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Chapter 12

Communication Complexity

Communication complexity concerns the following scenario. There are two
players with unlimited computational power, each of whom holds an n bit
input, say x and y. Neither knows the other’s input, and they wish to
collaboratively compute f(x, y) where function f :{0, 1}n ×{0, 1}n → {0, 1}
is known to both. Furthermore, they had foreseen this situation (e.g., one of
the parties could be a spacecraft and the other could be the base station on
earth), so they had already —before they knew their inputs x, y— agreed
upon a protocol for communication1. The cost of this protocol is the number
of bits communicated by the players for the worst-case choice of x, y.

Researchers have studied many modifications of the above basic scenario,
including randomized protocols, nondeterministic protocols, average-case
protocols (where x, y are assumed to come from a distribution), multiparty
protocols, etc. Truly, this is a self-contained mini-world within complexity
theory. Furthermore, lowerbounds on communication complexity have uses
in a variety of areas, including lowerbounds for parallel and VLSI compu-
tation, circuit lowerbounds, polyhedral theory, data structure lowerbounds,
etc. We give a very rudimentary introduction to this area; an excellent and
detailed treatment can be found in the book by Kushilevitz and Nisan [?].

1Do not confuse this situation with information theory, where an algorithm is given
messages that have to be transmitted over a noisy channel, and the goal is to transmit them
robustly while minimizing the amount of communication. In communication complexity
the channel is not noisy and the players determine what messages to send.
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12.1 Definition

Now we formalize the informal description of communication complexity
given above.

A t-round communication protocol for f is a sequence of function pairs
(S1, C1), (S2, C2), . . . , (St, Ct), (f1, f2). The input of Si is the communication
pattern of the first i − 1 rounds and the output is from {1, 2}, indicating
which player will communicate in the ith round. The input of Ci is the input
string of this selected player as well as the communication pattern of the first
i− 1 rounds. The output of Ci is the bit that this player will communicate
in the ith round. Finally, f1, f2 are 0/1-valued functions that the players
apply at the end of the protocol to their inputs as well as the communication
pattern in the t rounds in order to compute the output. These two outputs
must be f(x, y). The communication complexity of f is

C(f) = min
protocols P

max
x,y

{Number of bits exchanged by P on x, y.}

Notice, C(f) ≤ n + 1 since the trivial protocol is for one player to
communicate his entire input, whereupon the second player computes f(x, y)
and communicates that single bit to the first. Can they manage with less
communication?

Example 12.1 (Parity)
Suppose the function f(x, y) is the parity of all the bits in x, y. We claim
that C(f) = 2. Clearly, C(f) ≥ 2 since the function depends nontrivially on
each input, so each player must transmit at least one bit. Next, C(f) ≤ 2
since it suffices for each player to transmit the parity of all the bits in his
possession; then both know the parity of all the bits.

Remark 12.2
Sometimes students ask whether a player can communicate by not saying
anything? (After all, they have three options: send a 0, or 1, or not say
anything in that round.) We can regard such protocols as communicating
with a ternary, not binary, alphabet, and analyze them analogously.

12.2 Lowerbound methods

Now we discuss methods for proving lowerbounds on communication com-
plexity. As a running example in this chapter, we will use the equality
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function:

EQ(x, y) =

{
1 if x = y

0 otherwise

We will see that C(EQ) ≥ n.

12.2.1 Fooling set

We show C(EQ) ≥ n. For contradiction’s sake, suppose a protocol exists
whose complexity is at most n−1. Then there are only 2n−1 communication
patterns possible between the players. Consider the set of all 2n pairs (x, x).
Using the pigeonhole principle we conclude there exist two pairs (x, x) and
(x′, x′) on which the communication pattern is the same. Of course, thus far
we have nothing to object to, since the answers EQ(x, x) and EQ(x′, x′) on
both pairs are 1. However, now imagine giving one player x and the other
player x′ as inputs. A moment’s thought shows that the communication
pattern will be the same as the one on (x, x) and (x′, x′). (Formally, this
can be shown by induction. If player 1 communicates a bit in the first round,
then clearly this bit is the same whether his input is x or x′. If player 2
communicates in the 2nd round, then his bit must also be the same on both
inputs since he receives the same bit from player 1. And so on.) Hence the
player’s answer on (x, x) must agree with their answer on (x, x′). But then
the protocol must be incorrect, since EQ(x, x′) = 0 6= EQ(x, x).

