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Chapter 17

Derandomization and
Extractors

“God does not play dice with the universe”
Albert Einstein

“Anyone who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin.”
John von Neumann, quoted by Knuth 1981

“How hard could it be to find hay in a haystack?”
Howard Karloff

The concept of a randomized algorithm, though widespread, has both a
philosophical and a practical difficulty associated with it.

The philosophical difficulty is best represented by Einstein’s famous
quote above. Do random events (such as the unbiased coin flip assumed
in our definition of a randomized turing machine) truly exist in the world,
or is the world deterministic? The practical difficulty has to do with actu-
ally generating random bits, assuming they exist. A randomized algorithm
running on a modern computer could need billions of random bits each sec-
ond. Even if the world contains some randomness —say, the ups and downs
of the stock market — it may not have enough randomness to provide bil-
lions of uncorrelated random bits every second in the tiny space inside a
microprocessor. Current computing environments rely on shortcuts such as
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taking a small “fairly random looking” bit sequence—e.g., interval between
the programmer’s keystrokes measured in microseconds—and applying a de-
terministic generator to turn them into a longer sequence of “sort of random
looking” bits. Some recent devices try to use quantum phenomena. But for
all of them it is unclear how random and uncorrelated those bits really are.

Such philosophical and practical difficulties look deterring; the philo-
sophical aspect alone has been on the philosophers’ table for centuries. The
results in the current chapter may be viewed as complexity theory’s contri-
bution to these questions.

The first contribution concerns the place of randomness in our world.
We indicated in Chapter 7 that randomization seems to help us design more
efficient algorithms. A surprising conclusion in this chapter is this could be a
mirage to some extent. If certain plausible complexity-theoretic conjectures
are true (e.g., that certain problems can not be solved by subexponential-
sized circuits) then every probabilistic algorithm can be simulated deter-
ministically with only a polynomial slowdown. In other words, randomized
algorithms can be derandomized and BPP = P. Nisan and Wigderson [?]
named this research area Hardness versus Randomness since the existence
of hard problems is shown to imply derandomization. Section 17.3 shows
that the converse is also true to a certain extent: ability to derandomize
implies circuit lowerbounds (thus, hardness) for concrete problems. Thus
the Hardness ↔ Randomness connection is very real.

Is such a connection of any use at present, given that we have no idea how
to prove circuit lowerbounds? Actually, yes. Just as in cryptography, we can
use conjectured hard problems in the derandomization instead of provable
hard problems, and end up with a win-win situation: if the conjectured hard
problem is truly hard then the derandomization will be successful; and if the
derandomization fails then it will lead us to an algorithm for the conjectured
hard problem.

The second contribution of complexity theory concerns another practical
question: how can we run randomized algorithms given only an imperfect
source of randomness? We show the existence of randomness extractors:
efficient algorithms to extract (uncorrelated, unbiased) random bits from any
weakly random device.Their analysis is unconditional and uses no unproven
assumptions. Below, we will give a precise definition of the properties that
such a weakly random device needs to have. We do not resolve the question
of whether such weakly random devices exist; this is presumably a subject
for physics (or philosophy).

A central result in both areas is Nisan and Wigderson’s beautiful con-
struction of a certain pseudorandom generator. This generator is tailor-made
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for derandomization and has somewhat different properties than the secure
pseudorandom generators we encountered in Chapter 10.

Another result in the chapter is a (unconditional) derandomization of
randomized logspace computations, albeit at the cost of some increase in
the space requirement.

Example 17.1 (Polynomial identity testing)
One example for an algorithm that we would like to derandomize is the
algorithm described in Section 7.2.2 for testing if a given polynomial (repre-
sented in the form of an arithmetic zero) is the identically zero polynomial.
If p is an n-variable nonzero polynomial of total degree d over a large enough
finite field F (|F| > 10d will do) then most of the vectors u ∈ Fn will satisfy
p(u) 6= 0 (see Lemma A.23. Therefore, checking whether p ≡ 0 can be done
by simply choosing a random u ∈R Fn and applying p on u. In fact, it is easy
to show that there exists a set of m2-vectors u1, . . . ,um2

such that for every
such nonzero polynomial p that can be computed by a size m arithmetic
circuit, there exists an i ∈ [m2] for which p(ui) 6= 0.

