
DRAFT

Chapter 6

Circuits

“One might imagine that P 6= NP, but SAT is tractable in the
following sense: for every ` there is a very short program that
runs in time `2 and correctly treats all instances of size `. ”
Karp and Lipton, 1982

This chapter investigates a model of computation called a Boolean cir-
cuit, which is a generalization of Boolean formulae and a rough formalization
of the familiar ”silicon chip.” Here are some motivations for studying it.

First, it is a natural model for nonuniform computation, by which we
mean that a different ”algorithm” is allowed for each input size. By contrast,
our standard model thus far was uniform computation: the same Turing
Machine (or algorithm) solves the problem for inputs of all (infinitely many)
sizes. Nonuniform computation crops up often in complexity theory, and also
in the rest of this book.

Second, in principle one can separate complexity classes such as P and
NP by proving lowerbounds on circuit size. This chapter outlines why such
lowerbounds ought to exist. In the 1980s, researchers felt boolean circuits are
mathematically simpler than the Turing Machine, and thus proving circuit
lowerbounds may be the right approach to separating complexity classes.
Chapter 13 describes the partial successes of this effort and Chapter 23
describes where it is stuck.

This chapter defines the class P/poly of languages computable by polynomial-
sized boolean circuits and explores its relation to NP. We also encounter
some interesting subclasses of P/poly, including NC, which tries to capture
computations that can be efficiently performed on highly parallel comput-
ers. Finally, we show a (yet another) characterization of the polynomial
hierarchy, this time using exponential-sized circuits of constant depth.
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6.1 Boolean circuits
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Figure 6.1: A circuit C computing the XOR function (i.e., C(x1, x2) = 1 iff x1 6= x2).

A Boolean circuit is a just a diagram showing how to derive an output
from an input by a combination of the basic Boolean operations of OR (∨),
AND (∧) and NOT (¬). For example, Figure 6.1 shows a circuit computing
the XOR function. Here is the formal definition.

Definition 6.1 (Boolean circuits)
For every n, m ∈ N a Boolean circuit C with n inputs and m outputs1is a directed
acyclic graph. It contains n nodes with no incoming edges; called the input nodes
and m nodes with no outgoing edges, called the output nodes. All other nodes
are called gates and are labeled with one of ∨, ∧ or ¬ (in other words, the logical
operations OR, AND, and NOT). The ∨ and ∧ nodes have fanin (i.e., number of
incoming edges) of 2 and the ¬ nodes have fanin 1. The size of C, denoted by |C|,
is the number of nodes in it.
The circuit is called a Boolean formula if each node has at most one outgoing edge.

The boolean circuit in the above definition implements a function from
{0, 1}n to {0, 1}m. This may be clear intuitively to most readers (especially
those who have seen circuits in any setting) but here is the proof. Assume
that the n input nodes and m output nodes are numbered in some canonical
way. Thus each n-bit input can be used to assigned a value in {0, 1} to each
input node. Next, since the graph is acyclic, we can associate an integral
depth to each node (using breadth-first search, or the so-called topological
sorting of the graph) such that each node has incoming edges only from
nodes of higher depth. Now each node can be assigned a value from {0, 1}
in a unique way as follows. Process the nodes in decreasing order of depth.
For each node, examine its incoming edges and the values assigned to the
nodes at the other end, and then apply the boolean operation (∨,∧, or ¬)
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that this node is labeled with on those values. This gives a value to each
node; the values assigned to the m output nodes by this process constitute
an m-bit output of the circuit.

For every string u ∈ {0, 1}n, we denote by C(u) the output of the circuit
C on input u.

We recall that the Boolean operations OR, AND, and NOT form a uni-
versal basis, by which we mean that every function from {0, 1}n to {0, 1}m

can be implemented by a boolean circuit (in fact, a boolean formula). See
Claim 2.15. Furthermore, the “silicon chip” that we all know about is noth-
ing but2 an implementation of a boolean circuit using a technology called
VLSI. Thus if we have a small circuit for a computational task, we can im-
plement it very efficiently as a silicon chip. Of course, the circuit can only
solve problems on inputs of a certain size. Nevertheless, this may not be a
big restriction in our finite world. For instance, what if a small circuit exists
that solves 3SAT instances of up to say 100, 000 variables? If so, one could
imagine a government-financed project akin to the Manhattan project that
would try to discover such a small circuit, and then implement it as a silicon
chip. This could be used in all kinds of commercial products (recall our
earlier depiction of a world in which P = NP) and in particular would jeop-
ardize every encryption scheme that does not use a huge key. This scenario
is hinted at in the quote from Karp and Lipton at the start of the chapter.