The lowerbound argument above is called a fooling set argument. It is
formalized as follows.

Definition 12.3
A fooling set for f :{0, 1}n × {0, 1}n → {0, 1} is a set S ⊆ {0, 1}n × {0, 1}n

and a value b ∈ {0, 1} such that:

1. For every (x, y) ∈ S, f(x, y) = b.

2. For every two distinct pairs (x1, y1), (x2, y2) ∈ S, either f(x1, y2) 6= b
or f(x2, y1) 6= b.

Lemma 12.4
If f has a fooling set with m pairs then C(f) ≥ log2 m.

Example 12.5 (Disjointness)
Let x, y be interpreted as characteristic vectors of subsets of {1, 2, . . . , n}.
Let DISJ(x, y) = 1 if these two subsets are disjoint, otherwise DISJ(x, y) =
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0. Then C(DISJ) ≥ n since the following 2n pairs constitute a fooling set:

S =
{
(A,A) : A ⊆ {1, 2, . . . , n}

}
.

12.2.2 The tiling lowerbound

The tiling lowerbound takes a more global view of f . Consider the matrix of
f , denoted M(f), which is a 2n × 2n matrix whose (x, y)’th entry is f(x, y).
See Figure 12.1. We visualize the communication protocol in terms of this

Figure unavailable in pdf file.

Figure 12.1: Matrix M(f) for the equality function when the inputs to the players have
3 bits. The numbers in the matrix are values of f .

matrix. A combinatorial rectangle (or just rectangle) in the matrix is a
submatrix corresponding to A × B where A ⊆ {0, 1}n, B ⊆ {0, 1}n. If the
protocol begins with the first player sending a bit, then M(f) partitions
into two rectangles of the type A0 × {0, 1}n, A1 × Bn, where Ab is the
subset of strings for which the first player communicates bit b. Notice,
A0 ∪A1 = {0, 1}n. If the next bit is sent by the second player, then each of
the two rectangles above is further partitioned into two smaller rectangles
depending upon what this bit was. If the protocol continues for k steps, the
matrix gets partitioned into 2k rectangles. Note that each rectangle in the
partition corresponds to a subset of input pairs for which the communication
sequence thus far has been identical. (See Figure 12.2 for an example.)

Figure unavailable in pdf file.

Figure 12.2: Two-way communication matrix after two steps. The large number labels
are the concatenation of the bit sent by the first player with the bit sent by the second
player.

If the protocol stops, then the value of f is determined within each
rectangle, and thus must be the same for all pairs x, y in that rectangle.
Thus the set of all communication patterns must lead to a partition of the
matrix into monochromatic rectangles. (A rectangle A×B is monochromatic
if for all x in A and y in B, f(x, y) is the same.)
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Definition 12.6
A monochromatic tiling of M(f) is a partition of M(f) into disjoint monochro-
matic rectangles. We denote by χ(f) the minimum number of rectangles in
any monochromatic tiling of M(f).

The following theorem is immediate from our discussion above.
Theorem 12.7
If f has communication complexity C then it has a monochromatic tiling
with at most 2C rectangles. Consequently, C ≥ log2 χ(f).

The following observation shows that the tiling bound subsumes the
fooling set bound.
Lemma 12.8
If f has a fooling set with m pairs, then χ(f) ≥ m.

Proof: If (x1, y1) and (x2, y2) are two of the pairs in the fooling set, then
they cannot be in a monochromatic rectangle since not all of (x1, y1), (x2, y2),
(x1, y2), (x2, y1) have the same f value. �

12.2.3 Rank lowerbound

Now we introduce an algebraic method to lowerbound χ(f) (and hence com-
munication complexity). Recall the high school notion of rank of a square
matrix: it is the size of the largest subset of rows/colums that are indepen-
dent. The following is another definition.
Definition 12.9
If a matrix has entries from a field F then the rank of an n × n matrix M
is the minimum value of l such that M can be expressed as

M =
l∑

i=1

αiBi,

where αi ∈ F \ {0} and each Bi is an n× n matrix of rank 1.

Note that 0, 1 are elements of every field, so we can compute the rank over
any field we like. The choice of field can be crucial; see Problem 5 in the
exercises.

