr
Xk∈RH

[C(x1, . . . , xk−1, Xk) = b + f(Xk) (mod 2)] ≥ 1/2 + ε/2 . (5)

But by “hardwiring” the values x1, . . . , xk and b into the circuit C, (5) shows
a direct contradiction to the fact that H is a hardcore distribution for the
function f . �

Web draft 2006-09-28 18:10

DRAFT

374 18.3. PROOF OF IMPAGLIAZZO’S LEMMA

18.3 Proof of Impagliazzo’s Lemma

Let f be a function with H1−δ
avg (f) ≥ S. To Prove Lemma 18.5 we need to show

a distribution H over {0, 1}n (with no element of weight more than 2·2−n/δ)
on which every circuit C of size S′ cannot compute f with probability better
than 1/2 + ε (where S′,ε are as in the Lemma’s statement).

Let’s think of this task as a game between two players named Russell
and Noam. Russell first sends to Noam some distribution H over {0, 1}n

with density at least δ. Then Noam sends to Russell some circuit C of size
at most S′. Russell then pays to Noam Ex∈RH [RightC(x)] dollars, where
RightC(x) is equal to 1 if C(x) = f(x) and equal to 0 otherwise. What we
need to prove is that there is distribution that Russell can choose, such that
no matter what circuit Noam sends, Russell will not have to pay him more
than 1/2 + ε dollars.

An initial observation is that Russell could have easily ensured this if he
was allowed to play second instead of first. Indeed, under our assumptions,
for every circuit C of size S (and so, in particular also for circuits of size S′

which is smaller than S), there exists a set SC of at least δ2n ≥ (δ/2)2n in-
puts such that C(x) 6= f(x) for every x ∈ SC . Thus, if Noam had to send his
circuit C, then Russell could have chosen H to be the uniform distribution
over SC . Thus H would have density at least δ/2 and Ex∈RH [RightC(x)] = 0,
meaning that Russell wouldn’t have to pay Noam a single cent.

Now this game is a zero sum game, since whatever Noam gains Russell
loses and vice versa, tempting us to invoke von-Neumann’s famous Min-
Max Theorem (see Note 18.7) that says that in a zero-sum game it does not
matter who plays first as long as we allow randomized strategies.1 What
does it mean to allow randomized strategies in our context? It means that
Noam can send a distribution C over circuits instead of a single circuit, and
the amount Russell will pay is EC∈RCEx∈RH [RightC(x)]. (It also means that
Russell is allowed to send a distribution over δ/2-density distributions, but
this is equivalent to sending a single δ/2-density distribution.)

Thus, we only need to show that, when playing second, Russell can
still ensure a payment of at most 1/2 + ε dollars even when Noam sends a

1The careful reader might note that another requirement is that the set of possible
moves by each player is finite, which does not seem to hold in our case as Russell can send
any one of the infinitely many δ/2-density distributions. However, by either requiring
that the probabilities of the distribution are multiples of ε

100·2n (which won’t make any
significant difference in the game’s outcome), or using the fact that each such distribution
is a convex sum of uniform distributions over sets of size at least (δ/2)2n (see Exercise 9
of Chapter 17), we can make this game finite.

Web draft 2006-09-28 18:10

DRAFT

18.3. PROOF OF IMPAGLIAZZO’S LEMMA 375

distribution C of S′-sized circuits. For every distribution C, we say that an
input x ∈ {0, 1}n is good for Noam (good for short) with respect to C if
EC∈RC [RightC(x)] ≥ 1/2 + ε. It suffices to show that for every distribution
C over circuits of size at most S′, the number of good x’s with respect to
C is at most 1 − δ/2. (Indeed, this means that for every C, Russell could
choose as its distribution H the uniform distribution over the bad inputs
with respect to C.)

Suppose otherwise, that there is at least a 1−δ/2 fraction of inputs that
are good for C. We will use this to come up with an S-sized circuit C that
computes f on at least a 1−δ fraction of the inputs in {0, 1}n, contradicting
the assumption that H1−δ

avg (f) ≥ S. Let t = 10 log(1/δε)/ε2, choose C1, . . . , Ct

at random from C and let C = maj{C1, . . . , Ct} be the circuit of size tS′ < S
circuit that on input x outputs the majority value of {C1(x), . . . , Ct(x)}. If
x is good for C, then by the Chernoff bound we have that C(x) = f(x) with
probability at least 1 − δ/2 over the choice of C1, . . . , Ct. Since we assume
at least 1− δ/2 of the inputs are good for C, we get that

Ex∈R{0,1}nEC1∈RC,...,Ct∈RC [Rightmaj{C1,...,Ct}(x)] ≥ (1− δ
2)(1− δ

2) ≥ 1− δ . (6)

But by linearity of expectation, we can switch the order of expectations in
(6) obtaining that

EC1∈RC,...,Ct∈RCEx∈R{0,1}n [Rightmaj{C1,...,Ct}(x)] ≥ 1− δ ,

which in particular implies that there exists a circuit C of size at most S
such that Ex∈RUn [RightC(x)] ≥ 1 − δ, or in other words, C computes f on
at least a 1− δ fraction of the inputs. �

Remark 18.6
Taken in the contrapositive, Lemma 18.5 implies that if for every significant
chunk of the inputs there is some circuit that computes f with on this chunk
with some advantage over 1/2, then there is a single circuit that computes
f with good probability over all inputs. In machine learning such a result
(transforming a way to weakly predict some function into a way to strongly
predict it) is called Boosting of learning methods. Although the proof we
presented here is non-constructive, Impagliazzo’s original proof was con-
structive, and was used to obtain a boosting algorithm yielding some new
results in machine learning, see [?].

Web draft 2006-09-28 18:10

DRAFT

376 18.3. PROOF OF IMPAGLIAZZO’S LEMMA

Note 18.7 (The Min-Max Theorem)
A zero sum game is, as the name implies, a game between two parties in
which whatever one party loses is won by the other party. It is modeled
by an m × n matrix A = (ai,j) of real numbers. The game consists of only
a single move. One party, called the minimizer or column player, chooses
an index j ∈ [n] while the other party, called the maximizer or row player,
chooses an index i ∈ [m]. The outcome is that the column player has to pay
ai,j units of money to the row player (if ai,j is negative then actually the row
player has to pay). Clearly, the order in which players make their moves is
important. Surprisingly, if we allow the players randomized strategies, then
the order of play becomes unimportant.

The game with randomized (also known as mixed) strategies is as follows.
The column player chooses a distribution over the columns; that is, a vector
p ∈ [0, 1]n with

∑n
i=1 pi = 1. Similarly, the row player chooses a distribution

q over the rows. The amount paid is the expectation of ai,j for j chosen from
p and i chosen from q. If we think of p as a column vector and q as a row
vector then this is equal to qAp. The min-max theorem says:

min
p∈[0,1]n

Σipi=1

max
q∈[0,1]m

Σiqi=1

qAp = max
q∈[0,1]m

Σiqi=1

min
p∈[0,1]n

Σipi=1

qAp (7)

The min-max theorem can be proven using the following result, known as
Farkas’ Lemma:2 if C and D are disjoint convex subsets of Rm, then there
is an m − 1 dimensional hyperplane that separates them. That is, there is
a vector z and a number a such that for every x ∈ C, 〈x, z〉 =

∑
i xizi ≤ a

and for every y ∈ D, 〈y, z〉 ≥ a. (A subset C ⊆ Rm is convex if
whenever it contains a pair of points x,y, it contains the line segment
{αx + (1− α)y : 0 ≤ α ≤ 1} that lies between them.) We ask you to prove
Farkas’ Lemma in Exercise 2 but here is a “proof by picture” for the two
dimensional case:

C
D

hyperplane

Farkas’ Lemma implies the min-max theorem by noting that
maxq minp qAp ≥ c if and only if the convex set D =
{Ap : p ∈ [0, 1]n

∑
i pi = 1} does not intersect with the convex set

C =
{
x ∈ Rm : ∀i∈[m]xi < c

}
and using the Lemma to show that this

implies the existence of a probability vector q such that 〈q,y〉 ≥ c for every
y ∈ D (see Exercise 3). The Min-Max Theorem is equivalent to another
well-known result called linear programming duality, that can also be proved
using Farkas’ Lemma (see Exercise 4). Web draft 2006-09-28 18:10

DRAFT

18.4. ERROR CORRECTING CODES: THE INTUITIVE
CONNECTION TO HARDNESS AMPLIFICATION 377

18.4 Error correcting codes: the intuitive connec-
tion to hardness amplification

Now we construct average-case hard functions using functions that are only
worst-case hard. To do so, we desire a way to transform any function f
to another function g such that if there is a small circuit that computes g
approximately (i.e., correctly outputs g(x) for many x) then there is a small
circuit that computes f at all points. Taking the contrapositive, we can
conclude that if there is no small circuit that computes f then there is no
small circuit that computes g approximately.