As usual, we resort to asymptotic analysis to study the complexity of
deciding a language by circuits.

Definition 6.2 (Circuit families and language recognition)
Let T : N → N be a function. A T (n)-sized circuit family is a sequence
{Cn}n∈N of Boolean circuits, where Cn has n inputs and a single output,
such that |Cn| ≤ T (n) for every n.

We say that a language L is in SIZE(T (n)) if there exists a T (n)-size
circuit family {Cn}n∈N such that for every x ∈ {0, 1}n, x ∈ L ⇔ C(x) = 1.

As noted in Claim 2.15, every language is decidable by a circuit family of
size O(n2n), since the circuit for input length n could contain 2n “hardwired”
bits indicating which inputs are in the language. Given an input, the circuit
looks up the answer from this table. (The reader may wish to work out an
implementation of this circuit.) The following definition formalizes what we
can think of as “small” circuits.

2Actually, the circuits in silicon chips are not acyclic; in fact the cycles in the circuit
are crucial for implementing ”memory.” However any computation that runs on a silicon
chip of size C and finishes in time T can be performed by a boolean circuit of size O(C ·T ).

Web draft 2006-09-28 18:09



DRAFT

112 6.1. BOOLEAN CIRCUITS

Definition 6.3
P/poly is the class of languages that are decidable by polynomial-sized cir-
cuit families, in other words, ∪cSIZE(nc).

Of course, one can make the same kind of objections to the practicality of
P/poly as for P: viz., in what sense is a circuit family of size n100 practical,
even though it has polynomial size. This was answered to some extent
in Section 1.4.1. Another answer is that as complexity theorists we hope
(eventually) to show that languages such as SAT are not in P/poly. Thus
the result will only be stronger if we allow even such large circuits in the
definition of P/poly.

The class P/poly contains P. This is a corollary of Theorem 6.7 that we
show below. Can we give a reasonable upperbound on the computational
power of P/poly? Unfortunately not, since it contains even undecidable
languages.

Example 6.4
Recall that we say that a language L is unary if it is a subset of {1n : n ∈ N}.
Every unary language has linear size circuits since the circuit for an input
size n only needs to have a single “hardwired” bit indicating whether or not
1n is in the language. Hence the following unary language has linear size
circuits, even though it is undecidable:

{1n : Mn outputs 1 on input 1n} . (1)

where Mn is the machine represented by (the binary expansion of) the num-
ber n.

This example suggests that it may be fruitful to consider the restriction
to circuits that can actually be built, say using a fairly efficient Turing ma-
chine. It will be most useful to formalize this using logspace computations.

Recall that a function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace com-
putable if the mapping x, i 7→ f(x)i can be computed in logarithmic space
(see Definition 3.14).

Definition 6.5 (logspace-uniform circuit families)
A circuit family {Cn} is logspace uniform if there is an implicitly logspace
computable function mapping 1n to the description of the circuit Cn.
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Actually, to make this concrete we need to fix some representation of the
circuits as strings. We will assume that the circuit of size N is represented
by its N ×N adjacency matrix and in addition an array of size N that gives
the labels (gate type and input/output) of each node. This means that {Cn}
is logspace uniform if and only if the following functions are computable in
O(log n) space:

• SIZE(n) returns the size m (in binary representation) of the circuit
Cn.

• TYPE(n, i), where i ∈ [m], returns the label and type of the ith node
of Cn. That is it returns one of {∨,∧,¬, NONE} and in addition
〈OUTPUT, j〉 or 〈INPUT, j〉 if i is the jth input or output node of
Cn.

• EDGE(n, i, j) returns 1 if there is a directed edge in Cn between the ith

node and the jth node.

