
DRAFT

Chapter 10

Cryptography

“From times immemorial, humanity has gotten frequent, often
cruel, reminders that many things are easier to do than to re-
verse.”
L. Levin [?]

somewhat rough still

The importance of cryptography in today’s online world needs no intro-
duction. Here we focus on the complexity issues that underlie this field. The
traditional task of cryptography was to allow two parties to encrypt their
messages so that eavesdroppers gain no information about the message. (See
Figure 10.1.) Various encryption techniques have been invented throughout
history with one common characteristic: sooner or later they were broken.

Figure unavailable in pdf file.

Figure 10.1: People sending messages over a public channel (e.g., the internet) wish to
use encryption so that eavesdroppers learn “nothing.”

In the post NP-completeness era, a crucial new idea was presented:
the code-breaker should be thought of as a resource-bounded computational
device. Hence the security of encryption schemes ought to be proved by
reducing the task of breaking the scheme into the task of solving some com-
putationally intractable problem (say requiring exponential time complexity
or circuit size), thus one could hope to design encryption schemes that are
efficient enough to be used in practice, but whose breaking will require, say,
millions of years of computation time.

Web draft 2006-09-28 18:09
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

199



DRAFT

200

Early researchers tried to base the security of encyption methods upon
the (presumed) intractability of NP-complete problems. This effort has
not succeeded to date, seemingly because NP-completeness concerns the
intractability of problems in the worst-case whereas cryptography seems to
need problems that are intractable on most instances. After all, when we
encrypt email, we require that decryption should be difficult for an eaves-
dropper for all (or almost all) messages, not just for a few messages. Thus
the concept most useful in this chapter will be average-case complexity1. We
will see a class of functions called one-way functions that are easy to com-
pute but hard to invert for most inputs —they are alluded to in Levin’s quote
above. Such functions exist under a variety of assumptions, including the
famous assumption that factoring integers requires time super-polynomial
time in the integer’s bit-length to solve in the average case (e.g., for a prod-
uct of two random primes).

Furthermore, in the past two decades, cryptographers have taken on
tasks above and beyond the basic task of encryption—from implementing
digital cash to maintaining the privacy of individuals in public databases.
(We survey some applications in Section 10.4.) Surprisingly, many of these
tasks can be achieved using the same computational assumptions used for
encryption. A crucial ingredient in these developments turns out to be an
answer to the question: “What is a random string and how can we generate
one?” The complexity-theoretic answer to this question leads to the notion
of a pseudorandom generator, which is a central object; see Section 10.2.
This notion is very useful in itself and is also a template for several other key
definitions in cryptography, including that of encryption (see Section 10.4).

Private key versus public key: Solutions to the encryption problem to-
day come in two distinct flavors. In private-key cryptography, one assumes
that the two (or more) parties participating in the protocol share a private
“key” —namely, a statistically random string of modest size—that is not
known to the eavesdropper2. In a public-key encryption system (a concept
introduced by Diffie and Hellman in 1976 [?]) we drop this assumption. In-
stead, a party P picks a pair of keys: an encryption key and decryption key,
both chosen at random from some (correlated) distribution. The encryption
key will be used to encrypt messages to P and is considered public —i.e.,

1A problem’s average-case and worst-case complexities can differ radically. For in-
stance, 3COL is NP-complete on general graphs, but on most n-node graphs is solvable in
quadratic time or less. A deeper study of average case complexity appears in Chapter 15.

2Practically, this could be ensured with a face-to-face meeting that might occur long
before the transmission of messages.

Web draft 2006-09-28 18:09



DRAFT

10.1. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY
FUNCTIONS 201

published and known to everybody including the eavesdropper. The de-
cryption key is kept secret by P and is used to decrypt messages. A famous
public-key encryption scheme is based upon the RSA function of Exam-
ple 10.4. At the moment we do not know how to base public key encryption
on the sole assumption that one-way functions exist and current construc-
tions require the assumption that there exist one-way functions with some
special structure (such as RSA, factoring-based, and Lattice-based one way
functions). Most topics described in this chapter are traditionally labeled
private key cryptography.

10.1 Hard-on-average problems and one-way func-
tions

A basic cryptographic primitive is a one-way function. Roughly speaking,
this is a function f that is easy to compute but hard to invert. Notice that
if f is not one-to-one, then the inverse f−1(x) may not be unique. In such
cases “inverting” means that given f(x) the algorithm is able to produce
some preimage, namely, any element of f−1(f(x))). We say that the function
is one-way function if inversion is difficult for the “average” (or “many”) x.
Now we define this formally; a discussion of this definition appears below in
Section 10.1.1. A function family (gn) is a family of functions where gn takes
n-bit inputs. It is polynomial-time computable if there is a polynomial-time
TM that given an input x computes g|x|(x).

Definition 10.1 (One-way function)
A family of functions {fn : {0, 1}n 7→ {0, 1}m(n)} is ε(n) one-way with
security s(n) if it is polynomial-time computable and furthermore for every
algorithm A that runs in time s(n),

Prx∈{0,1}n [A inverts fn(x)] ≤ ε(n). (1)

Now we give a few examples and discuss the evidence that they are hard
to invert “on average inputs.”

Example 10.2
The first example is motivated by the fact that finding the prime factors
of a given integer is the famous FACTORING problem, for which the best
current algorithm has running time about 2O(n1/3) (and even that bounds
relies on the truth of some unproven conjectures in number theory). The

Web draft 2006-09-28 18:09



DRAFT

202
10.1. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY

FUNCTIONS

hardest inputs for current algorithms appear to be of the type x · y, where
x, y are random primes of roughly equal size.

Here is a first attempt to define a one-way function using this observation.
Let {fn} be a family of functions where fn : {0, 1}n × {0, 1}n → {0, 1}2n is
defined as fn([x]2, [y]2) = [x · y]2. If x and y are primes —which by the
Prime Number Theorem happens with probability Θ(1/n2) when x, y are
random n-bit integers— then fn seems hard to invert. It is widely believed
that there are c > 1, f > 0 such that family fn is (1 − 1/nc)-one-way with
security parameter 2nf

.
An even harder version of the above function is obtained by using the

existence of a randomized polynomial-time algorithm A (which we do not
describe) that, given 1n, generates a random n-bit prime number. Suppose
A uses m random bits, where m = poly(n). Then A may be seen as a
(deterministic) mapping from m-bit strings to n-bit primes. Now let function
f̃m map (r1, r2) to [A(r1) ·A(r2)]2, where A(r1), A(r2) are the primes output
by A using random strings r1, r2 respectively. This function seems hard
to invert for almost all r1, r2. (Note that any inverse (r′1, r

′
2) for f̃m(r1, r2)

allows us to factor the integer A(r1) ·A(r2) since unique factorization implies
that the prime pair A(r′1), A(r′2) must be the same as A(r1), A(r2).) It is
widely conjecture that there are c > 1, f > 0 such that f̃n is 1/nc-one-way
with security parameter 2nf

.