The following theorem is trivial, since each monochromatic rectangle can
be viewed (by filling out entries outside the rectangle with 0’s) as a matrix
of rank at most 1 .
Theorem 12.10
For every function f , χ(f) ≥ rank(M(f)).
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12.2.4 Discrepancy

The discrepancy of a rectangle A×B in M(f) is

1
22n

|number of 1’s in A×B − number of 0’s in A×B| . (1)

The discrepancy of the matrix M(f), denote Disc(f), is the largest dis-
crepancy among all rectangles. The following Lemma relates it to χ(f).

Lemma 12.11

χ(f) ≥ 1
Disc(f)

.

Proof: For a monochromatic rectangle, the discrepancy is its size divided
by 22n. The total number of entries in the matrix is 22n. The bound follows.
�

Example 12.12
Lemma 12.11 can be very loose. For the EQ() function, the discrepancy
is at least 1 − 2−n (namely, the discrepancy of the entire matrix), which
would only give a lowerbound of 2 for χ(f). However, χ(f) is at least 2n, as
already noted.

Now we describe a method to upperbound the discrepancy using eigen-
values.
Lemma 12.13 (eigenvalue bound)
For any matrix M , the discrepancy of a rectangle A×B is at most λmax(M)

√
|A| |B|/22n,

where λmax(M) is the magnitude of the largest eigenvalue of M .

Proof: Let 1A, 1B ∈ Rn denote the characteristic vectors of A,B. Then
|1A|2 =

√∑
i∈A 12 =

√
|A|.

The discrepancy of the rectangle A×B is

1
22n

1T
AM1B ≤ 1

22n
λmax(M)

∣∣1T
A1B

∣∣ ≤ 1
22n

λmax(M)
√
|A| |B|.

explain this.
�
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Example 12.14
The mod 2 inner product function defined as f(x, y) = (x·y)2 =

∑
i xiyi( mod

2) has been encountered a few times in this book. To bound its discrepancy,
we consider the matrix 2M(f)− 1. This transformation makes the range of
the function {−1, 1} and will be useful again later. Let this new matrix be
denoted N . It is easily checked that every two distinct rows (columns) of
N are orthogonal, every row has `2 norm 2n/2, and that NT = N . Thus we
conclude that N2 = 2nI where I is the unit matrix. Hence every eigenvalue
is either +2n/2 or −2n/2, and thus Lemma 12.13 implies that the discrepancy
of a rectangle A×B is at most 2n/2

√
|A| |B| and the overall discrepancy is

at most 23n/2 (since |A| , |B| ≤ 2n).

A technique for upperbounding the discrepancy

Now we describe an upperbound technique for the discrepancy that will later
be useful in the multiparty setting (Section 12.3). For ease of notation, in
this section we change the range of f to {−1, 1} by replacing 1’s in M(f)
with −1’s and replacing 0’s with 1’s. Note that now

Disc(f) = max
A,B

1
22n

∣∣∣∣∣∣
∑

a∈A,b∈B

f(a, b)

∣∣∣∣∣∣ .

Definition 12.15
E(f) = Ea1,a2,b1,b2

[∏
i=1,2

∏
j=1,2 f(ai, bj)

]
.

Note that E(f) can be computed, like the rank, in polynomial time given
the M(f) as input.

Lemma 12.16

Disc(f) ≤ E(f)1/4.

Proof: The proof follows in two steps.

Claim 1: For every function h : {0, 1}n × {0, 1}n → {1,−1}, E(h) ≥
(Ea,b[f(a, b)])4.
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We will use the Cauchy-Schwartz inequality, specifically, the version ac-
cording to which E[z2] ≥ (E[z])2 for every random variable z.

E(h) = Ea1,a2

Eb1,b2

 ∏
i=1,2

∏
j=1,2

h(ai, bj)

 (2)

= Ea1,a2

[
(Eb[h(a1, b)h(a2, b)])

2
]

(3)

≥ (Ea1,a2 [Eb[h(a1, b)h(a2, b)]])
2 (Cauchy Schwartz) (4)

≥ (Ea,b[h(a, b)])4 . (repeating prev. two steps) (5)

Claim 2: For every function f there is a function h such that E(f) = E(h)
and Ea,b[h(a, b)] ≥ Disc(f).