Note that both the inputs and the outputs of these functions can be
encoded using a logarithmic (in |Cn|) number of bits. The requirement that
they run in O(log n) space means that we require that log |Cn| = O(log n)
or in other words that Cn is of size at most polynomial in n.

Remark 6.6
Exercise 7 asks you to prove that the class of languages decided by such
circuits does not change if we use the adjacency list (as opposed to matrix)
representation. We will use the matrix representation from now on.

Polynomial circuits that are logspace-uniform correspond to a familiar
complexity class:

Theorem 6.7
A language has logspace-uniform circuits of polynomial size iff it is in P.

Remark 6.8
Note that this implies that P ⊆ P/poly.

Proof sketch: The only if part is trivial. The if part follows the proof of
the Cook-Levin Theorem (Theorem 2.11). Recall that we can simulate every
time O(T (n)) TM M by an oblivious TM M̃ (whose head movement is in-
dependent of its input) running in time O(T (n)2) (or even O(T (n) log T (n))
if we are more careful). In fact, we can ensure that the movement of the
oblivious TM M̃ do not even depend on the contents of its work tape, and
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so, by simulating M̃while ignoring its read/write instructions, we can com-
pute in O(log T (n)) space for every i the position its heads will be at the ith

step.3

Given this insight, it is fairly straightforward to translate the proof of
Theorem 2.11 to prove that every language in P has a logspace-uniform
circuit family. The idea is that if L ∈ P then it is decided by an oblivious
TM M̃ of the form above. We will use that to construct a logspace uniform
circuit family {Cn}n∈N such that for every x ∈ {0, 1}n, Cn(x) = M̃(x).

Recall that, as we saw in that proof, the transcript of M̃ ’s execution on
input x is the sequence z1, . . . , zT of snapshots (machine’s state and symbols
read by all heads) of the execution at each step in time. Assume that each
such zi is encoded by a string (that needs only to be of constant size). We
can compute the string zi based the previous snapshots zi−1 and zi1 , . . . , zik

where zij denote the last step that M̃ ’s jth head was in the same position
as it is in the ith step. Because these are only a constant number of strings
of constant length, we can compute zi from these previous snapshot using
a constant-sized circuit. Also note that, under our assumption above, given
the indices i and i′ < i we can easily check whether zi depends on zi′ .

The composition of all these constant-sized circuits gives rise to a circuit
that computes from the input x, the snapshot zT of the last step of M̃ ’s
execution on x. There is a simple constant-sized circuit that, given zT

outputs 1 if and only if zT is an accepting snapshot (in which M̃ outputs
1 and halts). Thus, we get a circuit C such that C(x) = M̃(x) for every
x ∈ {0, 1}n.

Because our circuit C is composed of many small (constant-sized) cir-
cuits, and determining which small circuit is applied to which nodes can be
done in logarithmic space, it is not hard to see that we can find out every
individual bit of C’s representation in logarithmic space. (In fact, one can
show that the functions SIZE, TYPE and EDGE above can be computed using
only logarithmic space and polylogarithmic time.) �

6.1.1 Turing machines that take advice

There is a way to define P/poly using Turing machines that ”take advice.”

Definition 6.9
Let T, a : N → N be functions. The class of languages decidable by time-T (n)

3In fact, typically the movement pattern is simple enough (for example a sequence
of T (n) left to right and back sweeps of the tape) that for every i we can compute this
information using only O(log T (n)) space and polylogT (n) time.
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TM’s with a(n) advice, denoted DTIME(T (n))/a(n), contains every L such
that there exists a sequence {αn}n∈N of strings with αn ∈ {0, 1}a(n) and a
TM M satisfying

M(x, αn) = 1 ⇔ x ∈ L

for every x ∈ {0, 1}n, where on input (x, αn) the machine M runs for at
most O(T (n)) steps.

Example 6.10
Every unary language can be be decided by a polynomial time Turing ma-
chine with 1 bit of advice. The advice string for inputs of length n is the
single bit indicating whether or not 1n is in the language. In particular this
is true of the language of Example 6.4.

This is an example of a more general phenomenon described in the next
theorem.