The FACTORING problem, a mainstay of modern cryptography, is of
course the inverse of multiplication. Who would have thought that the hum-
ble multiplication, taught to children in second grade, could be the source of
such power? The next two examples also rely on elementary mathematical
operations such as exponentiation, albeit with modular arithmetic.

Example 10.3
Let p1, p2, . . . be a sequence of primes where pi has i bits. Let gi be the
generator of the group Z∗

pi
, the set of numbers that are nonzero mod pi.

Then for every y ∈ 1, .., pi − 1, there is a unique x ∈ {1, .., p− 1} such that

gx
i ≡ y (mod pi).

Then x → gx
i (mod pi) is a permutation on 1, .., pi − 1 and is conjectured to

be one-way. The inversion problem is called the DISCRETE LOG problem.
We show below using random self-reducibility that if it is hard on worst-case
inputs, then it is hard on average.

Web draft 2006-09-28 18:09



DRAFT

10.1. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY
FUNCTIONS 203

We list some more conjectured one-way functions.

Example 10.4
RSA function. Let m = pq where p, q are large random primes and e be
a random number coprime to φ(m) = (p − 1)(q − 1). Let Z∗

m be the set
of integers in [1, . . . ,m] coprime to m. Then the function is defined to be
fp,q,e(x) = xe (mod m). This function is used in the famous RSA public-key
cryptosystem.

Rabin function. For a composite number m, define fm(x) = x2 (mod m).
If we can invert this function on a 1/poly(log m) fraction of inputs then we
can factor m in poly(log m) time (see exercises).

Both the RSA and Rabin functions are useful in public-key cryptography.
They are examples of trapdoor one-way functions: if the factors of m (the
“trapdoor” information) are given as well then it is easy to invert the above
functions. Trapdoor functions are fascinating objects but will not be studied
further here.

Random subset sum. Let m = 10n. Let the inputs to f be n positive
m-bit integers a1, a2, . . . , an, and a subset S of {1, 2, . . . , n}. Its output is
(a1, a2, . . . , an,

∑
i∈S ai). Note that f maps n(m + 1)-bit inputs to nm + m

bits.
When the inputs are randomly chosen, this function seems hard to invert.

It is conjectured that there is c > 1, d > 0 such that this function is 1/nc-
one-way with security 2nd

.

10.1.1 Discussion of the definition of one-way function

We will always assume that the the one-way function under consideration is
such that the security parameter s(n) is superpolynomial, i.e., larger than
nk for every k > 0. The functions described earlier are actually believed to
be one-way with a larger security parameter 2nε

for some fixed ε > 0.
Of greater interest is the error parameter ε(n), since it determines the

fraction of inputs for which inversion is easy. Clearly, a continuum of values
is possible, but two important cases to consider are (i) ε(n) = (1 − 1/nc)
for some fixed c > 0, in other words, the function is difficult to invert on at

Web draft 2006-09-28 18:09



DRAFT

204
10.1. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY

FUNCTIONS

least 1/nc fraction of inputs. Such a function is often called a weak one-way
function. The simple one-way function fn of Example 10.2 is conjectured to
be of this type. (ii) ε(n) < 1/nk for every k > 1. Such a function is called a
strong one-way function.

Yao showed that if weak one-way functions exist then so do strong one-
way functions. We will prove this surprising theorem (actually, something
close to it) in Chapter 18. We will not use it in this chapter, except as a
justification for our intuition that strong one-way functions exist. (Another
justification is of course the empirical observation that the candidate one-
way functions mentioned above do seem appear difficult to invert on most
inputs.)

10.1.2 Random self-reducibility

Roughly speaking, a problem is random-self-reducible if solving the problem
on any input x reduces to solving the problem on a sequence of random
inputs y1, y2, . . . , where each yi is uniformly distributed among all inputs.
To put it more intuitively, the worst-case can be reduced to the average case.
Hence the problem is either easy on all inputs, or hard on most inputs. (In
other words, we can exclude the possibility that problem is easy on almost
all the inputs but not all.) If a function is one-way and also randomly self-
reducible then it must be a strong one-way function. This is best illustrated
with an example.

Theorem 10.5
Suppose A is an algorithm with running time t(n) that, given a prime p,
a generator g for Z∗

p, and an input gx( mod p), manages to find x for δ
fraction of x ∈ Z∗

p. Then there is a randomized algorithm A′ with running

time O( 1
δ log 1/ε(t(n)+poly(n))) that solves DISCRETE LOG on every input

with probability at least 1− ε.

Proof: Suppose we are given y = gx( mod p) and we are trying to find
x. Repeat the following trial O(1/(δ log 1/ε)) times: “Randomly pick r ∈
{0, 1, . . . , p− 2} and use A to try to compute the logarithm of y · gr(modp).
Suppose A outputs z. Check if gz−r(modp) is y, and if so, output z −
r(mod(p− 1)) as the answer.”

The main observation is that if r is randomly chosen, then y·gr( mod p) is
randomly distributed in Z∗

p and hence the hypothesis implies that A has a δ
chance of finding its discrete log. After O(1/(δ log 1/ε) trials, the probability
that A failed every time is at most ε. �

Web draft 2006-09-28 18:09



DRAFT

10.2. WHAT IS A RANDOM-ENOUGH STRING? 205

Corollary 10.6
If for any infinite sequence of primes p1, p2, . . . , DISCRETE LOG mod pi is
hard on worst-case x ∈ Z∗

pi
, then it is hard for almost all x.

Later as part of the proof of Theorem 10.14 we give another example of
random self-reducibility: linear functions over GF (2).

10.2 What is a random-enough string?

Cryptography often becomes much easier if we have an abundant supply of
random bits. Here is an example.