Let us reason abstractly about how to go about the above task.

View a function f : {0, 1}n → {0, 1} as its truth table, namely, as a
string of length 2n, and view any circuit C for computing this function as a
device that, given any index x ∈ [2n], gives the x’th bit in this string. If the
circuit only computes g on ”average” then this device may be thought of as
only partially correct; it gives the right bit only for many indices x’s, but
not all. Thus we need to show how to turn a partially correct string for g
into a completely correct string for f . This is of course reminiscent of error
correcting codes (ECC), but with a distinct twist involving computational
efficiency of decoding, which we will call local decoding.

The classical theory of ECC’s (invented by Shannon in 1949) concerns the
following problem. We want to record some data x ∈ {0, 1}n on a compact
disk to retrieve at a later date, but that compact disk might scratched and
say 10% of its contents might be corrupted. The idea behind error correcting
codes is to encode x using some redundancy so that such corruptions do not
prevent us from recovering x.

The naive idea of redundancy is to introduce repetitions but that does
not work. For example suppose we repeat each bit three times, in other
words encode x as the string y = x1x1x1x2x2x2 . . . xnxnxn. But now if the
first three coordinates of y are corrupted then we cannot recover x1, even if
all other coordinates of y are intact. (Note that the first three coordinates
take only a 1/n � 10% fraction of the entire string y.) Clearly, we need a
smarter way.

2Many texts use the name Farkas’ Lemma only to denote a special case of the result
stated in Note 18.7. Namely the result that there is a separating hyperplane between any
disjoint sets C, D such that C is a single point and D is a set of the form {Ax : ∀ixi > 0}
for some matrix A.

Web draft 2006-09-28 18:10

DRAFT

378
18.4. ERROR CORRECTING CODES: THE INTUITIVE

CONNECTION TO HARDNESS AMPLIFICATION

Definition 18.8 (Error Correcting Codes)
For x, y ∈ {0, 1}m, the fractional Hamming distance of x and y, denoted ∆(x, y), is
equal to 1

m |{i : xi 6= yi}|.
For every δ ∈ [0, 1], a function E : {0, 1}n → {0, 1}m is an error correcting code
(ECC) with distance δ, if for every x 6= y ∈ {0, 1}n, ∆(E(x), E(y)) ≥ δ. We call the
set Im(E) = {E(x) : x ∈ {0, 1}n} the set of codewords of E.

δ/2 δ/2
E(x) E(x’)

E(x’’)

y

Figure 18.1: In a δ-distance error correcting code, ∆(E(x), E(x′)) ≥ δ for every x 6= x′.
We can recover x from every string y satisfying ∆(y, E(x)) < δ/2 since the δ/2-radius ball
around every codeword z = E(x) does not contain any other codeword.

Suppose E : {0, 1}n → {0, 1}m is an ECC of distance δ > 0.2. Then
the encoding x → E(x) suffices for the CD storage problem (momentarily
ignoring issues of computational efficiency). Indeed, if y is obtained by
corrupting 0.1m coordinates of E(x), then ∆(y, E(x)) < δ/2 and by the
triangle inequality ∆(y, E(x′)) > δ/2 for every x′ 6= x. Thus, x is the
unique string that satisfies ∆(y, E(x)) < δ/2. (See Figure 18.1.)

Of course, we still need to show that error correcting codes with minimum
distance 0.2 actually exist. The following lemma shows this. It introduces
H(δ), the so-called entropy function, which lies strictly between 0 and 1
when δ ∈ (0, 1).

Lemma 18.9
For every δ < 1/2 and sufficiently large n, there exists a function E :
{0, 1}n → {0, 1}2n/(1−H(δ)) that is an error correcting code with distance
δ, where H(δ) = δ log(1/δ) + (1− δ) log(1/(1− δ)).

Proof: We simply choose the function E : {0, 1}n → {0, 1}m at random for
m = 2n/(1 − H(δ)n. That is, we choose 2n random strings y1, y2, . . . , y2n

Web draft 2006-09-28 18:10

DRAFT

18.4. ERROR CORRECTING CODES: THE INTUITIVE
CONNECTION TO HARDNESS AMPLIFICATION 379

and E will map the input x ∈ {0, 1}n (which we can identify with a number
in [2n]) to the string yx.

It suffices to show that the probability that for some i < j with i, j ∈ [2n],
∆(yi, yj) < δ is less than 1. But for every string yi, the number of strings
that are of distance at most δ to it is

(
m

d δm e
)

which at most 0.99 · 2H(δ)m for
m sufficiently large (see Appendix) and so for every j > i, the probability
that yj falls in this ball is bounded by 0.99 · 2H(δ)m/2m. Since there are at
most 22n such pairs i, j, we only need to show that

0.99 · 22n 2H(δ)m

2m
< 1 .

which is indeed the case for our choice of m. �

Remark 18.10
By a slightly more clever argument, we can get rid of the constant 2 above,
and show that there exists such a code E : {0, 1}n → {0, 1}n/(1−H(δ)) (see
Exercise 6). We do not know whether this is the smallest value of m possible.

Why half? Lemma 18.9 only provides codes of distance δ for δ < 1/2

and you might wonder whether this is inherent or can we have codes of even
greater distance. It turns out we can have codes of distance 1/2 but only if we
allow m to be exponentially larger than n (i.e., m ≥ 2n/2). For every δ > 1/2,
if n is sufficiently large then there is no ECC E : {0, 1}n → {0, 1}m that has
distance δ, no matter how large m is. Both these bounds are explored in
Exercise 7.

The mere existence of an error correcting code is not sufficient for most
applications: we need to actually be able to compute them. For this we need
to show an explicit function E : {0, 1}n → {0, 1}m that is an ECC satisfying
the following properties:

Efficient encoding There is a polynomial time algorithm to compute E(x)
from x.

Efficient decoding There is a polynomial time algorithm to compute x
from every y such that ∆(y, E(x)) < ρ for some ρ. (For this to be
possible, the number ρ must be less than δ/2, where δ is the distance
of E.)

There is a very rich and still ongoing body of work dedicated to this
task, of which Section 18.5 describes a few examples.

Web draft 2006-09-28 18:10

DRAFT

380
18.4. ERROR CORRECTING CODES: THE INTUITIVE

CONNECTION TO HARDNESS AMPLIFICATION

Note 18.11 (High dimensional geometry)
While we are normally used to geometry in two or three dimensions, we can
get some intuition on error correcting codes by considering the geometry of
high dimensional spaces. Perhaps the strongest effect of high dimension is the
following: compare the cube with all sides 1 and the ball of radius 1/4. In one
dimension, the ratio between their areas is 1/(1/2) = 2, in two dimensions
it is 1/(π1/42) = 16/π, while in three dimensions it is 1/(4/3π1/43) = 48/π.
Note that as the number of dimension grows, this ratio grows exponentially
in the number of dimensions. (Similarly for any two radii r1 > r2 the volume
of the m-dimension ball of radius r1 is exponentially larger than the volume
of the r2-radius ball.)

0 1/4 3/4 1
Ball volume=1/2

0 1/4 3/4 1 0 1/4 3/4 1

 1 3/4 1/4

B.V. = π(1/4)2~3.14/16 B.V. =4/3π(1/4)3 ~ 3.14/48

This intuition lies behind the existence of an error correcting code with
distance 1/4 mapping n bit strings into m = 5n bit strings. We can have 2m/5

codewords that are all of distance at least 1/4 from one another because, also
in the Hamming distance, the volume of the radius 1/4 ball is exponentially
smaller than the volume of the cube {0, 1}n. Therefore, we can “pack” 2m/5

such balls within the cube.

Web draft 2006-09-28 18:10

DRAFT

18.4. ERROR CORRECTING CODES: THE INTUITIVE
CONNECTION TO HARDNESS AMPLIFICATION 381

x

E(x)

corrupted E(x)

x

f

E(f)

algorithm computing f
w/ prob 1-ρ

length n string function on {0,1}n =
string of length 2n

algorithm computing f perfectly

Figure 18.2: An ECC allows to map a string x to E(x) such as x can be reconstructed
from a corrupted version of E(x). The idea is to treat a function f : {0, 1}n → {0, 1}
as a string in {0, 1}2

n

, encode it using an ECC to a function f̂ . Intuitively, f̂ should be
hard on the average case if f was hard on the worst case, since an algorithm to solve f̂
with probability 1− ρ could be transformed (using the ECC’s decoding algorithm) to an
algorithm computing f on every input.