Theorem 6.11
P/poly = ∪c,dDTIME(nc)/nd

Proof: If L ∈ P/poly, we can provide the polynomial-sized description of
its circuit family as advice to a Turing machine. When faced with an input
of size n, the machine just simulates the circuit for this circuit provided to
it.

Conversely, if L is decidable by a polynomial-time Turing machine M
with access to an advice family {αn}n∈N of size a(n) for some polynomial a,
then we can use the construction of Theorem 6.7 to construct for every n, a
polynomial-sized circuit Dn such that on every x ∈ {0, 1}n, α ∈ {0, 1}a(n),
Dn(x, α) = M(x, α). We let the circuit Cn be the polynomial circuit that
maps x to Dn(x, αn). That is, Cn is equal to the circuit Dn with the string
αn “hardwired” as its second input. �

Remark 6.12
By “hardwiring” an input into a circuit we mean taking a circuit C with
two inputs x ∈ {0, 1}n , y ∈ {0, 1}m and transforming it into the circuit Cy

that for every x returns C(x, y). It is easy to do so while ensuring that the
size of Cy is not greater than the size of C. This simple idea is often used
in complexity theory.
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6.2 Karp-Lipton Theorem

Karp and Lipton formalized the question of whether or not SAT has small
circuits as: Is SAT in P/poly? They showed that the answer is “NO” if the
polynomial hierarchy does not collapse.

Theorem 6.13 (Karp-Lipton, with improvements by Sipser)
If NP ⊆ P/poly then PH = Σp

2.

Proof: To show that PH = Σp
2 it is enough to show that Πp

2 ⊆ Σp
2 and

in particular it suffices to show that Σp
2 contains the Πp

2-complete language
Π2SAT consisting of all true formulae of the form

∀u ∈ {0, 1}n ∃v ∈ {0, 1}n ϕ(u, v) = 1 . (2)

where ϕ is an unquantified Boolean formula.
If NP ⊆ P/poly then there is a polynomial p and a p(n)-sized circuit

family {Cn}n∈N such that for every Boolean formula ϕ and u ∈ {0, 1}n,
Cn(ϕ, u) = 1 if and only if there exists v ∈ {0, 1}n such that ϕ(u, v) = 1.
Yet, using the search to decision reduction of Theorem 2.20, we actually
know that there is a q(n)-sized circuit family {C ′

n}n∈N such that for every
such formula ϕ and u ∈ {0, 1}n, if there is a string v ∈ {0, 1}n such that
ϕ(u, v) = 1 then C ′

n(ϕ, u) outputs such a string v. Since C ′
n can be described

using 10q(n)2 bits, this implies that if (2) is true then the following quantified
formula is also true:

∃w∈ {0, 1}10q(n)2 ∀u∈ {0, 1}n w describes a circuit C ′ s.t. ϕ(u, C ′(ϕ, u)) = 1 .
(3)

Yet if (2) is false then certainly (regardless of whether P = NP) the
formula (3) is false as well, and hence (3) is actually equivalent to (2)!
However, since evaluating a circuit on an input can be done in polynomial
time, evaluating the truth of (3) can be done in Σp

2. �

Similarly the following theorem can be proven, though we leave the proof
as Exercise 3.

Theorem 6.14 (Karp-Lipton, attributed to A. Meyer)
If EXP ⊆ P/poly then EXP = Σp

2.

Combining the time hierarchy theorem (Theorem 4.1) with the previous
theorem implies that if P = NP then EXP 6⊆ P/poly. Thus upperbounds
(in this case, NP ⊆ P) can potentially be used to prove circuit lowerbounds.
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6.3 Circuit lowerbounds

Since P ⊆ P/poly, if NP * P/poly then P 6= NP. The Karp-Lipton
theorem gives hope that NP 6⊆ P/poly. Can we resolve P versus NP by
proving NP * P/poly? There is reason to invest hope in this approach as
opposed to proving direct lowerbounds on Turing machines. By representing
computation using circuits we seem to actually peer into the guts of it rather
than treating it as a blackbox. Thus we may be able to get around the
limitations of relativizing methods shown in Chapter 4.