Example 10.7 (One-time pad)
Suppose the message sender and receiver share a long string r of random
bits that is not available to eavesdroppers. Then secure communication is
easy. To encode message m ∈ {0, 1}n, take the first n bits of r, say the
string s. Interpret both strings as vectors in GF (2)n and encrypt m by the
vector m+s. The receiver decrypts this message by adding s to it (note that
s + s = 0 in GF (2)n). If s is statistically random, then so is m + s. Hence
the eavesdropper provably cannot obtain even a single bit of information
about m regardless of how much computational power he expends.

Note that reusing s is a strict no-no (hence the name “one-time pad”).
If the sender ever reuses s to encrypt another message m′ then the eaves-
dropper can add the two vectors to obtain (m + s) + (m′ + s) = m + m′,
which is some nontrivial information about the two messages.

Of course, the one-time pad is just a modern version of the old idea of
using “codebooks” with a new key prescribed for each day.

One-time pads are conceptually simple, but impractical to use, because
the users need to agree in advance on a secret pad that is large enough to be
used for all their future communications. It is also hard to generate because
sources of quality random bits (e.g., those based upon quantum phenomena)
are often too slow. Cryptography’s suggested solution to such problems is
to use a pseudorandom generator. This is a deterministically computable
function g : {0, 1}n → {0, 1}nc

(for some c > 1) such that if x ∈ {0, 1}n is
randomly chosen, then g(x) “looks” random. Thus so long as users have
been provided a common n-bit random string, they can use the generator

Web draft 2006-09-28 18:09



DRAFT

206 10.2. WHAT IS A RANDOM-ENOUGH STRING?

to produce nc “random looking” bits, which can be used to encrypt nc−1

messages of length n. (In cryptography this is called a stream cipher.)
Clearly, at this point we need an answer to the question posed in the

Section’s title! Philosophers and statisticians have long struggled with this
question.

Example 10.8
What is a random-enough string? Here is Kolmogorov’s definition: A string
of length n is random if no Turing machine whose description length is
< 0.99n (say) outputs this string when started on an empty tape. This
definition is the “right” definition in some philosophical and technical sense
(which we will not get into here) but is not very useful in the complexity
setting because checking if a string is random according to this definition is
undecidable.

Statisticians have also attempted definitions which boil down to checking
if the string has the “right number” of patterns that one would expect by
the laws of statistics, e.g. the number of times 11100 appears as a substring.
(See Knuth Volume 3 for a comprehensive discussion.) It turns out that
such definitions are too weak in the cryptographic setting: one can find
a distribution that passes these statistical tests but still will be completely
insecure if used to generate the pad for the one-time pad encryption scheme.

10.2.1 Blum-Micali and Yao definitions

Now we introduce two complexity-theoretic definitions of pseudorandomness
due to Blum-Micali and Yao in the early 1980s. For a string y ∈ {0, 1}n and
S ⊆ [n], we let y|S denote the projection of Y to the coordinates of S. In
particular, y|[1..i] denotes the first i bits of y.

The Blum-Micali definition is motivated by the observation that one
property (in fact, the defining property) of a statistically random sequence
of bits y is that given y|[1..i], we cannot predict yi+1 with odds better than
50/50 regardless of the computational power available to us. Thus one could
define a “pseudorandom” string by considering predictors that have limited
computational resources, and to show that they cannot achieve odds much
better than 50/50 in predicting yi+1 from y|[1..i]. Of course, this definition
has the shortcoming that any single finite string would be predictable for a
trivial reason: it could be hardwired into the program of the predictor Turing

Web draft 2006-09-28 18:09



DRAFT

10.2. WHAT IS A RANDOM-ENOUGH STRING? 207

machine. To get around this difficulty the Blum-Micali definition (and also
Yao’s definition below) defines pseudorandomness for distributions of strings
rather than for individual strings. Furthermore, the definition concerns an
infinite sequence of distributions, one for each input size.

Definition 10.9 (Blum-Micali)
Let {gn} be a polynomial-time computable family of functions, where gn :
{0, 1}n → {0, 1}m and m = m(n) > n. We say the family is (ε(n), t(n))-
unpredictable if for every probabilistic polynomial-time algorithm A that
runs in time t(n) and every large enough input size n,

Pr[A(g(x)[1..i]) = g(x)i+1] ≤
1
2

+ ε(n),

where the probability is over the choice of x ∈ {0, 1}n , i ∈ {1, . . . , n} , and
the randomness used by A.

If for every fixed k, the family {gn} is (1/nc, nk)-unpredictable for every
c > 1, then we say in short that it is unpredictable by polynomial-time
algorithms.

Remark 10.10
Allowing the tester to be an arbitrary polynomial-time machine makes per-
fect sense in a cryptographic setting where we wish to assume nothing about
the adversary except an upperbound on her computational power.

Pseudorandom generators proposed in the pre-complexity era, such as
the popular linear or quadtratic congruential generators do not satisfy the
Blum-Micali definition because bit-prediction can in fact be done in poly-
nomial time.

Yao gave an alternative definition in which the tester machine is given
access to the entire string at once. This definition implicitly sets up a test
of randomness analogous to the more famous Turing test for intelligence
(see Figure 10.2). The tester machine A is given a string y ∈ {0, 1}nc

that is
produced in one of two ways: it is either drawn from the uniform distribution
on {0, 1}nc

or generated by taking a random string x ∈ {0, 1}n and stretching
it using a deterministic function g : {0, 1}n → {0, 1}nc

. The tester is asked
to output “1” if the string looks random to it and 0 otherwise. We say that
g is a pseudorandom generator if no polynomial-time tester machine A has
a great chance of being able to determine which of the two distributions the
string came from.

Web draft 2006-09-28 18:09



DRAFT

208 10.2. WHAT IS A RANDOM-ENOUGH STRING?

Definition 10.11 ([?])
Let {gn} be a polynomial-time computable family of functions, where gn :
{0, 1}n → {0, 1}m and m = m(n) > n. We say it is a (δ(n), s(n))-
pseudorandom generator if for every probabilistic algorithm A running in
time s(n) and for all large enough n

|Pr
y∈{0,1}nc [A(y) = 1]−Prx∈{0,1}n [A(gn(x)) = 1]| ≤ δ(n). (2)

We call δ(n) the distinguishing probability and s(n) the security parameter.
If for every c′, k > 1, the family is (1/nc′

, nk)-pseudorandom then we say
in short that it is a pseudorandom generator.

Figure unavailable in pdf file.

Figure 10.2: Yao’s definition: If c > 1 then g : {0, 1}n → {0, 1}nc

is a pseudorandom
generator if no polynomial-time tester has a good chance of distinguishing between truly
random strings of length nc and strings generated by applying g on random n-bit strings.