First, we note that for every two functions g1, g2 : {0, 1}n → {−1, 1}, if
we define h = f ◦ g1 ◦ g2 as

h(a, b) = f(a, b)g1(a)g2(b)

then E(f) = E(h). The reason is that for all a1, a2, b1, b2,∏
i=1,2

∏
j=1,1

h(ai, bj) = g1(a1)2g1(a2)2g2(b1)2g2(b2)2
∏

i=1,2

∏
j=1,2

f(ai, bj)

and the square of any value of g1, g2 is 1.
Now we prove Claim 2 using the probabilistic method. Define two ran-

dom functions g1, g2 :{0, 1}n → {−1, 1} as follows:

g1(a) =

{
1 if a ∈ A

ra ra ∈ {−1, 1} is randomly chosen

g2(b) =

{
1 if b ∈ B

sb sb ∈ {−1, 1} is randomly chosen

Let h = f ◦ g1 ◦ g2, and therefore E(h) = E(f). Furthermore

Eg1,g2 [Ea,b[h(a, b)]] = Ea,b [Eg1,g2 [f(a, b)g1(a)g2(b)]] (6)

=
1

22n

∑
a∈A,b∈B

f(a, b) (7)

= Disc(f) (8)

where the second line follows from the fact that Eg1 [g1(a)] = Eg2 [g2(b)] = 0
for a 6∈ A and b 6∈ B.

Thus in particular there exist g1, g2 such that |Ea,b[h(a, b)]| ≥ Disc(f).
�
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12.2.5 Comparison of the lowerbound methods

As already noted, discrepancy upperbounds imply lowerbounds on χ(f).
Of the other three methods, the tiling argument is the strongest, since it
subsumes the other two. The rank method is the weakest, since the rank
lowerbound always implies a tiling lowerbound and a fooling set lowerbound
(the latter follows from Problem 3 in the exercises).

Also, we can separate the power of these lowerbound arguments. For
instance, we know functions for which there is a significant gap between
log χ(f) and log rank(M(f)). However, the following conjecture (we only
state one form of it) says that all three methods (except discrepancy, which
as already noted can be arbitrarily far from χ(f)) give the same bound up
to a polynomial factor.

Conjecture 12.17 (log rank conjecture)
There is a constant c > 1 such that C(f) = O(log(rank(M(f)))c) for all f
and all input sizes n.

12.3 Multiparty communication complexity

There is more than one way to generalize communication complexity to a
multiplayer setting. The most interesting model is the “number on the fore-
head” model often encountered in math puzzles that involve people in a
room, each person having a bit on their head which everybody else can see
but they cannot. More formally, there is some function f : ({0, 1}n)k →
{0, 1}, and the input is (x1, x2, . . . , xk) where each xi ∈ {0, 1}n. The ith
player can see all the xj such that j 6= i. As in the 2-player case, the k
players have an agreed-upon protocol for communication, and all this com-
munication is posted on a “public blackboard”. At the end of the protocol
all parties must know f(x1, . . . , xk).

Example 12.18
Consider computing the function

f(x1, x2, x3) =
n⊕

i=1

maj(x1i, x2i, x3i)

in the 3-party model where x1, x2, x3 are n bit strings. The communication
complexity of this function is 3: each player counts the number of i’s such
that she can determine the majority of x1i, x2i, x3i by examining the bits
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available to her. She writes the parity of this number on the blackboard,
and the final answer is the parity of the players’ bits. This protocol is correct
because the majority for each row is known by either 1 or 3 players, and
both are odd numbers.

Example 12.19 (Generalized Inner Product)
The generalized inner product function GIPk,n maps nk bits to 1 bit as
follows

f(x1, . . . , xk) =
n⊕

i=1

k∧
j=1

xij . (9)

Notice, for k = 2 this reduces to the mod 2 inner product of Example 12.14.

In the 2-party model we introduced the notion of a monochromatic rect-
angle in order to prove lower bounds. For the k-party case we will use cylin-
der intersections. A cylinder in dimension i is a subset S of the inputs such
that if (x1, . . . , xk) ∈ S then for all x′i we have that (x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) ∈

S also. A cylinder intersection is ∩k
i=1Ti where Ti is a cylinder in dimension

i.
As noted in the 2-party case, a communication protocol can be viewed as

a way of partitioning the matrix M(f). Here M(f) is a k-dimensional cube,
and player i’s communication does not depend upon xi. Thus we conclude
that if f has a multiparty protocol that communicates c bits, then its matrix
has a tiling using at most 2c monochromatic cylinder intersections.

Lemma 12.20
If every partition of M(f) into monochromatic cylinder intersections requires
at least R cylinder intersections, then the k-party communication complexity
isat least log2 R.