Sadly, such hopes have not yet come to pass. After two decades, the
best circuit size lowerbound for an NP language is only 5n. (However, see
Exercise 1 for a better lowerbound for a language in PH.) On the positive
side, we have had notable success in proving lowerbounds for more restricted
circuit models, as we will see in Chapter 13.

By the way, it is easy to show that for large enough n, almost every
boolean function on n variables requires large circuits.

Theorem 6.15
For n ≥ 100, almost all boolean functions on n variables require circuits of
size at least 2n/(10n).

Proof: We use a simple counting argument. There are at most s3s circuits
of size s (just count the number of labeled directed graphs, where each node
has indegree at most 2). Hence this is an upperbound on the number of
functions on n variables with circuits of size s. For s = 2n/(10n), this
number is at most 22n/10, which is miniscule compared 22n

, the number of
boolean functions on n variables. Hence most Boolean functions do not have
such small circuits. �

Remark 6.16
Another way to present this result is as showing that with high probability, a
random function from {0, 1}n to {0, 1} does not have a circuit of size 2n/10n.
This kind of proof method, showing the existence of an object with certain
properties by arguing that a random object has these properties with high
probability, is called the probabilistic method, and will be repeatedly used in
this book.

The problem with the above counting argument is of course, that it does
not yield an explicit Boolean function (say an NP language) that requires
large circuits.
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6.4 Non-uniform hierarchy theorem

As in the case of deterministic time, non-deterministic time and space bounded
machines, Boolean circuits also have a hierarchy theorem. That is, larger
circuits can compute strictly more functions than smaller ones:

Theorem 6.17
For every functions T, T ′ : N → N with 2n/(100n) > T ′(n) > T (n) > n and
T (n) log T (n) = o(T ′(n)),

SIZE(T (n)) ( SIZE(T ′(n))

Proof: The diagonalization methods of Chapter 4 do not seem to work for
such a function, but nevertheless, we can prove it using the counting argu-
ment from above. To show the idea, we prove that SIZE(n) ( SIZE(n2).

For every `, there is a function f : {0, 1}` → {0, 1} that is not computable
by 2`/(10`)-sized circuits. On the other hand, every function from {0, 1}`

to {0, 1} is computable by a 2`10`-sized circuit.
Therefore, if we set ` = 1.1 log n and let g : {0, 1}n → {0, 1} be the

function that applies f on the first ` bits of its input, then

g ∈ SIZE(2`10`) = SIZE(11n1.1 log n) ⊆ SIZE(n2)

g 6∈ SIZE(2`/(10`)) = SIZE(n1.1/(11 log n)) ⊇ SIZE(n)

�

6.5 Finer gradations among circuit classes

There are two reasons why subclasses of P/poly are interesting. First, prov-
ing lowerbounds for these subclasses may give insight into how to separate
NP from P/poly. Second, these subclasses correspond to interesting com-
putational models in their own right.

Perhaps the most interesting connection is to massively parallel comput-
ers. In such a computer one uses simple off-the-shelf microprocessors and
links them using an interconnection network that allows them to send mes-
sages to each other. Usual interconnection networks such as the hypercube
allows linking n processors such that interprocessor communication is pos-
sible —assuming some upperbounds on the total load on the network—in
O(log n) steps. The processors compute in lock-step (for instance, to the
ticks of a global clock) and are assumed to do a small amount of computa-
tion in each step, say an operation on O(log n) bits. Thus each processor
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computers has enough memory to remember its own address in the inter-
connection network and to write down the address of any other processor,
and thus send messages to it. We are purposely omitting many details of
the model (Leighton [?] is the standard reference for this topic) since the
validity of Theorem 6.24 below does not depend upon them. (Of course, we
are only aiming for a loose characterization of parallel computation, not a
very precise one.)

6.5.1 Parallel computation and NC

Definition 6.18
A computational task is said to have efficient parallel algorithms if inputs
of size n can be solved using a parallel computer with nO(1) processors and
in time logO(1) n.