18.4.1 Local decoding

For use in hardness amplification, we need ECCs with more than just ef-
ficient encoding and decoding algorithms: we need local decoders, in other
words, decoding algorithms whose running time is polylogarithmic. Let us
see why.

Recall that we are viewing a function from {0, 1}n to {0, 1} as a string
of length 2n. To amplify its hardness, we take an ECC and map function
f to its encoding E(f). To prove that this works, it suffices to show how
to turn any circuit that correctly computes many bits of E(f) into a circuit
that correctly computes all bits of f . This is formalized using a local decoder,
which is a decoding algorithm that can compute any desired bit in the string
for f using a small number of random queries in any string y that has high
agreement with (in other words, low hamming distance to) E(f). Since we
are interested in the circuits of size poly(n)— in other words, polylogarithmic
in 2n —this must also be the running time of the local decoder.

Definition 18.12 (Local decoder)
Let E : {0, 1}n → {0, 1}m be an ECC and let ρ and q be some numbers. A
local decoder for E handling ρ errors is an algorithm L that, given random
access to a string y such that ∆(y, E(x)) < ρ for some (unknown) x ∈

Web draft 2006-09-28 18:10

DRAFT

382
18.4. ERROR CORRECTING CODES: THE INTUITIVE

CONNECTION TO HARDNESS AMPLIFICATION

x

E(x)

corrupted E(x)

local
decoder

compute x
j

Figure 18.3: A local decoder gets access to a corrupted version of E(x) and an index i
and computes from it xi (with high probability).

{0, 1}n, and an index j ∈ N, runs for polylog(m) time and outputs xj with
probability at least 2/3.

Remark 18.13
The constant 2/3 is arbitrary and can be replaced with any constant larger
than 1/2, since the probability of getting a correct answer can be amplified
by repetition.

Notice, local decoding may be useful in applications of ECC’s that have
nothing to do with hardness amplification. Even in context of CD storage,
it seems nice if we do not to have to read the entire CD just to recover one
bit of x.

Using a local decoder, we can turn our intuition above of hardness am-
plification into a proof.

Theorem 18.14
Suppose that there is an ECC with polynomial-time encoding algorithm
and a local decoding algorithm handling ρ errors (where ρ is a constant
independent of the input length). Suppose also that there is f ∈ E with
Hwrs(f)(n) ≥ S(n) for some function S : N → N satisfying S(n) ≥ n. Then,
there exists ε > 0 and g ∈ E with Hwrs(g)(n) ≥ S(εn)ε

The proof of Theorem 18.14 follows essentially from the definition, and
we will prove it for the case of a particular code later on in Theorem 18.24.

Web draft 2006-09-28 18:10

DRAFT

18.5. CONSTRUCTIONS OF ERROR CORRECTING CODES 383

18.5 Constructions of Error Correcting Codes

We now describe some explicit functions that are error correcting codes,
building up to the construction of an explicit ECC of constant distance
with polynomial-time encoding and decoding. Section 18.6 describes local
decoding algorithms for some of these codes.

18.5.1 Walsh-Hadamard Code.

For two strings x, y ∈ {0, 1}n, define x � y to be the number
∑n

i=1 xiyi

(mod 2). The Walsh-Hadamard code is the function WH : {0, 1}n → {0, 1}2n

that maps a string x ∈ {0, 1}n into the string z ∈ {0, 1}2n

where for every
y ∈ {0, 1}n, the yth coordinate of z is equal to x � y (we identify {0, 1}n

with [2n] in the obvious way).

Claim 18.15
The function WH is an error correcting code of distance 1/2.

Proof: First, note that WH is a linear function. By this we mean that if
we take x + y to be the componentwise addition of x and y modulo 2, then
WH(x+ y) = WH(x)+WH(y). Now, for every x 6= y ∈ {0, 1}n we have that
the number of 1’s in the string WH(x)+WH(y) = WH(x+y) is equal to the
number of coordinates on which WH(x) and WH(y) differ. Thus, it suffices
to show that for every z 6= 0n, at least half of the coordinates in WH(z) are
1. Yet this follows from the random subsum principle (Claim A.3) that says
that the probability for y ∈R {0, 1}n that z � y = 1 is exactly 1/2. �

18.5.2 Reed-Solomon Code

The Walsh-Hadamard code has a serious drawback: its output size is expo-
nential in the input size. By Lemma 18.9 we know that we can do much
better (at least if we’re willing to tolerate a distance slightly smaller than
1/2). To get towards explicit codes with better output, we need to make a
detour to codes with non-binary alphabet.

Definition 18.16
For every set Σ and x, y ∈ Σm, we define ∆(x, y) = 1

m |{i : xi 6= yi}|. We say
that E : Σn → Σm is an error correcting code with distance δ over alphabet
Σ if for every x 6= y ∈ Σn, ∆(E(x), E(y)) ≥ δ.

Allowing a larger alphabet makes the problem of constructing codes
easier. For example, every ECC with distance δ over the binary ({0, 1})

Web draft 2006-09-28 18:10

DRAFT

384 18.5. CONSTRUCTIONS OF ERROR CORRECTING CODES

alphabet automatically implies an ECC with the same distance over the
alphabet {0, 1, 2, 3}: just encode strings over {0, 1, 2, 3} as strings over {0, 1}
in the obvious way. However, the other direction does not work: if we take an
ECC over {0, 1, 2, 3} and transform it into a code over {0, 1} in the natural
way, the distance might grow from δ to 2δ (Exercise 8).

The Reed-Solomon code is a construction of an error correcting code
that can use as its alphabet any field F:
Definition 18.17
Let F be a field and n, m numbers satisfying n ≤ m ≤ |F|. The Reed-
Solomon code from Fn to Fm is the function RS : Fn → Fm that on input
a0, . . . , an−1 ∈ Fn outputs the string z0, . . . , zm−1 where

zj =
n−1∑
i=0

aif
i
j

and fj denotes the jth element of F under some ordering.

Lemma 18.18
The Reed-Solomon code RS : Fn → Fm has distance 1− n

m .

Proof: As in the case of Walsh-Hadamard code, the function RS is also
linear in the sense that RS(a + b) = RS(a) + RS(b) (where addition is taken
to be componentwise addition in F). Thus, as before we only need to show
that for every a 6= 0n, RS(a) has at most n coordinates that are zero. But
this immediate from the fact that a nonzero n− 1 degree polynomial has at
most n roots (see appendix). �

18.5.3 Concatenated codes

The Walsh-Hadamard code has the drawback of exponential-sized output
and the Reed-Solomon code has the drawback of a non-binary alphabet.
We now show we can combine them both to obtain a code without neither
of these drawbacks:
Definition 18.19
If RS is the Reed-Solomon code mapping Fn to Fm (for some n, m, F) and WH

is the Walsh-Hadamard code mapping {0, 1}log |F| to {0, 1}2log |F|
= {0, 1}|F|,

then the code WH ◦RS maps {0, 1}n log |F| to {0, 1}m|F| in the following way:

1. View RS as a code from {0, 1}n log |F| to Fm and WH as a code from
F to {0, 1}|F| using the canonical representation of elements in F as
strings in {0, 1}log |F|.

Web draft 2006-09-28 18:10

DRAFT

18.5. CONSTRUCTIONS OF ERROR CORRECTING CODES 385

x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

Figure 18.4: If E1,E2 are ECC’s such that E1 : {0, 1}n → Σm and E2 : σ → {0, 1}k,
then the concatenated code E : {0, 1}n → {0, 1}nk maps x into the sequence of blocks
E2(E1(x)1), . . . , E2(E1(x)m).

2. For every input x ∈ {0, 1}n log |F|, WH◦RS(x) is equal to WH(RS(x)1), . . . ,WH(RS(x)m)
where RS(x)i denotes the ith symbol of RS(x).

Note that the code WH◦RS can be computed in time polynomial in n, m
and |F|. We now analyze its distance:

Claim 18.20
Let δ1 = 1−n/m be the distance of RS and δ2 = 1/2 be the distance of WH.
Then WH ◦ RS is an ECC of distance δ1δ2.