Discrepancy-based lowerbound

In this section, we will assume as in our earlier discussion of discrepancy that
the range of the function f is {−1, 1}. We define the k-party discrepancy of
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f by analogy to the 2-party case

Disc(f) =
1

2nk
max

T

∣∣∣∣∣∣
∑

(a1,a2,...,ak)∈T

f(a1, a2, . . . , ak)

∣∣∣∣∣∣ ,

where T ranges over all cylinder intersections.
To upperbound the discrepancy we introduce the k-party analogue of

E(f). Let a cube be a set D in {0, 1}nk of 2k points of the form {a1,1, a2,1}×
{a1,2, a2,2} × · · · × {a1,k, a2,k}, where each ai,j ∈ {0, 1}n.

E(f) = ED

[∏
a∈D

f(a)

]
.

Notice that the definition of E() for the 2-party case is recovered when
k = 2. The next lemma is also an easy generalization.

Lemma 12.21

Disc(f) ≤ (E(f))1/2k
.

Proof: The proof is analogous to Lemma 12.16 and left as an exercise.
The only difference is that instead of defining 2 random functions we need
to define k random functions g1, g2, gk :{0, 1}nk → {−1, 1}, where gi depends
on every one of the k coordinates except the ith. �

Now we can prove a lowerbound for the Generalized Inner Product func-
tion. Note that since we changed the range to {−1, 1} it is now defined as

GIPk,n(x1, x2, . . . , xk) = (−1)
∑

i≤n

∏
j≤k xij(mod2). (10)

Theorem 12.22
The function GIPk,n has k-party communication complexity Ω(n/8k) as n
grows larger.

Proof: We use induction on k. For k ≥ 1 let βk be defined using β1 = 0
and βk+1 = 1+βk

2 . We claim that

E(GIPk,n) ≤ βn
k .
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Assuming truth for k − 1 we prove for k. A random cube D in {0, 1}nk is
picked by picking a11, a21 ∈ {0, 1}n and then picking a random cube D′ in
{0, 1}(k−1)n.

E(GIPk,n) = Ea11,a21

ED′

 ∏
a∈{a11,a21}×D′

GIPk,n(a)

 (11)

The proof proceeds by considering the number of coordinates where strings
a11 and a21 are identical. Examining the expression for GIPk,n in (10) we
see that these coordinates contribute nothing once we multiply all the terms
in the cube, since their contributions get squared and thus become 1. The
coordinates that contribute are

to be completed �

12.4 Probabilistic Communication Complexity

Will define the model, give the protocol for EQ, and describe the discrepancy-
based lowerbound.

12.5 Overview of other communication models

We outline some of the alternative settings in which communication com-
plexity has been studied.

Nondeterministic protocols: These are defined by analogy to NP. In a
nondeterministic protocol, the players are both provided an additional
third input z (“nondeterministic guess”). Apart from this guess, the
protocol is deterministic. The cost incurred on x, y is

min
z

{|z|+ number of bits exchanged by protocol when guess is z} .

The nondeterministic communication complexity of f is the minimum
k such that there is a nondeterministic protocol whose cost for all
input pairs is at most k.

In general, one can consider communication protocols analogous to
NP, coNP, PH etc.

Randomized protocols: These are defined by analogy to RP,BPP. The
players are provided with an additional input r that is chosen uni-
formly at random from m-bit strings for some m. Randomization
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can significantly reduce the need for communication. For instance we
can use fingerprinting with random primes (explored in Chapter 7), to
compute the equality function by exchanging O(log n) bits: the players
just pick a random prime p of O(log n) bits and exchange x (mod p)
and y (mod p).

Average case protocols: Just as we can study average-case complexity in
the Turing machine model, we can study communication complexity
when the inputs are chosen from a distribution D. This is defined as

CD(f) = min
protocols P

∑
x,y

Pr[(x, y) ∈ D]×{Number of bits exchanged by P on x, y.}

Computing a non boolean function: Here the function’s output is not
just {0, 1} but an m-bit number for some m. We discuss one example
in the exercises.

Asymmetric communication: The “cost” of communication is asymmet-
ric: there is some B such that it costs the first player B times as much
to transmit a bit than it does the second player. The goal is to mini-
mize the total cost.

Multiparty settings: The most obvious generalization to multiparty set-
tings is whereby f has k arguments x1, x2, . . . , xk and player i gets
xi. At the end all players must know f(x1, x2, . . . , xk). This is not
as interesting as the so-called “number of the forehead” where player
i can see all of the input except for xi. We discuss it in Section ??
together with some applications.