Example 6.19
Given two n bit numbers x, y we wish to compute x+y fast in parallel. The
gradeschool algorithm proceeds from the least significant bit and maintains
a carry bit. The most significant bit is computed only after n steps. This
algorithm does not take advantage of parallelism. A better algorithm called
carry lookahead assigns each bit position to a separate processor and then
uses interprocessor communication to propagate carry bits. It takes O(n)
processors and O(log n) time.

There are also efficient parallel algorithms for integer multiplication and
division (the latter is quite nonintuitive and unlike the gradeschool algo-
rithm!).

Example 6.20
Many matrix computations can be done efficiently in parallel: these include
computing the product, rank, determinant, inverse, etc. (See exercises.)

Some graph theoretic algorithms such as shortest paths and minimum
spanning tree also have fast parallel implementations.

But many well-known polynomial-time problems such as minimum match-
ing, maximum flows, and linear programming are not known to have any
good parallel implementations and are conjectured not to have any; see our
discussion of P-completeness below.
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Now we relate parallel computation to circuits. The depth of a circuit
is the length of the longest directed path from an input node to the output
node.

Definition 6.21 (Nick’s class or NC)
A language is in NCi if there are constants c, d > 0 such that it can be
decided by a logspace-uniform family of circuits {Cn} where Cn has size
O(nc) and depth O(logd n). The class NC is ∪i≥1NCi.

A related class is the following.

Definition 6.22 (AC)
The class ACi is defined similarly to NCi except gates are allowed to have
unbounded fanin. The class AC is ∪i≥0ACi.

Since unbounded (but poly(n)) fanin can be simulated using a tree of
ORs/ANDs of depth O(log n), we have NCi ⊆ ACi ⊆ NCi+1, and the
inclusion is known to be strict for i = 0 as we will see in Chapter 13. (Notice,
NC0 is extremely limited since the circuit’s output depends upon a constant
number of input bits, but AC0 does not suffer from this limitation.)

Example 6.23
The language PARITY ={x : x has an odd number of 1s} is in NC1. The
circuit computing it has the form of a binary tree. The answer appears at
the root; the left subtree computes the parity of the first |x| /2 bits and the
right subtree computes the parity of the remaining bits. The gate at the top
computes the parity of these two bits. Clearly, unwrapping the recursion
implicit in our description gives a circuit of dept O(log n).

The classes AC, NC are important because of the following.

Theorem 6.24
A language has efficient parallel algorithms iff it is in NC.

Proof: Suppose a language L ∈ NC and is decidable by a circuit family
{Cn} where Cn has size N = O(nc) and depth D = O(logd n). Take a gen-
eral purpose parallel computer with N nodes and configure it to decide L
as follows. Compute a description of Cn and allocate the role of each circuit
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node to a distinct processor. (This is done once, and then the computer is
ready to compute on any input of length n.) Each processor, after comput-
ing the output at its assigned node, sends the resulting bit to every other
circuit node that needs it. Assuming the interconnection network delivers
all messages in O(log N) time, the total running time is O(logd+1 N).

The reverse direction is similar, with the circuit having N · D nodes
arranged in D layers, and the ith node in the tth layer performs the com-
putation of processor i at time t. The role of the interconnection network is
played by the circuit wires. �

6.5.2 P-completeness

A major open question in this area is whether P = NC. We believe that
the answer is NO (though we are currently even unable to separate PH
from NC1). This motivates the theory of P-completeness, a study of which
problems are likely to be in NC and which are not.

Definition 6.25
A language is P-complete if it is in P and every language in P is logspace-
reducible to it (as per Definition 3.14).

The following easy theorem is left for the reader as Exercise 12.

Theorem 6.26
If language L is P-complete then

1. L ∈ NC iff P = NC.

2. L ∈ L iff P = L. (Where L is the set languages decidable in logarith-
mic space, see Definition 3.5.)

The following is a fairly natural P-complete language:

Theorem 6.27
Let CIRCUIT-EVAL denote the language consisting of all pairs 〈C, x〉 such
that C is an n-inputs single-output circuit and x ∈ {0, 1}n satisfies C(x) = 1.
Then CIRCUIT-EVAL is P-complete.