Proof: Let x, y be two distinct strings in {0, 1}log |F|n. If we set x′ = RS(x′)
and y′ = RS(y′) then ∆(x′, y′) ≥ δ1. If we let x′′ (resp. y′′) to be the binary
string obtained by applying WH to each of these blocks, then whenever two
blocks are distinct, the corresponding encoding will have distance δ2, and so
δ(x′′, y′′) ≥ δ1δ2. �

Remark 18.21
Because for every k ∈ N, there exists a finite field |F| of size in [k, 2k] (e.g.,
take a prime in [k, 2k] or a power of two) we can use this construction
to obtain, for every n, a polynomial-time computable ECC E : {0, 1}n →
{0, 1}20n2

of distance 0.4.

Both Definition 18.19 and Lemma 18.20 easily generalize for codes other
than Reed-Solomon and Hadamard. Thus, for every two ECC’s E1 : {0, 1}n →
Σm and E2 : Σ → {0, 1}k their concatenation E2 ◦E1 is a code from {0, 1}n

to {0, 1}mk that has distance at least δ1δ2 where δ1 (resp. δ2) is the distance
of E1 (resp. E2), see Figure 18.6. In particular, using a different binary code
than WH, it is known how to use concatenation to obtain a polynomial-time
computable ECC E : {0, 1}n → {0, 1}m of constant distance δ > 0 such that
m = O(n).

Web draft 2006-09-28 18:10

DRAFT

386 18.5. CONSTRUCTIONS OF ERROR CORRECTING CODES

18.5.4 Reed-Muller Codes.

Both the Walsh-Hadamard and and the Reed-Solomon code are special cases
of the following family of codes known as Reed-Muller codes:

Definition 18.22 (Reed-Muller codes)
Let F be a finite field, and let `, d be numbers with d < |F|. The Reed Muller

code with parameters F, `, d is the function RM : F(`+d
d) → F|F|` that maps

every `-variable polynomial P over F of total degree d to the values of P on
all the inputs in F`.

That is, the input is a polynomial of the form

g(x1, . . . , x`) =
∑

i1+i2+...+i`≤`

ci1,...,i`x
i1
1 xi2

2 · · ·xi`
`

specified by the vector of
(
`+d
d

)
coefficients {ci1,...,i`} and the output is the

sequence {g(x1, . . . , x`)} for every x1, . . . , x` ∈ F.

Setting ` = 1 one obtains the Reed-Solomon code (for m = |F|), while
setting d = 1 and F = GF(2) one obtains a slight variant of the Walsh-
Hadamard code. (I.e., the code that maps every x ∈ {0, 1}n into the 2 · 2n

long string z such that for every y ∈ {0, 1}n,a ∈ {0, 1}, zy,a = x � y + a
(mod 2).)

The Schwartz-Zippel Lemma (Lemma A.23 in the Appendix) shows that
the Reed-Muller code is an ECC with distance 1 − d/|F|. Note that this
implies the previously stated bounds for the Walsh-Hadamard and Reed-
Solomon codes.

18.5.5 Decoding Reed-Solomon.

To actually use an error correcting code to store and retrieve information,
we need a way to efficiently decode a data x from its encoding E(x) even if
E(x) has been corrupted in a fraction ρ of its coordinates. We now show this
for the Reed-Solomon code, that treats x as a polynomial g, and outputs
the values of this polynomial on m inputs.

We know (see Theorem A.22 in the Appendix) that a univariate degree
d polynomial can be interpolated from any d + 1 values. Here we consider a
robust version of this procedure, whereby we wish to recover the polynomial
from m values of which ρm are “faulty” or “noisy”.

Let (a1, b1), (a2, b2), . . . , (am, bm) be a sequence of (point, value) pairs.
We say that a degree d polynomial g(x) describes this (ai, bi) if g(ai) = bi.

Web draft 2006-09-28 18:10

DRAFT

18.5. CONSTRUCTIONS OF ERROR CORRECTING CODES 387

We are interested in determining if there is a degree d polynomial g that
describes (1− ρ)m of the pairs. If 2ρm > d then this polynomial is unique
(exercise). We desire to recover it, in other words, find a degree d polynomial
g such that

g(ai) = bi for at (1− ρ)m least values of i. (8)

The apparent difficulty is in identifying the noisy points; once those
points are identified, we can recover the polynomial.

Randomized interpolation: the case of ρ < 1/(d + 1)

If ρ is very small, say, ρ < 1/(2d) then we can actually use the standard
interpolation technique: just select d + 1 points at random from the set
{(ai, bi)} and use them to interpolate. By the union bound, with probability
at least 1−ρ(d+1) > 0.4 all these points will be non-corrupted and so we will
recover the correct polynomial. (Because the correct polynomial is unique,
we can verify that we have obtained it, and if unsuccessful, try again.)

Berlekamp-Welch Procedure: the case of ρ < (m− d)/(2m)

The Berlekamp-Welch procedure works when the error rate ρ is bounded
away from 1/2; specifically, ρ < (m − d)/(2m). For concreteness, assume
m = 4d and ρ = 1/4.

1. We claim that if the polynomial g exists then there is a degree 2d
polynomial c(x) and a degree d nonzero polynomial e(x) such that

c(ai) = bie(ai) for all i. (9)

The reason is that the desired e(x) can be any nonzero degree d poly-
nomial whose roots are precisely the ai’s for which g(ai) 6= bi, and then
just let c(x) = g(x)e(x). (Note that this is just an existence argument;
we do not know g yet.))

2. Let c(x) =
∑

i≤2d cix
i and e(x) =

∑
i≤d eix

i. The ei’s and ci’s are
our unknowns, and these satisfy 4d linear equations given in (??), one
for each ai. The number of unknowns is 3d + 2, and our existence
argument in part 1 shows that the system is feasible. Solve it using
Gaussian elimination to obtain a candidate c, e.

Web draft 2006-09-28 18:10

DRAFT

388 18.6. LOCAL DECODING OF EXPLICIT CODES.

3. Let c, e are any polynomials obtained in part 2. Since they satisfy (9)
and bi = g(ai) for at least 3d values of i, we conclude that

c(ai) = g(ai)e(ai) for at least 3d values of i.

Hence c(x) − g(x)e(x) is a degree 2d polynomial that has at least 3d
roots, and hence is identically zero. Hence e divides c and that in fact
c(x) = g(x)e(x).

4. Divide c by e to recover g.

18.5.6 Decoding concatenated codes.

Decoding concatenated codes can be achieved through the natural algo-
rithm. Recall that if E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are two ECC’s
then E2◦E1 maps every string x ∈ {0, 1}n to the string E2(E1(x)1) · · ·E2(E1(x)n).
Suppose that we have a decoder for E1 (resp. E2) that can handle ρ1 (resp.
ρ2) errors. Then, we have a decoder for E2 ◦ E1 that can handle ρ2ρ1

errors. The decoder, given a string y ∈ {0, 1}mk composed of m blocks
y1, . . . , ym ∈ {0, 1}k, first decodes each block yi to a symbol zi in Σ, and
then uses the decoder of E1 to decode z1, . . . , zm. The decoder can in-
deed handle ρ1ρ2 errors since if ∆(y, E2 ◦ E1(x)) ≤ ρ1ρ2 then at most ρ1 of
the blocks of y are of distance at least ρ2 from the corresponding block of
E2 ◦ E1(x).

18.6 Local Decoding of explicit codes.

We now show local decoder algorithm (c.f. Definition 18.12) for several
explicit codes.

18.6.1 Local decoder for Walsh-Hadamard.

The following is a two-query local decoder for the Walsh-Hadamard code
that handles ρ errors for every ρ < 1/4. This fraction of errors we handle is
best possible, as it can be easily shown that there cannot exist a local (or
non-local) decoder for a binary code handling ρ errors for every ρ ≥ 1/4.

Walsh-Hadamard Local Decoder for ρ < 1/4:

Input: j ∈ [n], random access to a function f : {0, 1}n → {0, 1} such that
Pry[g(y) 6= x� y] ≤ ρ for some ρ < 1/4 and x ∈ {0, 1}n.

Web draft 2006-09-28 18:10

DRAFT

18.6. LOCAL DECODING OF EXPLICIT CODES. 389

Lx

x

Figure 18.5: Given access to a corrupted version of a polynomial P : F` → F, to compute
P (x) we pass a random line Lx through x, and use Reed-Solomon decoding to recover the
restriction of P to the line Lx.

Output: A bit b ∈ {0, 1}. (Our goal: xj = b.)

Operation: Let ej be the vector in {0, 1}n that is equal to 0 in all the
coordinates except for the jth and equal to 1 on the jth coordinate.
The algorithm chooses y ∈R {0, 1}n and outputs f(y) + f(y + ej)
(mod 2) (where y + ej denotes componentwise addition modulo 2, or
equivalently, flipping the jth coordinate of y).