This suggests a natural approach for a deterministic algorithm: show a
deterministic algorithm that for every m ∈ N, runs in poly(m) time and
outputs a set u1, . . . ,um2

of vectors satisfying the above property. This
shouldn’t be too difficult— after all the vast majority of the sets of vectors
have this property, so hard can it be to find a single one? (Howard Karloff
calls this task “finding a hay in a haystack”). Surprisingly this turns out to
be quite hard: without using complexity assumptions, we do not know how
to obtain such a set, and in Section 17.3 we will see that in fact such an
algorithm will imply some nontrivial circuit lowerbounds.1

17.1 Pseudorandom Generators and Derandom-
ization

The main tool in derandomization is a pseudorandom generator. This is a
twist on the definition of a secure pseudorandom generator we gave in Chap-
ter 10, with the difference that here we consider nonuniform distinguishers

1Perhaps it should not be so surprising that “finding a hay in a haystack” is so hard.
After all, the hardest open problems of complexity— finding explicit functions with high
circuit complexity— are of this form, since the vast majority of the functions from {0, 1}n

to {0, 1} have exponential circuit complexity.
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–in other words, circuits— and allow the generator to run in exponential
time.

Definition 17.2 (Pseudorandom generators)
Let R be a distribution over {0, 1}m, S ∈ N and ε > 0. We say that R is an
(S, ε)-pseudorandom distribution if for every circuit C of size at most S,

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um denotes the uniform distribution over {0, 1}m.

If S : N → N is a polynomial-time computable monotone function (i.e., S(m) ≥ S(n)
for m ≥ n)2 then a function G : {0, 1}∗ → {0, 1}∗ is called an (S(`)-pseudorandom
generator (see Figure 17.1) if:

• For every z ∈ {0, 1}`, |G(z)| = S(`) and G(z) can be computed in time 2c` for
some constant c. We call the input z the seed of the pseudorandom generator.

• For every ` ∈ N, G(U`) is an (S(`)3, 1/10)-pseudorandom distribution.

Remark 17.3
The choices of the constant 3 and 1/10 in the definition of an S(`)-pseudorandom
generator are arbitrary and made for convenience.

The relation between pseudorandom generators and simulating proba-
bilistic algorithm is straightforward:

Lemma 17.4
Suppose that there exists an S(`)-pseudorandom generator for some polynomial-
time computable monotone S : N → N. Then for every polynomial-time
computable function ` : N → N, BPTIME(S(`(n))) ⊆ DTIME(2c`(n)) for
some constant c.

Proof: A language L is in BPTIME(S(`(n))) if there is an algorithm A
that on input x ∈ {0, 1}n runs in time cS(`(n)) for some constant c, and
satisfies

Pr
r∈R{0,1}m

[A(x, r) = L(x)] ≥ 2
3

2We place these easily satisfiable requirements on the function S to avoid weird cases
such as generators whose output length is not computable or generators whose output
shrinks as the input grows.
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Figure 17.1: A pseudorandom generator G maps a short uniformly chosen seed z ∈R

{0, 1}` into a longer output G(z) ∈ {0, 1}m that is indistinguishable from the uniform
distribution Um by any small circuit C.

where m ≤ S(`(n)) and we define L(x) = 1 if x ∈ L and L(x) = 0 otherwise.
The main idea is that if we replace the truly random string r with the

string G(z) produced by picking a random z ∈ {0, 1}`(n), then an algorithm
like A that runs in only S(`) time cannot detect this switch most of the
time, and so the probability 2/3 in the previous expression does not drop
below 2/3− 0.1. Thus to derandomize A, we do not need to enumerate over
all r; it suffices to enumerates over all z ∈ {0, 1}`(n) and check how many of
them make A accept. This derandomized algorithm runs in exp(`(n)) time
instead of the trivial 2m time.

Now we make this formal. Our deterministic algorithm B will on input
x ∈ {0, 1}n, go over all z ∈ {0, 1}`(n), compute A(x,G(z)) and output the
majority answer. Note this takes 2O(`(n)) time. We claim that for n suf-
ficiently large, the fraction of z’s such that A(x,G(z)) = L(x) is at least
2
3 − 0.1. (This suffices to prove that L ∈ DTIME(2c`(n)) as we can “hard-
wire” into the algorithm the correct answer for finitely many inputs.)

Suppose this is false and there exists an infinite sequence of x’s for which
Pr[A(x,G(z)) = L(x) < 2/3 − 0.1. Then we would get a distinguisher for
the pseudorandom generator —just use the Cook-Levin transformation to
construct a circuit that computes the function z 7→ A(x,G(z)), where x is
hardwired into the circuit. This circuit has size O(S(`(n)))2 which is smaller
than S(`(n))3 for sufficiently large n. �

Remark 17.5
The proof shows why it is OK to allow the pseudorandom generator in Defi-
nition 17.2 to run in time exponential in its seed length. The derandomized
algorithm enumerates over all possible seeds of length `, and thus would
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take exponential time (in `) even if the generator itself were to run in less
than exponential time.