10.2.2 Equivalence of the two definitions

Yao showed that the above two definitions are equivalent —up to minor
changes in the security parameter, a family is a pseudorandom generator iff
it is (bitwise) unpredictable. The hybrid argument used in this proof has
become a central idea of cryptography and complexity theory.

The nontrivial direction of the equivalence is to show that pseudoran-
domness of the Blum-Micali type implies pseudorandomness of the Yao type.
Not surprisingly, this direction is also more important in a practical sense.
Designing pseudorandom generators seems easier for the Blum-Micali defi-
nition —as illustrated by the Goldreich-Levin construction below— whereas
Yao’s definition seems more powerful for applications since it allows the ad-
versary unrestricted access to the pseudorandom string. Thus Yao’s theorem
provides a bridge between what we can prove and what we need.

Theorem 10.12 (Prediction vs. Indistinguishability [?])
Let Let gn :{0, 1}n → {0, 1}N(n) be a family of functions where N(n) = nk for some
k > 1.
If gn is ( ε(n)

N(n) , 2t(n))-unpredictable where t(n) ≥ N(n)2 then it is (ε(n), t(n))-
pseudorandom.
Conversely, if gn is (ε(n), t(n))-pseudorandom, then it is (ε(n), t(n))-unpredictable.

Web draft 2006-09-28 18:09



DRAFT

10.2. WHAT IS A RANDOM-ENOUGH STRING? 209

Proof: The converse part is trivial since a bit-prediction algorithm can in
particular be used to distinguish g(x) from random strings of the same
length. It is left to the reader.

Let N be shorthand for N(n). Suppose g is not (ε(n), t(n))-pseudorandom,
and A is a distinguishing algorithm that runs in t(n) time and satisfies:∣∣∣∣∣ Pr

x∈Bn
[A(g(x)) = 1]− Pr

y∈{0,1}N
[A(y) = 1]

∣∣∣∣∣ > ε(n). (3)

By considering either A or the algorithm that is A with the answer flipped,
we can assume that the |·| can be removed and in fact

Pr
x∈Bn

[A(g(x)) = 1]− Pr
y∈{0,1}N

[A(y) = 1] > ε(n). (4)

Consider B, the following bit-prediction algorithm. Let its input be
g(x)|≤i where x ∈ {0, 1}n and i ∈ {0, . . . , N − 1} are chosen uniformly
at random. B’s program is: “Pick bits ui+1, ui+2, . . . , uN randomly and
run A on the input g(x)|≤iui+1ui+2 . . . uN . If A outputs 1, output ui+1

else output ui+1.” Clearly, B runs in time less than t(n) + O(N(n)) <
2t(n). To complete the proof we show that B predicts g(x)i+1 correctly
with probability at least 1

2 + ε(n)
N .

Consider a sequence of N + 1 distributions D0 through DN defined as
follows (in all cases, x ∈ {0, 1}n and u1, u2, . . . , uN ∈ {0, 1} are assumed to
be chosen randomly)

D0 = u1u2u3u4 · · ·uN

D1 = g(x)1u2u3 · · ·uN

...
...

Di = g(x)≤iui+1 · · ·uN

...
...

DN = g(x)1g(x)2 · · · g(x)N

Furthermore, we denote by Di the distribution obtained from Di by flipping
the ith bit (i.e., replacing g(x)i by g(x)i). If D is any of these 2(N + 1)
distributions then we denote Pry∈D[A(y) = 1] by q(D). With this notation
we rewrite (4) as

q(DN )− q(D0) > ε(n). (5)

Web draft 2006-09-28 18:09



DRAFT

210
10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER

GENERATORS

Furthermore, in Di, the (i + 1)th bit is equally likely to be g(x)i+1 and
g(x)i+1, so

q(Di) = 1
2(q(Di+1) + q(Di+1)), (6)

Now we analyze the probability that B predicts g(x)i+1 correctly. Since i is
picked randomly we have

Pr
i,x

[B is correct] =
1
N

n−1∑
i=0

1
2

(
Pr
x,u

[B’s guess for g(x)i+1 is correct | ui+1 = g(x)i+1]

+ Pr
x,u

[B’s guess for g(x)i+1 is correct | ui+1 = g(x)i+1]
)

.

Since B’s guess is ui+1 iff A outputs 1 this is

=
1

2N

N−1∑
i=0

(q(Di+1) + 1− q(Di+1))

=
1
2

+
1

2N

N−1∑
i=0

(q(Di+1)− q(Di+1))

From (6), q(Di+1)− q(Di+1) = 2(q(Di+1)− q(Di)), so this becomes

=
1
2

+
1

2N

N−1∑
i=0

2(q(Di+1)− q(Di))

=
1
2

+
1
N

(q(DN )− q(D0))

>
1
2

+
ε(n)
N

.

This finishes our proof. �

10.3 One-way functions and pseudorandom num-
ber generators

Do pseudorandom generators exist? Surprisingly the answer (though we
will not prove it in full generality) is that they do if and only if one-way
functions exist.

Theorem 10.13
One-way functions exist iff pseudorandom generators do.

Web draft 2006-09-28 18:09



DRAFT

10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER
GENERATORS 211

Since we had several plausible candidates for one-way functions in Sec-
tion 10.1, this result helps us design pseudorandom generators using those
candidate one-way functions. If the pseudorandom generators are ever
proved to be insecure, then the candidate one-way functions were in fact
not one-way, and so we would obtain (among other things) efficient algo-
rithms for FACTORING and DISCRETE LOG.

The “if” direction of Theorem 10.13 is trivial: if g is a pseudorandom
generator then it must also be a one-way function since otherwise the algo-
rithm that inverts g would be able to distinguish its outputs from random
strings. The “only if” direction is more difficult and involves using a one-
way function to explicitly construct a pseudorandom generator. We will do
this only for the special case of one-way functions that are permutations,
namely, they map {0, 1}n to {0, 1}n in a one-to-one and onto fashion. As
a first step, we describe the Goldreich-Levin theorem, which gives an easy
way to produce one pseudorandom bit, and then describe how to produce
nc pseudorandom bits.