Analysis: Since both y and y + ej are uniformly distributed (even though
they are dependent), the union bound implies that with probability
1 − 2ρ, f(y) = x � y and f(y + ej) = x � (y + ej). But by the
bilinearity of the operation �, this implies that f(y) + f(y + ej) =
x � y + x � (y + ej) = 2(x � y) + x � ej = x � ej (mod 2). Yet,
x� ej = xj and so with probability 1− 2ρ, the algorithm outputs the
right value.

Remark 18.23
This algorithm can be modified to locally compute not just xi = x � ej

but in fact the value x � z for every z ∈ {0, 1}n. Thus, we can use it to
compute not just every bit of the original message x but also every bit of
the uncorrupted codeword WH(x). This property is sometimes called the
self correction property of the Walsh-Hadamard code.

18.6.2 Local decoder for Reed-Muller

We now show a local decoder for the Reed-Muller code. (Note that Defini-
tion 18.12 can be easily extended to the case of codes, such as Reed-Muller,

Web draft 2006-09-28 18:10

DRAFT

390 18.6. LOCAL DECODING OF EXPLICIT CODES.

that use non-binary alphabet.) It runs in time polynomial in ` and d, which,
for an appropriate setting of the parameters, is polylogarithmic in the output
length of the code. Convention: Recall that the input to a Reed-Muller
code is an `-variable d-degree polynomial P over some field F. When we
discussed the code before, we assumed that this polynomial is represented
as the list of its coefficients. However, below it will be more convenient for
us to assume that the polynomial is represented by a list of its values on
its first

(
d+`

`

)
inputs according to some canonical ordering. Using standard

interpolation, we still have a polynomial-time encoding algorithm even given
this representation. Thus, it suffices to show an algorithm that, given access
to a corrupted version of P , computes P (x) for every x ∈ F`

Reed-Muller Local Decoder for ρ < (1− d/|F|)/4− 1/|F|.

Input: A string x ∈ F`, random access to a function f such that Prx∈F` [P (x) 6=
f(x)] < ρ, where P : F` → F is an `-variable degree-d polynomial.

Output: y ∈ F (Goal: y = P (x).)

Operation: 1. Let Lx, be a random line passing through x. That is
Lx = {x + ty : t ∈ F} for a random y ∈ F`.

2. Query f on all the |F| points of Lx to obtain a set of points
{(t, f(x + ty))} for every t ∈ F.

3. Run the Reed-Solomon decoding algorithm to obtain the uni-
variate polynomial Q : F → F such that Q(t) = f(x + ty) for the
largest number of t’s (see Figure 18.5).3

4. Output Q(0).

Analysis: For every d-degree `-variable polynomial P , the univariate poly-
nomial Q(t) = P (x+ ty) has degree at most d. Thus, to show that the
Reed-Solomon decoding works, it suffices to show that with probabil-
ity at least 1/2, the number of points on z ∈ Lx for which f(z) 6= P (z)
is less than (1 − d/|F|)/2. Yet, for every t 6= 0, the point x + ty is
uniformly distributed (independently of x), and so the expected num-
ber of points on Lx for which f and P differ is at most ρ|F| + 1.
By Markov inequality, the probability that there will be more than
2ρ|F|+2 < (1−d/|F|)|F|/2 such points is at most 1/2 and hence Reed-
Solomon decoding will be successful with probability 1/2. In this case,

3If ρ is sufficiently small, (e.g., ρ < 1/(10d)), then we can use the simpler randomized
Reed-Solomon decoding procedure described in Section 18.5.5.

Web draft 2006-09-28 18:10

DRAFT

18.6. LOCAL DECODING OF EXPLICIT CODES. 391

x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

E1 decoder

E2 decoder E2 decoder

q1 queries

O(q2 log q1) queries

Figure 18.6: To locally decode a concatenated code E2 ◦ E1 we run the decoder for E1

using the decoder for E2. The crucial observation is that if y is within ρ1ρ2 distance to
E2 ◦ E1(x) then at most a ρ1 fraction of the blocks in y are of distance more than ρ2 the
corresponding block in E2 ◦ E1(x).

we obtain the correct polynomial q that is the restriction of Q to the
line Lx and hence q(0) = P (x).

18.6.3 Local decoding of concatenated codes.

Given two locally decodable ECC’s E1 and E2, we can locally decode their
concatenation E1◦E2 by the natural algorithm. Namely, we run the decoder
for E1, but answer its queries using the decoder for E2 (see Figure 18.6).

Local decoder for concatenated code: ρ < ρ1ρ2

The code: If E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are codes with
decoders of q1 (resp. q2) queries with respect to ρ1 (resp. ρ2) errors,
let E = E2◦E1 be the concatenated code mapping {0, 1}n to {0, 1}mk.

Input: An index i ∈ [n], random access to a string y ∈ {0, 1}km such that
∆(y, E1 ◦ E2(x)) < ρ1ρ2 for some x ∈ {0, 1}n.

Output: b ∈ {0, 1}n (Goal: b = xi)

Operation: Simulate the actions of the decoder for E1, whenever the de-
coder needs access to the jth symbol of E1(x), use the decoder of E2

with O(q2 log q1 log |Σ|) queries applied to the jth block of y to recover
all the bits of this symbol with probability at least 1− 1/(2q1).

Web draft 2006-09-28 18:10

DRAFT

392 18.6. LOCAL DECODING OF EXPLICIT CODES.

Analysis: The crucial observation is that at most a ρ1 fraction of the length
k blocks in y can be of distance more than ρ2 from the corresponding
blocks in E2◦E1(x). Therefore, with probability at least 0.9, all our q1

answers to the decoder of E1 are consistent with the answer it would
receive when accessing a string that is of distance at most ρ1 from a
codeword of E1.

18.6.4 Putting it all together.

We now have the ingredients to prove our second main theorem of this
chapter: transformation of a hard-on-the-worst-case function into a function
that is “mildly” hard on the average case.

Theorem 18.24 (Worst-case hardness to mild hardness)
Let S : N → N and f ∈ E such that Hwrs(f)(n) ≥ S(n) for every n. Then there exists
a function g ∈ E and a constant c > 0 such that H0.99

avg (g)(n) ≥ S(n/c)/nc for every
sufficiently large n.

Proof: For every n, we treat the restriction of f to {0, 1}n as a string
f ′ ∈ {0, 1}N where N = 2n. We then encode this string f ′ using a suitable
error correcting code E : {0, 1}N → {0, 1}NC

for some constant C > 1. We
will define the function g on every input x ∈ {0, 1}Cn to output the xth

coordinate of E(f ′).4 For the function g to satisfy the conclusion of the
theorem, all we need is for the code E to satisfy the following properties:

1. For every x ∈ {0, 1}N , E(x) can be computed in poly(N) time.

2. There is a local decoding algorithm for E that uses polylog(N) running
time and queries and can handle a 0.01 fraction of errors.

But this can be achieved using a concatenation of a Walsh-Hadamard
code with a Reed-Muller code of appropriate parameters:

1. Let RM denote the Reed-Muller code with the following parameters:

• The field F is of size log5 N .

• The number of variables ` is equal to log N/ log log N .
4By padding with zeros as necessary, we can assume that all the inputs to g are of

length that is a multiple of C.

Web draft 2006-09-28 18:10

DRAFT

18.6. LOCAL DECODING OF EXPLICIT CODES. 393

• The degree is equal to log2 N .

RM takes an input of length at least (d
`)

` > N (and so using padding
we can assume its input is {0, 1}n). Its output is of size |F|` ≤ poly(n).
Its distance is at least 1− 1/ log N .

2. Let WH denote the Walsh-Hadamard code from {0, 1}log F = {0, 1}5 log log N

to {0, 1}|F| = {0, 1}log5 N .

Our code will be WH ◦ RM. Combining the local decoders for Walsh-
Hadamard and Reed-Muller we get the desired result. �

Combining Theorem 18.24 with Yao’s XOR Lemma (Theorem 18.2), we
get the following corollary:

Corollary 18.25
Let S : N → N and f ∈ E with Hwrs(f)(n) ≥ S(n) for every n. Then, there

exists an S(
√

`)ε-pseudorandom generator for some constant ε > 0.