Proof: The language is clearly in P. A logspace-reduction from any other
language in P to this language is implicit in the proof of Theorem 6.7. �
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6.6 Circuits of exponential size

As noted, every language has circuits of size O(n2n). However, actually
finding these circuits may be difficult— sometimes even undecidable. If we
place a uniformity condition on the circuits, that is, require them to be
efficiently computable then the circuit complexity of some languages could
exceed n2n. In fact it is possible to give alternative definitions of some
familiar complexity classes, analogous to the definition of P in Theorem 6.7.

Definition 6.28 (DC-Uniform)
Let {Cn}n≥1 be a circuit family. We say that it is a Direct Connect uniform
(DC uniform) family if, given 〈n, i〉, we can compute in polynomial time the
ith but of (the representation of) the circuit Cn. More concretely, we use the
adjacency matrix representation and hence a family {Cn}n∈N is DC uniform
iff the functions SIZE, TYPE and EDGE defined in Remark ?? are computable
in polynomial time.

Note that the circuits may have exponential size, but they have a suc-
cinct representation in terms of a TM which can systematically generate any
required node of the circuit in polynomial time.

Now we give a (yet another) characterization of the class PH, this time
as languages computable by uniform circuit families of bounded depth. We
leave it as Exercise 13.

Theorem 6.29
L ∈ PH iff L can be computed by a DC uniform circuit family {Cn} that

• uses AND, OR, NOT gates.

• has size 2nO(1)
and constant depth (i.e., depth O(1)).

• gates can have unbounded (exponential) fanin.

• the NOT gates appear only at the input level.

If we drop the restriction that the circuits have constant depth, then we
obtain exactly EXP (see Exercise 14).

6.7 Circuit Satisfiability and an alternative proof
of the Cook-Levin Theorem

Boolean circuits can be used to define the following NP-complete language:
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Definition 6.30
The circuit satisfiability language CKT-SAT consists of all (strings represent-
ing) circuits with a single output that have a satisfying assignment. That
is, a string representing an n-input circuit C is in CKT-SAT iff there exists
u ∈ {0, 1}n such that C(u) = 1.

CKT-SAT is clearly in NP because the satisfying assignment can serve
as the certificate. It is also clearly NP-hard as every CNF formula is in
particular a Boolean circuit. However, CKT-SAT can also be used to give an
alternative proof (or, more accurately, a different presentation of the same
proof) for the Cook-Levin Theorem by combining the following two lemmas:

Lemma 6.31
CKT-SAT is NP-hard.

Proof: Let L be an NP-language and let p be a polynomial and M a
polynomial-time TM such that x ∈ L iff M(x, u) = 1 for some u ∈ {0, 1}p(|x|).
We reduce L to CKT-SAT by mapping (in polynomial-time) x to a circuit
Cx with p(|x|) inputs and a single output such that Cx(u) = M(x, u) for
every u ∈ {0, 1}p(|x|). Clearly, x ∈ L ⇔ Cx ∈ CKT-SAT and so this suffices
to show that L ≤P CKT-SAT.

Yet, it is not hard to come up with such a circuit. Indeed, the proof of
Theorem 6.7 yields a way to map M,x into the circuit Cx in logarithmic
space (which in particular implies polynomial time). �

Lemma 6.32
CKT-SAT ≤p 3SAT

Proof: As mentioned above this follows from the Cook-Levin theorem but
we give here a direct reduction. If C is a circuit, we map it into a 3CNF
formula ϕ as follows:

For every node vi of C we will have a corresponding variable zi in ϕ. If
the node vi is an AND of the nodes vj and vk then we add to ϕ clauses that
are equivalent to the condition “zi = (zj ∧ zk)”. That is, we add the clauses

(zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) .

Similarly, if vi is an OR of vj and vk then we add clauses equivalent to “zi =
(zj∨zk)”, and if vi is the NOT of vj then we add the clauses (zi∨zj)∧(zi∨zj).

Finally, if vi is the output node of C then we add the clause zi to ϕ. It
is not hard to see that the formula ϕ will be satisfiable if and only if the
circuit C is. �
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What have we learned?

• Boolean circuits can be used as an alternative computational model to TMs.
The class P/poly of languages decidable by polynomial-sized circuits is a strict
superset of P but does not contain NP unless the hierarchy collapses.