Notice, these generators have to fool distinguishers that run for less
time than they do. By contrast, the definition of secure pseudorandom gen-
erators (Definition 10.11 in Chapter 10) required the generator to run in
polynomial time, and yet have the ability to fool distinguishers that have
super-polynomial running time. This difference in these definitions stems
from the intended usage. In the cryptographic setting the generator is used
by honest users and the distinguisher is the adversary attacking the system
— and it is reasonable to assume the attacker can invest more computa-
tional resources than those needed for normal/honest use of the system.
In derandomization, generator is used by the derandomized algorithm, the
”distinguisher” is the probabilistic algorithm that is being derandomized,
and it is reasonable to allow the derandomized algorithm higher running
time than the original probabilistic algorithm.

Of course, allowing the generator to run in exponential time as in this
chapter potentially makes it easier to prove their existence compared with
secure pseudorandom generators, and this indeed appears to be the case.
(Note that if we place no upperbounds on the generator’s efficiency, we could
prove the existence of generators unconditionally as shown in Exercise 2, but
these do not suffice for derandomization.)

We will construct pseudorandom generators based on complexity as-
sumptions, using quantitatively stronger assumptions to obtain quantita-
tively stronger pseudorandom generators (i.e., S(`)-pseudorandom gener-
ators for larger functions S). The strongest (though still reasonable) as-
sumption will yield a 2Ω(`)-pseudorandom generator, thus implying that
BPP = P. These are described in the following easy corollaries of the
Lemma that are left as Exercise 1.

Corollary 17.6
1. If there exists a 2ε`-pseudorandom generator for some constant ε > 0

then BPP = P.

2. If there exists a 2`ε
-pseudorandom generator for some constant ε > 0

then BPP ⊆ QuasiP = DTIME(2polylog(n)).

3. If there exists an S(`)-pseudorandom generator for some super-polynomial
function S (i.e., S(`) = `ω(1)) then BPP ⊆ SUBEXP = ∩ε>0DTIME(2nε

).
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17.1.1 Hardness and Derandomization

We construct pseudorandom generators under the assumptions that cer-
tain explicit functions are hard. In this chapter we use assumptions about
average-case hardness, while in the next chapter we will be able to construct
pseudorandom generators assuming only worst-case hardness. Both worst-
case and average-case hardness refers to the size of the minimum Boolean
circuit computing the function:

Definition 17.7 (Hardness)
Let f : {0, 1}∗ → {0, 1} be a Boolean function. The worst-case hardness of f ,
denoted Hwrs(f), is a function from N to N that maps every n ∈ N to the largest
number S such that every Boolean circuit of size at most S fails to compute f on
some input in {0, 1}n.

The average-case hardness of f , denoted Havg(f), is a function from N to N that maps
every n ∈ N, to the largest number S such that Prx∈R{0,1}n [C(x) = f(x)] < 1

2 + 1
S

for every Boolean circuit C on n inputs with size at most S.

Note that for every function f : {0, 1}∗ → {0, 1} and n ∈ N, Havg(f)(n) ≤
Hwrs(f)(n) ≤ n2n.

Remark 17.8
This definition of average-case hardness is tailored to the application of
derandomization, and in particular only deals with the uniform distribution
over the inputs. See Chapter 15 for a more general treatment of average-
case complexity. We will also sometimes apply the notions of worst-case
and average-case to finite functions from {0, 1}n to {0, 1}, where Hwrs(f) and
Havg(f) are defined in the natural way. (E.g., if f : {0, 1}n → {0, 1} then
Hwrs(f) is the largest number S for which every Boolean circuit of size at
most S fails to compute f on some input in {0, 1}n.)

Example 17.9
Here are some examples of functions and their conjectured or proven hard-
ness:

1. If f is a random function (i.e., for every x ∈ {0, 1}∗ we choose f(x)
using an independent unbiased coin) then with high probability, both
the worst-case and average-case hardness of f are exponential (see
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Exercise 3). In particular, with probability tending to 1 with n, both
Hwrs(f)(n) and Havg(f)(n) exceed 20.99n. We will often use the shorthand
Hwrs(f),Havg(f) ≥ 20.99n for such expressions.