Proof: By Theorem 18.24, under this assumption there exists a function
g ∈ E with H0.99

avg (g)(n) ≥ S′(n) = S(n)/poly(n), where we can assume
S′(n) ≥

√
S(n) for sufficiently large n (otherwise S is polynomial and the

theorem is trivial). Consider the function g⊕k where k = c log S′(n) for a
sufficiently small constant c. By Yao’s XOR Lemma, on inputs of length
kn, it cannot be computed with probability better than 1/2 + 2−cS′(n)/1000

by circuits of size S′(n). Since S(n) ≤ 2n, kn <
√

n, and hence we get that
Havg(g⊕k) ≥ Sc/2000. �

As already mentioned, this implies the following corollaries:

1. If there exists f ∈ E such that Hwrs(f) ≥ 2nΩ(1)
then BPP ⊆ QuasiP.

2. If there exists f ∈ E such that Hwrs(f) ≥ nω(1) then BPP ⊆ SUBEXP.

However, Corollary 18.25 is still not sufficient to show that BPP = P
under any assumption on the worst-case hardness of some function in E. It
only yields an S(

√
`)Ω(1)-pseudorandom generator, while what we need is an

S(Ω(`))Ω(1)-pseudorandom generator.

Web draft 2006-09-28 18:10

DRAFT

394 18.7. LIST DECODING

18.7 List decoding

Our approach to obtain stronger worst-case to average-case reduction will
be to bypass the XOR Lemma, and use error correcting codes to get di-
rectly from worst-case hardness to a function that is hard to compute with
probability slightly better than 1/2. However, this idea seems to run into a
fundamental difficulty: if f is worst-case hard, then it seems hard to argue
that the encoding of f , under any error correcting code is hard to compute
with probability 0.6. The reason is that any error-correcting code has to
have distant at most 1/2, which implies that there is no decoding algorithm
that can recover x from E(x) if the latter was corrupted in more than a
1/4 of its locations. Indeed, in this case there is not necessarily a unique
codeword closest to the corrupted word. For example, if E(x) and E(x′)
are two codewords of distance 1/2, let y be the string that is equal to E(x)
on the first half of the coordinates and equal to E(x′) on the second half.
Given y, how can a decoding algorithm know whether to return x or x′?

This seems like a real obstacle, and indeed was considered as such in
many contexts where ECC’s were used, until the realization of the impor-
tance of the following insight: “If y is obtained by corrupting E(x) in, say,
a 0.4 fraction of the coordinates (where E is some ECC with good enough
distance) then, while there may be more than one codeword within distance
0.4 to y, there can not be too many such codewords.”

Theorem 18.26 (Johnson Bound)
If E : {0, 1}n → {0, 1}m is an ECC with distance at least 1/2 − ε, then for
every x ∈ {0, 1}m, and δ ≥

√
ε, there exist at most 1/(2δ2) vectors y1, . . . , y`

such that ∆(x, yi) ≤ 1/2 − δ for every i ∈ [`].

Proof: Suppose that x, y1, . . . , y` satisfy this condition, and define ` vectors
z1, . . . , z` in Rm as follows: for every i ∈ [`] and k ∈ [m], set zi,k to equal
+1 if yk = xk and set it to equal −1 otherwise. Under our assumptions, for
every i ∈ [`],

m∑
k=1

zi,k ≥ 2δm , (10)

since zi agrees with x on an 1/2 + δ fraction of its coordinates. Also, for
every i 6= j ∈ [`],

〈zi, zj〉 =
m∑

k=1

zi,kzj,k ≤ 2εm ≤ 2δ2m (11)

Web draft 2006-09-28 18:10

DRAFT

18.7. LIST DECODING 395

since E is a code of distance at least 1/2 − ε. We will show that (10) and
(11) together imply that ` ≤ 1/(2δ2).

Indeed, set w =
∑`

i=1 zi. On one hand, by (11)

〈w,w〉 =
∑̀
i=1

〈zi, zi〉+
∑
i6=j

〈zi, zj〉 ≤ `m + `22δ2m .

On the other hand, by (10),
∑

k wk =
∑

i,j zi,j ≥ 2δm` and hence

〈w,w〉 ≥ |
∑

k

wk|2/m ≥ 4δ2m`2 ,

since for every c, the vector w ∈ Rm with minimal two-norm satisfying∑
k wk = c is the uniform vector (c/m, c/m, . . . , c/m). Thus 4δ2m`2 ≤

`m + 2`2δ2m, implying that ` ≤ 1/(2δ2). �

18.7.1 List decoding the Reed-Solomon code

In many contexts, obtaining a list of candidate messages from a corrupted
codeword can be just as good as unique decoding. For example, we may have
some outside information on which messages are likely to appear, allowing
us to know which of the messages in the list is the correct one. However,
to take advantage of this we need an efficient algorithm that computes this
list. Such an algorithm was discovered in 1996 by Sudan for the popular
and important Reed-Solomon code. It can recover a polynomial size list of
candidate codewords given a Reed-Solomon codeword that was corrupted in
up to a 1 − 2

√
d/|F| fraction of the coordinates. Note that this tends to 1

as |F|/d grows, whereas the Berlekamp-Welch unique decoding algorithm of
Section 18.5.5 gets “stuck” when the fraction of errors surpasses 1/2.

On input a set of data points {(ai, bi)}m
i=1 in F2, Sudan’s algorithm re-

turns all degree d polynomials g such that the number of i’s for which
g(ai) = bi is at least 2

√
d/|F|m. It relies on the following observation:

Lemma 18.27
For every set of m data pairs (a1, b1), . . . , (am, bm), there is a bivariate poly-
nomial Q(z, x) of degree at most d

√
me+1 in z and x such that Q(bi, ai) = 0

for each i = 1, . . . ,m. Furthermore, there is a polynomial-time algorithm to
construct such a Q.

Web draft 2006-09-28 18:10

DRAFT

396 18.8. LOCAL LIST DECODING: GETTING TO BPP = P.

Proof: Let k = d
√

me + 1. Then the unknown bivariate polynomial
Q =

∑k
i=0

∑k
j=0 Qijz

ixj has (k + 1)2 coefficients and these coefficients are
required to satisfy m linear equations of the form:

k∑
i=0

k∑
j=0

Qij(bt)i(at)j for t = 1, 2, . . . ,m.

Note that the at’s, bt’s are known and so we can write down these equations.
Since the system is homogeneous and the number of unknowns exceeds

the number of constraints, it has a nonzero solution. Furthermore this so-
lution can be found in polynomial time. �

Lemma 18.28
Let d be any integer and k > (d + 1)(d

√
me + 1). If p(x) is a degree d

polynomial that describes k of the data pairs, then z − p(x) divides the
bivariate polynomial Q(z, x) described in Lemma 18.27.

Proof: By construction, Q(bt, at) = 0 for every data pair (at, bt). If p(x)
describes this data pair, then Q(p(at), at) = 0. We conclude that the uni-
variate polynomial Q(p(x), x) has at least k roots, whereas its degree is
d(d

√
ne + 1) < k. Hence Q(p(x), x) = 0. By the division algorithm for

polynomials, Q(p(x), x) is exactly the remainder when Q(z, x) is divided by
(z − p(x)). We conclude that z − p(x) divides Q(z, x). �

Now it is straightforward to describe Sudan’s list decoding algorithm.
First, find Q(z, x) by the algorithm of Lemma 18.27. Then, factor it using a
standard algorithm for bivariate factoring (see [?]). For every factor of the
form (z − p(x)), check by direct substitution whether or not p(x) describes
2
√

d/|F|m data pairs. Output all such polynomials.

18.8 Local list decoding: getting to BPP = P.

Analogously to Section 18.4.1, to actually use list decoding for hardness
amplification, we need to provide local list decoding algorithms for the codes
we use. Fortunately, such algorithms are known for the Walsh-Hadamard
code, the Reed-Muller code, and their concatenation.

Definition 18.29 (Local list decoder)
Let E : {0, 1}n → {0, 1}m be an ECC and let ρ > 0 and q be some numbers.
An algorithm L is called a local list decoder for E handling ρ errors, if for
every x ∈ {0, 1}n and y ∈ {0, 1}m satisfying ∆(E(x), y) ≤ ρ, there exists a

Web draft 2006-09-28 18:10

DRAFT

18.8. LOCAL LIST DECODING: GETTING TO BPP = P. 397

number i0 ∈ [poly(n/ε)] such that for every j ∈ [m], on inputs i0, j and with
random access to y, L runs for poly(log(m)/ε) time and outputs xj with
probability at least 2/3.

Remark 18.30
One can think of the number i0 as the index of x in the list of poly(n/ε)
candidate messages output by L. Definition 18.29 can be easily generalized
to codes with non-binary alphabet.