10.3.1 Goldreich-Levin hardcore bit

Let {fn} be a one-way permutation where fn :{0, 1}n → {0, 1}n. Clearly, the
function g :{0, 1}n×{0, 1}n → {0, 1}2n defined as g(x, r) = (f(x), r) is also a
one-way permutation. Goldreich and Levin showed that given (f(x), r), it is
difficult for a polynomial-time algorithm to predict x�r, the scalar product
of x and r (mod 2). Thus even though the string (f(x), r) in principle
contains all the information required to extract (x, r), it is computationally
difficult to extract even the single bit x � r. This bit is called a hardcore
bit for the permutation. Prior to the Goldreich-Levin result we knew of
hardcore bits for some specific (conjectured) one-way permutations, not all.

Theorem 10.14 (Goldreich-Levin Theorem)
Suppose that {fn} is a family of ε(n))-one-way permutation with security s(n). Let

S(n) = (min
{

s(n), 1
ε(n)

}
)1/8 Then for all algorithms A running in time S(n)

Prx,r∈{0,1}n [A(fn(x), r) = x� r] ≤ 1
2

+ O(
1

S(n)
). (7)

Proof: Suppose that some algorithm A can predict x� r with probability
1/2 + δ in time t(n). We show how to invert fn(x) for O(δ) fraction of the
inputs in O(n3t(n)/δ4) time, from which the theorem follows.

Web draft 2006-09-28 18:09



DRAFT

212
10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER

GENERATORS

Claim 10.15
Suppose that

Prx,r∈{0,1}n [A(fn(x), r) = x� r] ≥ 1
2

+ δ. (8)

Then for at least δ fraction of x’s

Prr∈{0,1}n [A(fn(x), r) = x� r] ≥ 1
2

+
δ

2
. (9)

Proof: We use an averaging argument. Suppose that p is the fraction of
x’s satisfying (9). We have p · 1 + (1− p)(1/2 + δ/2) ≥ 1/2 + δ. Solving this
with respect to p, we obtain

p ≥ δ

2(1/2− δ/2)
≥ δ.

�

We design an inversion algorithm that given fn(x), where x ∈R {0, 1}n,
will try to recover x. It succeeds with high probability if x is such that (9)
holds, in other words, for at least δ fraction of x. Note that the algorithm
can always check the correctness of its answer, since it has fn(x) available
to it and it can apply fn to its answer and see if fn(x) is obtained.

Warmup: Reconstruction when the probability in (9) is ≥ 3/4 + δ.

Let P be any program that computes some unknown linear function over
GF (2)n but errs on some inputs. Specifically, there is an unknown vector
x ∈ GF (2)n such that

Pr
r

[P (r) = x · r] = 3/4 + δ. (10)

Then we show to add a simple “correction” procedure to turn P into a
probabilistic program P ′ such that

∀ r Pr[P ′(r) = x · r] ≥ 1− 1
n2 . (11)

(Once we know how to compute x · r for every r with high probability, it
is easy to recover x bit-by-bit using the observation that if ei is the n-bit
vector that is 1 in the ith position and zero elsewhere then x · ei = ai, the
ith bit of a.)

“On input r, repeat the following trial O(log n/δ2) times. Pick y ran-
domly from GF (2)n and compute the bit P (r+y)+P (y). At the end, output
the majority value.”

Web draft 2006-09-28 18:09



DRAFT

10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER
GENERATORS 213

The main observation is that when y is randomly picked from GF (2)n

then r + y and y are both randomly distributed in GF (2)n, and hence
the probability that P (r + y) 6= a · (r + y) or P (y) 6= a · y is at most
2 · (1/4− δ) = 1/2− 2δ. Thus with probability at least 1/2 + 2δ, each trial
produces the correct bit. Then Chernoff bounds imply that probability is
at least 1− 1/n2 that the final majority is correct.

General Case:

The idea for the general case is very similar, the only difference being
that this time we want to pick r1, . . . , rm so that we already “know” x� ri.
The preceding statement may appear ridiculous, since knowing the inner
product of x with m ≥ n random vectors is, with high probability, enough
to reconstruct x (see exercises). The explanation is that the ri’s will not be
completely random. Instead, they will be pairwise independent. Recall the
following construction of a set of pairwise independent vectors: Pick k ran-
dom vectors t1, t2, . . . , tk ∈ GF (2)n and for each nonempty S ⊆ {1, . . . , k}
define YS =

∑
i∈S ti. This gives 2k − 1 vectors and for S 6= S′ the random

variables YS , YS′ are independent of each other.
Now let us describe the observation at the heart of the proof. Suppose

m = 2k − 1 and our random strings r1, . . . , rm are {YS}’s from the previous
paragraph. Then x� YS = x� (

∑
i∈S ti) =

∑
i∈S x� ti. Hence if we know

x � ti for i = 1, . . . , k, we also know x � YS . Of course, we don’t actually
know x � ti for i = 1, . . . , k since x is unknown and the ti’s are random
vectors. But we can just try all 2k possibilities for the vector (x� ti)i=1,...,k

and run the rest of the algorithm for each of them. Whenever our “guess”
for these innerproducts is correct, the algorithm succeeds in producing x
and this answer can be checked by applying fn on it (as already noted).
Thus the guessing multiplies the running time by a factor 2k, which is only
m. This is why we can assume that we know x� YS for each subset S.

The details of the rest of the algorithm are similar to before. Pick m
pairwise independent vectors YS’s such that, as described above, we “know”
x � YS for all S. For each i = 1, 2, . . . , n, and each S run A on the input
(fn(x), YS ⊕ ei) (where YS ⊕ ei is YS with its ith entry flipped). Compute
the majority value of A(fn(x), YS ⊕ ei)−x�YS among all S’s and use it as
your guess for xi.

Suppose x ∈ GF (2)n satisfies (9). We will show that this algorithm
produces all n bits of x with probability at least 1/2. Fix i. For each
i, the guess for xi is a majority of m bits. The expected number of bits
among these that agree with xi is m(1/2 + δ/2), so for the majority vote
to result in the incorrect answer it must be the case that the number of

Web draft 2006-09-28 18:09



DRAFT

214
10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER

GENERATORS

incorrect values deviates from its expectation by more than mδ/2. Now,
we can bound the variance of this random variable and apply Chebyshev’s
inequality (Lemma A.14 in the Appendix) to conclude that the probability
of such a deviation is ≤ 4

mδ2 .
Here is the calculation using Chebyshev’s inequality. Let ξS denote the

event that A produces the correct answer on (fn(x), YS⊕ei). Since x satisfies
(9) and YS ⊕ ei is randomly distributed over GF (2)n, we have E(ξS) =
1/2 + δ/2 and V ar(ξS) = E(ξS)(1−E(ξS)) < 1. Let ξ =

∑
S ξS denote the

number of correct answers on a sample of size m. By linearity of expectation,
E[ξ] = m(1/2 + δ/2). Furthermore, the YS ’s are pairwise independent,
which implies that the same is true for the outputs ξS ’s produced by the
algorithm A on them. Hence by pairwise independence V ar(ξ) < m. Now,
by Chebyshev’s inequality, the probability that the majority vote is incorrect
is at most 4V ar(ξ)

m2δ2 ≤ 4
mδ2 .