Computing a relation: There is a relation R ⊆ {0, 1}n×{0, 1}n×{1, 2, . . . ,m}
and given x, y ∈ Bn the players seek to agree on any b ∈ {1, 2, . . . ,m}
such that (x, y, b) ∈ R. See section ??.

These and many other settings are discussed in [?].

12.6 Applications of communication complexity

We briefly discussed parallel computation in Chapter 6. Yao [?] invented
communication complexity as a way to lowerbound the running time of par-
allel computers for certain tasks. The idea is that the input is distributed
among many processors, and if we partition these processors into two halves,
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we may lowerbound the computation time by considering the amount of
communication that must necessarily happen between the two halves. A
similar idea is used to prove time/space lowerbounds for VLSI circuits. For
instance, in a VLSI chip that is an m×m grid, if the communication com-
plexity for a function is greater than c, then the time required to compute
it is at least c/m.

Communication complexity is also useful in time-space lowerbounds for
Turing machines (see Problem 1 in exercises), and circuit lowerbounds (see
Chapter 13).

Data structures such as heaps, sorted arrays, lists etc. are basic objects
in algorithm design. Often, algorithm designers wish to determine if the
data structure they have designed is the best possible. Communication
complexity lowerbounds can be used to establish such results. See [?].

Yannakakis [?] has shown how to use communication complexity lower-
bounds to prove lowerbounds on the size of polytopes representing NP-
complete problems. Solving the open problem mentioned in Problem 8 in
the exercises would prove a lowerbound for the polytope representing vertex
cover.

Exercises

§1 If S(n) ≤ n, show that a space S(n) TM takes at least Ω(n/S(n))
steps to decide the language {x#x : x ∈ {0, 1}∗}.

§2 Show that the high school definition of rank (the size of the largest
set of independent rows or columns) is equivalent to that in Defini-
tion 12.9.

§3 Give a fooling set argument that proves that C(f) ≥ dlog rank(M(f))e.

§4 Show that C(f)rank(M(f) + 1.

§5 Consider x, y as vectors over GF (2)n and let f(x, y) be their inner
product mod 2. Prove that the communication complexity is n.

Hint:Lowerboundtherankofthematrix2M(f)−JwhereJis
theall-1matrix.

What field should you use to compute the rank? Does it matter?

§6 Let f : {0, 1}n × {0, 1}n → {0, 1} be such that all rows of M(f) are
distinct. Show that C(f) ≥ log n.
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Hint:Lowerboundtherank.

§7 (Aho, Ullman, Yannakakis) Show that C(f) = O(log2 χ(f)).

Hint:Theplayerstrytodeterminewhichofthe|χ(f)|rectangles
theirinput-pairliesin.TheprotocolhasO(logχ(f))phases,and
ineachphaseO(logχ(f))bitsgetcommunicated.

§8 For any graph G with n vertices, consider the following communication
problem: Player 1 receives a clique C in G, and Player 2 receives an
independent set I. They have to communicate in order to determine
|C ∩ I|. (Note that this number is either 0 or 1.) Prove an O(log2 n)
upperbound on the communication complexity.

Can you improve your upperbound or prove a lower bound better than
Ω(log n)? (Open question)

§9 Prove Lemma 12.21 using the hint given there.

§10 (Karchmer-Wigderson) Consider the following problem about comput-
ing a relation. Associate the following communication problem with
any function f :{0, 1}n → {0, 1}. Player 1 gets any input x such that
f(x) = 0 and player 2 gets any input y such that f(y) = 1. They
have to communicate in order to determine a bit position i such that
xi 6= yi.

Show that the communication complexity of this problem is exactly
the minixmum depth of any circuit that computes f . (The maximum
fanin of each gate is 2.)

§11 Use the previous question to show that computing the parity of n bits
requires depth at least 2 log n.

§12 Show that the following computational problem is in EXP: given
the matrix M(f) of a boolean function, and a number K, decide if
C(f) ≤ K.

(Open since Yao [?]) Can you show this problem is complete for some
complexity class?

Chapter notes and history

Communication complexity was first defined by Yao [?]. Other early papers
that founded the field were Papadimitriou and Sipser [?], Mehlhorn and
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Schmidt [?] (who introduced the rank lowerbound) and Aho, Ullman and
Yannakakis [?].

The original log rank conjecture was that C(f) = O(rank(M(f))) but
this was disproved by Raz and Spieker [?].

The book by Nisan and Kushilevitz [?] is highly recommended.
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