18.8.1 Local list decoding of the Walsh-Hadamard code.

It turns out we already encountered a local list decoder for the Walsh-
Hadamard code: the proof of the Goldreich-Levin Theorem (Theorem 10.14)
provided an an algorithm that given access to a “black box” that computes
the function y 7→ x�y (for x, y ∈ {0, 1}n) with probability 1/2+ ε, computes
a list of values x1, . . . , xpoly(n/ε) such that xi0 = x for some i0. In the
context of that theorem, we could find the right value of x from that list by
checking it against the value f(x) (where f is a one-way permutation). This
is a good example for how once we have a list decoding algorithm, we can
use outside information to narrow the list down.

18.8.2 Local list decoding of the Reed-Muller code

We now present an algorithm for local list decoding of the Reed-Muller code.
Recall that the codeword of this code is the list of evaluations of a d-degree
`-variable polynomial P : F` → F. The local decoder for Reed-Muller gets
random access to a corrupted version of P and two inputs: an index i and
x ∈ F`. Below we describe such a decoder that runs in poly(d, `, |F|) and
outputs P (x) with probability at least 0.9 assuming that i is equal to the
“right” index i0. Note: To be a valid local list decoder, given the index i0,
the algorithm should output P (x) with high probability for every x ∈ F`.
The algorithm described below is only guaranteed to output the right value
for most (i.e., a 0.9 fraction) of the x’s in F`. We transform this algorithm to
a valid local list decoder by combining it with the Reed-Muller local decoder
described in Section 18.6.2.

Reed-Muller Local List Decoder for ρ < 1− 10
√

d/|F|

Inputs: • Random access to a function f such that Prx∈F` [P (x) =
f(x)] > 10

√
d/|F| where P : F` → F is an `-variable d-degree

polynomial. We assume |F| > d4 and that both d > 1000. (This
can always be ensured in our applications.)

Web draft 2006-09-28 18:10

DRAFT

398 18.8. LOCAL LIST DECODING: GETTING TO BPP = P.

• An index i0 ∈ [|F|`+1] which we interpret as a pair (x0, y0) with
x0 ∈ F`, y0 ∈ F,

• A string x ∈ F`.

Output: y ∈ F (For some pair (x0, y0), it should hold that P (x) = y with
probability at least 0.9 over the algorithm’s coins and x chosen at ran-
dom from F`.)

Operation: 1. Let Lx,x0 be a random degree 3 curve passing through x,
x0. That is, we find a random degree 3 univariate polynomial
q : F → F` such that q(0) = x and q(r) = x0 for some random
r ∈ F. (See Figure 18.7.)

2. Query f on all the |F| points of Lx,x0 to obtain the set S of the
|F| pairs {(t, f(q(t)) : t ∈ F)}.

3. Run Sudan’s Reed-Solomon list decoding algorithm to obtain
a list g1, . . . , gk of all degree 3d polynomials that have at least
8
√

d|F| agreement with the pairs in S.

4. If there is a unique i such that gi(r) = y0 then output gi(0).
Otherwise, halt without outputting anything.

Lx,x0

x

x0

Figure 18.7: Given access to a corrupted version of a polynomial P : F` → F and some
index (x0, y0), to compute P (x) we pass a random degree-3 curve Lx,x0 through x and x0,
and use Reed-Solomon list decoding to recover a list of candidates for the restriction of P
to the curve Lx,x0 . If only one candidate satisfies that its value on x0 is y0, then we use
this candidate to compute P (x).

We will show that for every f : F` → F that agrees with an `-variable
degree d polynomial on a 10

√
d/|F| fraction of its input, and every x ∈ F`,

if x0 is chosen at random from F` and y0 = P (x0), then with probability at

Web draft 2006-09-28 18:10

DRAFT

18.8. LOCAL LIST DECODING: GETTING TO BPP = P. 399

least 0.9 (over the choice of x0 and the algorithm’s coins) the above decoder
will output P (x). By a standard averaging argument, this implies that there
exist a pair (x0, y0) such that given this pair, the algorithm outputs P (x)
for a 0.9 fraction of the x’s in F`.

Let x ∈ F`, if x0 is chosen randomly in F` and y0 = P (x0) then the
following

For every x ∈ F`, the following fictitious algorithm can be easily seen
to have an identical output to the output of our decoder on the inputs x, a
random x0 ∈R F` and y0 = P (x0):

1. Choose a random degree 3 curve L that passes through x. That is,
L = {q(t) : t ∈ F} where q : F → F` is a random degree 3 polynomial
satisfying q(0) = x.

2. Obtain the list g1, . . . , gm of all univariate polynomials over F such
that for every i, there are at least 6

√
d|F| values of t such that gi(t) =

f(q(t)).

3. Choose a random r ∈ F. Assume that you are given the value y0 =
P (q(r)).

4. If there exists a unique i such that gi(r) = y0 then output gi(0).
Otherwise, halt without an input.

Yet, this fictitious algorithm will output P (x) with probability at least
0.9. Indeed, since all the points other than x on a random degree 3 curve
passing through x are pairwise independent, Chebyshev’s inequality implies
that with probability at least 0.99, the function f will agree with the poly-
nomial P on at least 8

√
d|F| points on this curve (this uses the fact that√

d/|F| is smaller than 10−6). Thus the list g1, . . . , gm we obtain in Step 2
contains the polynomial g : F → F defined as g(t) = P (q(t)). We leave it as
Exercise 9 to show that there can not be more than

√
|F |/4d polynomials in

this list. Since two 3d-degree polynomials can agree on at most 3d+1 points,

with probability at least (3d+1)
√
|F |/4d

|F| < 0.01, if we choose a random r ∈ F,
then g(r) 6= gi(r) for every gi 6= g in this list. Thus, with this probability,
we will identify the polynomial g and output the value g(0) = P (x). �

18.8.3 Local list decoding of concatenated codes.

If E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are two codes that are locally
list decodable then so is the concatenated code E2 ◦E1 : {0, 1}n → {0, 1}mk.

Web draft 2006-09-28 18:10

DRAFT

400 18.8. LOCAL LIST DECODING: GETTING TO BPP = P.

As in Section 18.6.3, the idea is to simply run the local decoder for E1 while
answering its queries using the decoder of E2. More concretely, assume that
the decoder for E1 takes an index in the set I1, uses q1 queries, and can
handle 1 − ε1 errors, and that I2, q2 and ε2 are defined analogously. Our
decoder for E2 ◦E1 will take a pair of indices i1 ∈ I1 and i2 ∈ I2 and run the
decoder for E1 with the index i1, and whenever this decoder makes a query
answer it using the decoder E2 with the index i2. (See Section 18.6.3.) We
claim that this decoder can handle 1/2 − ε1ε2|I2| number of errors. Indeed,
if y agrees with some codeword E2 ◦ E1(x) on an ε1ε2|I2| fraction of the
coordinates then there are ε1|I2| blocks on which it has at least 1/2 + ε2
agreement with the blocks this codeword. Thus, by an averaging argument,
there exists an index i2 such that given i2, the output of the E2 decoder
agrees with E1(x) on ε1 symbols, implying that there exists an index i1 such
that given (i1, i2) and every coordinate j, the combined decoder will output
xj with high probability.

18.8.4 Putting it all together.

As promised, we can use local list decoding to transform a function that
is merely worst-case hard into a function that cannot be computed with
probability significantly better than 1/2:

Theorem 18.31 (Worst-case hardness to strong hardness)
Let S : N → N and f ∈ E such that Hwrs(f)(n) ≥ S(n) for every n. Then there exists

a function g ∈ E and a constant c > 0 such that Havg(g)(n) ≥ S(n/c)1/c for every
sufficiently large n.

Proof sketch: As in Section 18.6.4, for every n, we treat the restriction
of f to {0, 1}n as a string f ′ ∈ {0, 1}N where N = 2n and encode it using
the concatenation of a Reed-Muller code with the Walsh-Hadamard code.
For the Reed-Muller code we use the following parameters:

• The field F is of size S(n)1/100. 5

• The degree d is of size log2 N .

5We assume here that S(n) > log N1000 and that it can be computed in 2O(n) time.
These assumptions can be removed by slightly complicating the construction (namely,
executing it while guessing that S(n) = 2k, and concatenating all the results.)

Web draft 2006-09-28 18:10

DRAFT

18.8. LOCAL LIST DECODING: GETTING TO BPP = P. 401

• The number of variables ` is 2 log N/ log S(n).