Finally, setting m > 8/nδ2, the probability of guessing the ith bit incor-
rectly is at most 1/2n. By the union bound, the probability of guessing the
whole word incorrectly is at most 1/2. Hence, for every x satisfying (9), we
can find the preimage of f(x) with probability at least 1/2, which makes
the overall probability of inversion at least δ/2. The running time is about
m2n× (running time of A), which is n3

δ4 × t(n), as we had claimed. �

10.3.2 Pseudorandom number generation

We saw that if f is a one-way permutation, then g(x, r) = (f(x), r, x� r) is
a pseudorandom generator that stretches 2n bits to 2n + 1 bits. Stretching
to even more bits is easy too, as we now show. Let f i(x) denote the i-th
iterate of f on x (i.e., f(f(f(· · · (f(x))))) where f is applied i times).

Theorem 10.16
If f is a one-way permutation then gN (x, r) = (r, x � r, f(x) � r, f2(x) �
r, . . . , fN (x)� r) is a pseudorandom generator for N = nc for any constant
c > 0.

Proof: Since any distinguishing machine could just reverse the string as
a first step, it clearly suffices to show that the string (r, fN (x)�r, fN−1(x)�
r, . . . , f(x)�r, x�r) looks pseudorandom. By Yao’s theorem (Theorem 10.12),
it suffices to show the difficulty of bit-prediction. For contradiction’s sake,
assume there is a PPT machine A such that when x, r ∈ {0, 1}n and
i ∈ {1, . . . , N} are randomly chosen,

Pr[A predicts f i(x)� r given (r, fN (x)� r, fN−1(x)� r, . . . , f i+1(x)� r)] ≥ 1
2
+ε.

Web draft 2006-09-28 18:09



DRAFT

10.4. APPLICATIONS 215

We describe an algorithm B that given f(z), r where z, r ∈ {0, 1}n are
randomly chosen, predicts the hardcore bit z�r with reasonable probability,
which contradicts Theorem 10.14.

Algorithm B picks i ∈ {1, . . . , N} randomly. Let x ∈ {0, 1}n be such
that f i(x) = z. There is of course no efficient way for B to find x, but for
any l ≥ 1, B can efficiently compute f i+l(x) = f l−1(f(z))! So it produces
the string r, fN (x)� r, fN−1(x)� r, . . . , f i+1(x)� r and uses it as input to
A. By assumption, A predicts f i(x) � r = z � r with good odds. Thus we
have derived a contradiction to Theorem 10.14. �

10.4 Applications

Now we give some applications of the ideas introduced in the chapter.

10.4.1 Pseudorandom functions

Pseudorandom functions are a natural generalization of (and are easily con-
structed using) pseudorandom generators. This is a function g : {0, 1}m ×
{0, 1}n → {0, 1}m. For each K ∈ {0, 1}m we denote by g|K the function from
{0, 1}n to {0, 1}m defined by g|K(x) = g(K, x). Thus the family contains
2m functions from {0, 1}n to {0, 1}m, one for each K.

We say g is a pseudorandom function generator if it passes a “Turing
test” of randomness analogous to that in Yao’s definition of a pseudorandom
generator (Definition 10.11).

Recall that the set of all functions from {0, 1}n to {0, 1}m, denoted Fn,m ,
has cardinality (2m)2

n
. The PPT machine is presented with an “oracle” for

a function from {0, 1}n to {0, 1}n. The function is one of two types: either a
function chosen randomly from Fn,m, or a function f |K where K ∈ {0, 1}m

is randomly chosen. The PPT machine is allowed to query the oracle in any
points of its choosing. We say f |K is a pseudorandom function generator
if for all c > 1 the PPT has probability less than n−c of detecting which
of the two cases holds. (A completely formal definition would resemble
Definition 10.1 and talk about a family of generators, one for each n. Then
m is some function of n.)

Now we describe a construction of a pseudorandom function generator
g from a length-doubling pseudorandom generator f : {0, 1}m → {0, 1}2m.
For any K ∈ {0, 1}m let TK be a complete binary tree of depth n whose
each node is labelled with an m-bit string. The root is labelled K. If a node
in the tree has label y then its left child is labelled with the first m bits of

Web draft 2006-09-28 18:09



DRAFT

216 10.4. APPLICATIONS

Figure unavailable in pdf file.

Figure 10.3: Constructing a pseudorandom function from {0, 1}n to {0, 1}m using a
random key K ∈ {0, 1}m and a length-doubling pseudorandom generator g : {0, 1}m →
{0, 1}2m.

f(y) and the right child is labelled with the last m bits of f(y). Now we
define g(K, x). For any x ∈ {0, 1}n interpret x as a label for a path from
root to leaf in TK in the obvious way and output the label at the leaf. (See
Figure 10.3.)

We leave it as an exercise to prove that this construction is correct.
A pseudorandom function generator is a way to turn a random string

K into an implicit description of an exponentially larger “random looking”
string, namely, the table of all values of the function g|K . This has proved
a powerful primitive in cryptography; see the next section. Furthermore,
pseudorandom function generators have also figured in a very interesting
explanation of why current lowerbound techniques have been unable to sep-
arate P from NP; see Chapter ??.

10.4.2 Private-key encryption: definition of security

We hinted at a technique for private-key encryption in our discussion of
a one-time pad (including the pseudorandom version) at the start of Sec-
tion 10.2. But that discussion completely omitted what the design goals of
the encryption scheme were. This is an important point: design of inse-
cure systems often traces to a misunderstanding about the type of security
ensured (or not ensured) by an underlying protocol.

The most basic type of security that a private-key encryption should
ensure is semantic security. Informally speaking, this means that whatever
can be computed from the encrypted message is also computable without
access to the encrypted message and knowing only the length of the message.
The formal definition is omitted here but it has to emphasize the facts
that we are talking about an ensemble of encryption functions, one for each
message size (as in Definition 10.1) and that the encryption and decryption
is done by probabilistic algorithms that use a shared private key, and that
for every message the guarantee of security holds with high probability with
respect to the choice of this private key.