2. If f ∈ BPP then, since BPP ⊆ P/poly, both Hwrs(f) and Havg(f) are
bounded by some polynomial.

3. It seems reasonable to believe that 3SAT has exponential worst-case
hardness; that is, Hwrs(3SAT) ≥ 2Ω(n). It is even more believable that
NP * P/poly, which implies that Hwrs(3SAT) is superpolynomial. The
average case complexity of 3SAT is unclear, and in any case dependent
upon the way we choose to represent formulas as strings.

4. If we believe in current cryptosystems, then we do believe that NP
contains functions that are hard on the average. If g is a one-way
permutation that cannot be inverted with polynomial probability by
polynomial-sized circuits, then by Theorem 10.14, the function f that
maps the pair x, r ∈ {0, 1}n to g−1(x)�r has super-polynomial average-
case hardness: Havg(f) ≥ nω(1). (Where x � r =

∑n
i=1 xiri (mod 2).)

More generally there is a polynomial relationship between the size of
the minimal circuit that inverts g (on the average) and the average-
case hardness of f .

The main theorem of this section uses hard-on-the average functions to
construct pseudorandom generators:
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Theorem 17.10 (Consequences of NW Generator)
For every polynomial-time computable monotone S : N → N, if there exists a
constant c and function f ∈ DTIME(2cn) such that Havg(f) ≥ S(n) then there
exists a constant ε > 0 such that an S(ε`)ε-pseudorandom generator exists. In
particular, the following corollaries hold:

1. If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that Havg(f) ≥ 2εn then
BPP = P.

2. If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that Havg(f) ≥ 2nε
then

BPP ⊆ QuasiP.

3. If there exists f ∈ E = DTIME(2O(n)) such that Havg(f) ≥ nω(1) then BPP ⊆
SUBEXP.

Remark 17.11
We can replace E with EXP = DTIME(2poly(n)) in Corollaries 2 and 3
above. Indeed, for every f ∈ DTIME(2nc

), the function g that on input
x ∈ {0, 1}∗ outputs the f applies to the first |x|1/c bits of x is in DTIME(2n)
and satisfies Havg(g)(n) ≥ Havg(f)(n1/c). Therefore, if there exists f ∈ EXP
with Havg(f) ≥ 2nε

then there there exists a constant ε′ > 0 and a function
g ∈ E with Havg(g) ≥ 2nε′

, and so we can replace E with EXP in Corollary 2.
A similar observation holds for Corollary 3. Note that EXP contains many
classes we believe to have hard problems, such as NP,PSPACE,⊕P and
more, which is why we believe it does contain hard-on-the-average functions.
In the next chapter we will give even stronger evidence to this conjecture,
by showing it is implied by the assumption that EXP contains hard-in-the-
worst-case functions.

Remark 17.12
The original paper of Nisan and Wigderson [?] did not prove Theorem 17.10
as stated above. It was proven in a sequence of works [?]. Nisan and
Wigderson only proved that under the same assumptions there exists an
S′(`)-pseudorandom generator, where S′(`) = S

(
ε
√

` log(S(ε
√

`)
)ε

for some
ε > 0. Note that this is still sufficient to derive all three corollaries above.
It is this weaker version we prove in this book.
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CONSTRUCTION

17.2 Proof of Theorem 17.10: Nisan-Wigderson
Construction

How can we use a hard function to construct a pseudorandom generator?

17.2.1 Warmup: two toy examples

For starters, we demonstrate this by considering the “toy example” of a
pseudorandom generator whose output is only one bit longer than its input.
Then we show how to extend by two bits. Of course, neither suffices to prove
Theorem 17.10 but they do give insight to the connection between hardness
and randomness.

Extending the input by one bit using Yao’s Theorem.

The following Lemma uses a hard function to construct such a “toy” gener-
ator:

Lemma 17.13 (One-bit generator)
Suppose that there exist f ∈ E with Havg(f) ≥ n4. Then, there exists an
S(`)-pseudorandom generator G for S(`) = ` + 1.

Proof: The generator G will be very simple: for every z ∈ {0, 1}`, we set

G(z) = z ◦ f(z)

(where ◦ denotes concatenation). G clearly satisfies the output length and
efficiency requirements of an (`+1)-pseudorandom generator. To prove that
its output is 1/10-pseudorandom we use Yao’s Theorem from Chapter 10
showing that pseudorandomness is implied by unpredictiability:3

Theorem 17.14 (Theorem 10.12, restated)
Let Y be a distribution over {0, 1}m. Suppose that there exist S > 10n,ε > 0
such that for every circuit C of size at most 2S and i ∈ [m],

Pr
r∈RY

[C(r1, . . . , ri−1) = ri] ≤
1
2

+
ε

m

Then Y is (S, ε)-pseudorandom.