The function g is obtained by applying this encoding to f . Given a
circuit of size S(n)1/100 that computes g with probability better than 1/2 +
1/S(n)1/50, we will be able to transform it, in S(n)O(1) time, to a circuit
computing f perfectly. We hardwire the index i0 to this circuit as part of
its description. �

What have we learned?

• Yao’s XOR Lemma allows to amplify hardness by transforming a Boolean
function with only mild hardness (cannot be computed with say 0.99 success)
into a Boolean function with strong hardness (cannot be computed with 0.51
success).

• An error correcting code is a function that maps every two strings into a pair
of strings that differ on many of their coordinates. An error correcting code
with a local decoding algorithm can be used to transform a function hard in
the worst-case into a function that is mildly hard on the average case.

• A code over the binary alphabet can have distance at most 1/2. A code with
distance δ can be uniquely decoded up to δ/2 errors. List decoding allows to
a decoder to handle almost a δ fraction of errors, at the expense of returning
not a single message but a short list of candidate messages.

• We can transform a function that is merely hard in the worst case to a function
that is strongly hard in the average case using the notion of local list decoding
of error correcting codes.

Chapter notes and history

many attributions still missing.

Impagliazzo and Wigderson [?] were the first to prove that BPP = P if
there exists f ∈ E such that Hwrs(f) ≥ 2Ω(n) using a derandomized version of
Yao’s XOR Lemma. However, the presentation here follows Sudan, Trevisan,
and Vadhan [?], who were the first to point the connection between local
list decoding and hardness amplification, and gave (a variant of) the Reed-
Muller local list decoding algorithm described in Section 18.8. They also
showed a different approach to achieve the same result, by first showing

Web draft 2006-09-28 18:10

DRAFT

402 18.8. LOCAL LIST DECODING: GETTING TO BPP = P.

that the NW generator and a mildly hard function can be used to obtain
from a short random seed a distribution that has high pseudoentropy, which
is then converted to a pseudorandom distribution via a randomness extractor
(see Chapter 17).

The question raised in Problem 5 is treated in O’Donnell [?], where a
hardness amplification lemma is given for NP. For a sharper result, see
Healy, Vadhan, and Viola [?].

Exercises

§1 Let X1, . . . , Xn be independent random variables such that Xi is equal
to 1 with probability 1 − δ and equal to 0 with probability δ. Let
X =

∑k
i=1 Xi (mod 2). Prove that Pr[X = 1] = 1/2 + (1− 2δ)k.

Hint:DefineYi=(−1)
Xi

andY=∏k
i=1Yi.Then,usethefact

thattheexpectationofaproductofindependentrandomvariables
istheproductoftheirexpectations.

§2 Prove Farkas’ Lemma: if C,D ⊆ Rm are two convex sets then there
exists a vector z ∈ Rm and a number a ∈ R such that

x ∈ C ⇒ 〈x, z〉 ≥ a

y ∈ D ⇒ 〈y, z〉 ≤ a

Hint:StartbyprovingthisinthecasethatCandDareε-
separated,whichmeansthatforsomeε>0,‖x−y‖2≥εforevery
x∈Candy∈D.Inthiscaseyoucantakeztobetheshortest
vectoroftheformx−yforx∈Candy∈D.

§3 Prove the Min-Max Theorem (see Note 18.7) using Farkas’ Lemma.

§4 Prove the duality theorem for linear programming using Farkas’ Lemma.
That is, prove that for every m × n matrix A, and vectors c ∈ Rn,
b ∈ Rn,

max
x∈Rns.t.
Ax≤b
x≥0

〈x, c〉 = min
y∈Rms.t.
A†y≥c
y≥0

〈y,b〉

where A† denotes the transpose of A and for two vectors u,v we say
that u ≥ v if ui ≥ vi for every i.

Web draft 2006-09-28 18:10

DRAFT

18.8. LOCAL LIST DECODING: GETTING TO BPP = P. 403

§5 Suppose we know that NP contains a function that is weakly hard for
all polynomial-size circuits. Can we use the XOR Lemma to infer the
existence of a strongly hard function in NP? Why or why not?

§6 For every δ < 1/2 and sufficiently large n, prove that there exists a
function E : {0, 1}n → {0, 1}n/(1−H(δ)) that is an error correcting code
with distance δ, where H(δ) = δ log(1/δ) + (1− δ) log(1/(1− δ)).

Hint:Useagreedystrategy,toselectthecodewordsofEoneby
one,neveraddingacodewordthatiswithindistanceδtoprevious
ones.Whenwillyougetstuck?

§7 Show that for every E : {0, 1}n → {0, 1}m that is an error correcting
code of distance 1/2, 2n < 10

√
n. Show if E is an error correcting code

of distance δ > 1/2, then 2n < 10/(δ − 1/2).

§8 Let E : {0, 1}n → {0, 1}m be a δ-distance ECC. Transform E to a code
E′ : {0, 1, 2, 3}n/2 → {0, 1, 2, 3}m/2 in the obvious way. Show that E′

has distance δ. Show that the opposite direction is not true: show an
example of a δ-distance ECC E′ : {0, 1, 2, 3}n/2 → {0, 1, 2, 3}m/2 such
that the corresponding binary code has distance 2δ.

§9 Let f : F → F be any function. Suppose integer d ≥ 0 and number ε

satisfy ε > 2
√

d
|F| . Prove that there are at most 2/ε degree d polyno-

mials that agree with f on at least an ε fraction of its coordinates.

Hint:Thefirstpolynomialdescribesfinanεfractionofpoints
sayS1,thesecondpolynomialdescribesfinε−d/|F|fractionof
pointsS2whereS1∩S2=∅,etc.

§10 (Linear codes) We say that an ECC E : {0, 1}n → {0, 1}m is linear if
for every x, x′ ∈ {0, 1}n, E(x + x′) = E(x) + E(x′) where + denotes
componentwise addition modulo 2. A linear ECC E can be described
by an m × n matrix A such that (thinking of x as a column vector)
E(x) = Ax for every x ∈ {0, 1}n.

(a) Prove that the distance of a linear ECC E is equal to the mini-
mum over all nonzero x ∈ {0, 1}n of the fraction of 1’s in E(x).

(b) Prove that for every δ > 0, there exists a linear ECC E : {0, 1}n →
{0, 1}1.1n/(1−H(δ)) with distance δ, where H(δ) = δ log(1/δ)+(1−
δ) log(1/(1− δ))¿

Web draft 2006-09-28 18:10

DRAFT

404 18.8. LOCAL LIST DECODING: GETTING TO BPP = P.

Hint:Usetheprobabilisticmethod-showthisholdsforarandom
matrix.

(c) Prove that for some δ > 0 there is an ECC E : {0, 1}n →
{0, 1}poly(n) of distance δ with polynomial-time encoding and de-
coding mechanisms. (You need to know about the field GF(2k)
to solve this, see the appendix.)

Hint:UsetheconcatenationofReed-SolomonoverGF(2
k
)with

theWalsh-Hadamardcode.

(d) We say that a linear code E : {0, 1}n → {0, 1}m is ε-biased if
for every non-zero x ∈ {0, 1}n, the fraction of 1’s in E(x) is
between 1/2 − ε and 1/2 + ε. Prove that for every ε > 0, there
exists an ε-biased linear code E : {0, 1}n → {0, 1}poly(n/ε) with
a polynomial-time encoding algorithm.

Web draft 2006-09-28 18:10

	Hardness Amplification and Error Correcting Codes
	Hardness and Hardness Amplification.
	Mild to strong hardness: Yao's XOR Lemma.
	Proof of Yao's XOR Lemma using Impagliazzo's Hardcore Lemma.

	Proof of Impagliazzo's Lemma
	Error correcting codes: the intuitive connection to hardness amplification
	Local decoding

	Constructions of Error Correcting Codes
	Walsh-Hadamard Code.
	Reed-Solomon Code
	Concatenated codes
	Reed-Muller Codes.
	Decoding Reed-Solomon.
	Randomized interpolation: the case of < 1/(d+1)
	Berlekamp-Welch Procedure: the case of < (m-d)/(2m)

	Decoding concatenated codes.

	Local Decoding of explicit codes.
	Local decoder for Walsh-Hadamard.
	Local decoder for Reed-Muller
	Local decoding of concatenated codes.
	Putting it all together.

	List decoding
	List decoding the Reed-Solomon code

	Local list decoding: getting to BPP =P.
	Local list decoding of the Walsh-Hadamard code.
	Local list decoding of the Reed-Muller code
	Local list decoding of concatenated codes.
	Putting it all together.

	Chapter notes and history
	Exercises