Now we describe an encryption scheme that is semantically secure. Let
f : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function generator. The
two parties share a secret random key K ∈ {0, 1}n. When one of them

Web draft 2006-09-28 18:09



DRAFT

10.4. APPLICATIONS 217

wishes to send a message x ∈ {0, 1}n to the other, she picks a random
string r ∈ {0, 1}n and transmits (r, x⊕ fK(r)). To decrypt the other party
computes fK(r) and then XORs this string with the last n bits in the received
text.

We leave it as an exercise to show that this scheme is semantically secure.

10.4.3 Derandomization

The existence of pseudorandom generators implies subexponential determin-
istic algorithms for BPP: this is usually referred to as derandomization of
BPP. (In this case, the derandomization is only partial since it results in a
subexponential deterministic algorithm. Stronger complexity assumptions
imply a full derandomization of BPP, as we will see in Chapter 17.)
Theorem 10.17
If for every c > 1 there is a pseudorandom generator that is secure against
circuits of size nc, then BPP ⊆ ∩ε>0DTIME(2nε

).

Proof: Let us fix an ε > 0 and show that BPP ⊆ DTIME(2nε
).

Suppose that M is a BPP machine running in nk time. We can build
another probabilistic machine M ′ that takes nε random bits, streches them
to nk bits using the pseudorandom generator and then simulates M using
this nk bits as a random string. Obviously, M ′ can be simulated by going
over all binary strings nε, running M ′ on each of them, and taking the
majority vote.

It remains to prove that M and M ′ accept the same language. Suppose
otherwise. Then there exists an infinite sequence of inputs x1, . . . , xn, . . . on
which M distinguishes a truly random string from a pseudorandom string
with a high probability, because for M and M ′ to produce different results,
the probability of acceptance should drop from 2/3 to below 1/2. Hence
we can build a distinguisher similar to the one described in the previous
theorem by hardwiring these inputs into a circuit family. �

The above theorem shows that the existence of hard problems implies
that we can reduce the randomness requirement of algorithms. This “hard-
ness versus randomness” tradeoff is studied more deeply in Chapter 17.
Remark 10.18
There is an interesting connection to discrepancy theory, a field of math-
ematics. Let S be a set of subsets of {0, 1}n. Subset A ⊂ {0, 1}n has
discrepancy ε with respect to S if for every s ∈ S,∣∣∣∣ |s ∩A|

|S|
− |A|

2n

∣∣∣∣ ≤ ε.

Web draft 2006-09-28 18:09



DRAFT

218 10.4. APPLICATIONS

Our earlier result that BPP ⊆ P/poly showed the existence of polynomial-
size sets A that have low discrepancy for all sets defined by polynomial-time
Turing machines (we only described discrepancy for the universe {0, 1}n but
one can define it for all input sizes using lim sup). The goal of derandom-
ization is to explicitly construct such sets; see Chapter 17.

10.4.4 Tossing coins over the phone and bit commitment

How can two parties A and B toss a fair random coin over the phone? (Many
cryptographic protocols require this basic primitive.) If only one of them
actually tosses a coin, there is nothing to prevent him from lying about the
result. The following fix suggests itself: both players toss a coin and they
take the XOR as the shared coin. Even if B does not trust A to use a fair
coin, he knows that as long as his bit is random, the XOR is also random.
Unfortunately, this idea also does not work because the player who reveals
his bit first is at a disadvantage: the other player could just “adjust” his
answer to get the desired final coin toss.

This problem is addressed by the following scheme, which assumes that
A and B are polynomial time turing machines that cannot invert one-way
permutations. The protocol itself is called bit commitment. First, A chooses
two strings xA and rA of length n and sends a message (fn(xA), rA), where
fn is a one-way permutation. This way, A commits the string xA without
revealing it. Now B selects a random bit b and conveys it. Then A reveals
xA and they agree to use the XOR of b and (xA�rA) as their coin toss. Note
that B can verify that xA is the same as in the first message by applying
fn, therefore A cannot change her mind after learning B’s bit. On the other
hand, by the Goldreich–Levin theorem, B cannot predict xA � rA from A’s
first message, so this scheme is secure.

10.4.5 Secure multiparty computations

This concerns a vast generalization of the setting in Section 10.4.4. There
are k parties and the ith party holds a string xi ∈ {0, 1}n. They wish to
compute f(x1, x2, . . . , xk) where f : {0, 1}nk → {0, 1} is a polynomial-time
computable function known to all of them. (The setting in Section 10.4.4
is a subcase whereby each xi is a bit —randomly chosen as it happens—
and f is XOR.) Clearly, the parties can just exchange their inputs (suitably
encrypted if need be so that unauthorized eavesdroppers learn nothing) and
then each of them can compute f on his/her own. However, this leads
to all of them knowing each other’s input, which may not be desirable in

Web draft 2006-09-28 18:09



DRAFT

10.5. RECENT DEVELOPMENTS 219

many situations. For instance, we may wish to compute statistics (such as
the average) on the combination of several medical databases that are held
by different hospitals. Strict privacy and nondisclosure laws may forbid
hospitals from sharing information about individual patients. (The original
example Yao gave in introducing the problem was of k people who wish to
compute the average of their salaries without revealing their salaries to each
other.)

We say that a multiparty protocol for computing f is secure if at the end
no party learns anything new apart from the value of f(x1, x2, . . . , xk). The
formal definition is inspired by the definition of a pseudorandom generator,
and states that for each i, the bits received by party i during the protocol
should be computationally indistinguishable from completely random bits3.

It is completely nonobvious why such protocols must exist. Yao [?]
proved existence for k = 2 and Goldreich, Micali, Wigderson [?] proved
existence for general k. We will not describe this protocol in any detail here
except to mention that it involves “scrambling” the circuit that computes
f .

10.4.6 Lowerbounds for machine learning

In machine learning the goal is to learn a succinct function f : {0, 1}n →
{0, 1} from a sequence of type (x1, f(x1)), (x2, f(x2)), . . . , where the xi’s
are randomly-chosen inputs. Clearly, this is impossible in general since a
random function has no succinct description. But suppose f has a succinct
description, e.g. as a small circuit. Can we learn f in that case?

The existence of pseudorandom functions implies that even though a
function may be polynomial-time computable, there is no way to learn it
from examples in polynomial time. In fact it is possible to extend this
impossibility result (though we do not attempt it) to more restricted function
families such as NC1 (see Kearns and Valiant [?]).