• Almost every function from {0, 1}n to {0, 1} requires exponential-sized circuits.
Finding even one function in NP with this property would show that P 6= NP.

• The class NC of languages decidable by (uniformly constructible) circuits with
polylogarithmic depth and polynomial size corresponds to computational tasks
that can be efficiently parallelized.

Chapter notes and history

Karp-Lipton theorem is from [?]. Karp and Lipton also gave a more general
definition of advice that can be used to define the class C/a(n) for every
complexity class C and function a. However, we do not use this definition
here since it does not seem to capture the intuitive notion of advice for
classes such as NP ∩ coNP, BPP and others.

The class of NC algorithms as well as many related issues in parallel
computation are discussed in Leighton [?].

Exercises

§1 [Kannan [?]] Show for every k > 0 that PH contains languages whose
circuit complexity is Ω(nk).

Hint:Keepinmindtheproofoftheexistenceoffunctionswith
highcircuitcomplexity.

§2 Solve the previous question with PH replaced by Σp
2.

§3 ([?], attributed to A. Meyer) Show that if EXP ⊆ P/poly then
EXP = Σp

2.

§4 Show that if P = NP then there is a language in EXP that requires
circuits of size 2n/n.
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§5 A language L ⊆ {0, 1}∗ is sparse if there is a polynomial p such that
|L∩{0, 1}n | ≤ p(n) for every n ∈ N. Show that every sparse language
is in P/poly.

§6 (X’s Theorem 19??) Show that if a sparse language is NP-complete
then P = NP. (This is a strengthening of Exercise 13 of Chapter 2.)

Hint:Showarecursiveexponential-timealgorithmSthatonin-
putan-variableformulaϕandastringv∈{0,1}

n
outputs1iff

ϕhasasatisfyingassignmentvsuchthatv>uwhenbothare
interpretedasthebinaryrepresentationofanumberin[2

n
].Use

thereductionfromSATtoLtoprunepossibilitiesintherecursion
treeofS.

§7 Show a logspace implicitly computable function f that maps any n-
vertex graph in adjacency matrix representation into the same graph
in adjacency list representation. You can think of the adjacency list
representation of an n-vertex graph as a sequence of n strings of size
O(n log n) each, where the ith string contains the list of neighbors of
the ith vertex in the graph (and is padded with zeros if necessary).

§8 (Open) Suppose we make a stronger assumption than NP ⊆ P/poly:
every language in NP has linear size circuits. Can we show something
stronger than PH = Σp

2?

§9 (a) Describe an NC circuit for the problem of computing the product
of two given n× n matrices A,B.

(b) Describe an NC circuit for computing, given an n × n matrix,
the matrix An.

Hint:Userepeatedsquaring:A
2

k

=(A
2

k−1
)
2
.

(c) Conclude that the PATH problem (and hence every NL language)
is in NC.

Hint:Whatisthemeaningofthe(i,j)thentryofA
n
?

§10 A formula is a circuit in which every node (except the input nodes) has
outdegree 1. Show that a language is computable by polynomial-size
formulae iff it is in (nonuniform) NC1.

Hint:aformulamaybeviewed—onceweexcludetheinput
nodes—asadirectedbinarytree,andinabinarytreeofsizem

thereisalwaysanodewhoseremovalleavessubtreesofsizeat
most2m/3each.
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§11 Show that NC1 = L. Conclude that PSPACE 6= NC1.

§12 Prove Theorem 6.26. That is, prove that if L is P-complete then
L ∈ NC (resp. L) iff P = NC (resp. L).

§13 Prove Theorem 6.29 (that PH is the set of languages with constant-
depth DC uniform circuits).

§14 Show that EXP is exactly the set of languages with DC uniform cir-
cuits of size 2nc

where c is some constant (c may depend upon the
language).

§15 Show that if linear programming has a fast parallel algorithm then
P = NC.

Hint:inyourreduction,expresstheCIRCUIT-EVALproblemasa
linearprogramandusethefactthatx∨y=1iffx+y≥1.Be
careful;thevariablesinalinearprogramarereal-valuedandnot
boolean!
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