10.5 Recent developments

The earliest cryptosystems were designed using the SUBSET SUM problem.
They were all shown to be insecure by the early 1980s. In the last few years,

3Returning to our medical database example, we see that the hospitals can indeed
compute statistics on their combined databases without revealing any information to each
other —at least any information that can be extracted feasibly. Nevetheless, it is unclear
if current privacy laws allow hospitals to perform such secure multiparty protocols using
patient data— an example of the law lagging behind scientific progress.

Web draft 2006-09-28 18:09



DRAFT

220 10.5. RECENT DEVELOPMENTS

interest in such problems —and also the related problems of computing
approximate solutions to the shortest and nearest lattice vector problems—
has revived, thanks to a one-way function described in Ajtai [?], and a
public-key cryptosystem described in Ajtai and Dwork [?] (and improved
on since then by other researchers). These constructions are secure on most
instances iff they are secure on worst-case instances. (The idea used is a
variant of random self-reducibility.)

Also, there has been a lot of exploration of the exact notion of secu-
rity that one needs for various cryptographic tasks. For instance, the no-
tion of semantic security in Section 10.4.2 may seem quite strong, but re-
searchers subsequently realized that it leaves open the possibility of some
other kinds of attacks, including chosen ciphertext attacks, or attacks based
upon concurrent execution of several copies of the protocol. Achieving se-
curity against such exotic attacks calls for many ideas, most notably zero
knowledge (a brief introduction to this concept appears in Section ??).

Chapter notes and history

In the 1940s, Shannon speculated about topics reminiscent of complexity-
based cryptography. The first concrete proposal was made by Diffie and
Hellman [?], though their cryptosystem was later broken. The invention of
the RSA cryptosystem (named after its inventors Ron Rivest, Adi Shamir,
and Len Adleman) [?] brought enormous attention to this topic. In 1981
Shamir [?] suggested the idea of replacing a one-time pad by a pseudoran-
dom string. He also exhibited a weak pseudorandom generator assuming the
average-case intractability of the RSA function. The more famous papers
of Blum and Micali [?] and then Yao [?] laid the intellectual foundations of
private-key cryptography. (The hybrid argument used by Yao is a stronger
version of one in an earlier important manuscript of Goldwasser and Mi-
cali [?] that proposed probabilistic encryption schemes.) The construction
of pseudorandom functions in Section 10.4.1 is due to Goldreich, Goldwasser,
and Micali [?]. The question about tossing coins over a telephone was raised
in an influential paper of Blum [?]. Today complexity-based cryptography
is a vast field with several dedicated conferences. Goldreich [?]’s two-volume
book gives a definitive account.

A scholarly exposition of number theoretic algorithms (including gen-
erating random primes and factoring integers) appears in Victor Shoup’s
recent book [?] and the book of Bach and Shallit [?].

Theorem 10.13 and its very technical proof is in Hȧstad et al. [?] (the

Web draft 2006-09-28 18:09



DRAFT

10.5. RECENT DEVELOPMENTS 221

relevant conference publications are a decade older).
Our proof of the Goldreich-Levin theorem is usually attributed to Rackoff

(unpublished).

Exercises

§1 Show that if P = NP then one-way functions and pseudorandom
generators do not exist.

§2 (Requires just a little number theory). Prove that if some algorithm
inverts the Rabin function fm(x) = x2 (mod m) on a 1/poly(log m)
fraction of inputs then we can factor m in poly(log m) time.

Hint:Supposem=pqwherep,qareprimenumbers.Thenx
2

has4“squareroots”modulom.

§3 Show that if f is a one-way permutation then so is fk (namely, f(f(f(· · · (f(x)))))
where f is applied k times) where k = nc for some fixed c > 0.

§4 Assuming one-way functions exist, show that the above fails for one-
way functions.

Hint:Youhavetodesignaone-wayfunctionwheref
k

isnot
one-way.

§5 Suppose a ∈ GF(2)m is an unknown vector. Let r1, r2, . . . , rm ∈
GF(2)m be randomly chosen, and a � ri revealed to us for all i =
1, 2, . . . ,m. Describe a deterministic algorithm to reconstruct a from
this information, and show that the probability (over the choice of the
ri’s) is at least 1/4 that it works.

Hint:Youneedtoshowthatacertaindeterminantisnonzero.

This shows that the “trick” in Goldreich-Levin’s proof is necessary.

§6 Suppose somebody holds an unknown n-bit vector a. Whenever you
present a randomly chosen subset of indices S ⊆ {1, . . . , n}, then with
probability at least 1/2+ε, she tells you the parity of the all the bits in
a indexed by S. Describe a guessing strategy that allows you to guess
a (an n bit string!) with probability at least ( ε

n)c for some constant
c > 0.

Web draft 2006-09-28 18:09



DRAFT

222 10.5. RECENT DEVELOPMENTS

§7 Suppose g :{0, 1}n → {0, 1}n+1 is any pseudorandom generator. Then
use g to describe a pseudorandom generator that stretches n bits to
nk for any constant k > 1.

§8 Show the correctness of the pseudorandom function generator in Sec-
tion 10.4.1.

Hint:Useahybridargumentwhichreplacesthelabelsonthe
firstklevelsofthetreebycompletelyrandomstrings.Notethat
therandomlabelsdonotneedtobeassignedaheadoftime—
thiswouldtakeatleast2

k
time—butcanbeassignedonthefly

whenevertheyareneededbythedistinguishingalgorithm.

§9 Formalize the definition of semantic security and show that the en-
cryption scheme in Section 10.4.2 is semantically secure.

Hint:Firstshowthatforallmessagepairsx,ytheirencryptions
areindistinguishablebypolynomial-timealgorithms.Whydoes
thissuffice?

Web draft 2006-09-28 18:09


	Cryptography
	Hard-on-average problems and one-way functions
	Discussion of the definition of one-way function
	Random self-reducibility

	What is a random-enough string?
	Blum-Micali and Yao definitions
	Equivalence of the two definitions

	One-way functions and pseudorandom number generators
	Goldreich-Levin hardcore bit
	Pseudorandom number generation

	Applications
	Pseudorandom functions
	Private-key encryption: definition of security
	Derandomization
	Tossing coins over the phone and bit commitment
	Secure multiparty computations
	Lowerbounds for machine learning

	Recent developments
	Chapter notes and history
	Exercises