3Although this theorem was stated and proved in Chapter 10 for the case of uniform
Turing machines, the proof easily extends to the case of circuits.
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Using Theorem 17.14 it is enough to show that there does not exist a
circuit C of size 2(` + 1)3 < `4 and a number i ∈ [` + 1] such that

Pr
r=G(U`)

[C(r1, . . . , ri−1) = ri] > 1
2 + 1

20(`+1) . (1)

However, for every i ≤ `, the ith bit of G(z) is completely uniform and
independent from the first i − 1 bits, and hence cannot be predicted with
probability larger than 1/2 by a circuit of any size. For i = `+1, Equation (1)
becomes,

Pr
z∈R{0,1}`

[C(z) = f(z)] >
1
2

+
1

20(` + 1)
>

1
2

+
1
`4

,

which cannot hold under the assumption that Havg(f) ≥ n4. �

Extending the input by two bits using the averaging principle.

We now continue to progress in “baby steps” and consider the next natural
toy problem: constructing a pseudorandom generator that extends its input
by two bits. This is obtained in the following Lemma:

Lemma 17.15 (Two-bit generator)
Suppose that there exists f ∈ E with Havg(f) ≥ n4. Then, there exists an
(`+2)-pseudorandom generator G.

Proof: The construction is again very natural: for every z ∈ {0, 1}`, we set

G(z) = z1 · · · z`/2 ◦ f(z1, . . . , z`/2) ◦ z`/2+1 · · · z` ◦ f(z`/2+1, . . . , z`).

Again, the efficiency and output length requirements are clearly satisfied.
To show G(U`) is 1/10-pseudorandom, we again use Theorem 17.14, and

so need to prove that there does not exists a circuit C of size 2(` + 1)3 and
i ∈ [` + 2] such that

Pr
r=G(U`)

[C(r1, . . . , ri−1) = ri] >
1
2

+
1

20(` + 2)
. (2)

Once again, (2) cannot occur for those indices i in which the ith output
of G(z) is truly random, and so the only two cases we need to consider are
i = `/2 + 1 and i = ` + 2. Equation (2) cannot hold for i = `/2 + 1 for the
same reason as in Lemma 17.13. For i = ` + 2, Equation (2) becomes:

Pr
r,r′∈R{0,1}`/2

[C(r ◦ f(r) ◦ r′) = f(r′)] >
1
2

+
1

20(` + 2)
(3)
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This may seem somewhat problematic to analyze since the input to C
contains the bit f(r), which C could not compute on its own (as f is a hard
function). Couldn’t it be that the input f(r) helps C in predicting the bit
f(r′)? The answer is NO, and the reason is that r′ and r are independent.
Formally, we use the following principle (see Section A.2.2 in the appendix):

The Averaging Principle: If A is some event depending on
two independent random variables X, Y , then there exists some
x in the range of X such that

Pr
Y

[A(x, Y ) ≥ Pr
X,Y

[A(X, Y )]

Applying this principle here, if (3) holds then there exists a string r ∈
{0, 1}`/2 such that

Pr
r′∈R{0,1}`/2

[C(r, f(r), r′) = f(r′)] >
1
2

+
1

20(` + 2)
.

(Note that this probability is now only over the choice of r′.) If this is the
case, we can “hardwire” the `/2+1 bits r ◦ f(r) to the circuit C and obtain
a circuit D of size at most (` + 2)3 + 2` < (`/2)4 such that

Pr
r′∈R{0,1}`/2

[D(r′) = f(r′)] >
1
2

+
1

20(` + 2)
,

contradicting the hardness of f . �

Beyond two bits:

A generator that extends the output by two bits is still useless for our goals.
We can generalize the proof Lemma 17.15 to obtain a generator G that
extends the output by k bits setting

G(z1, . . . , z`) = z1 ◦ f(z1) ◦ z2 ◦ f(z2) · · · zk ◦ f(zk) , (4)

where zi is the ith block of `/k bits in z. However, no matter how big we set
k and no matter how hard the function f is, we cannot get a generator that
expands its input by a multiplicative factor larger than two. Note that to
prove Theorem 17.10 we need a generator that, depending on the hardness
we assume, has output that can be exponentially larger than the input!
Clearly, we need a new idea.
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17.2.2 The NW Construction

The new idea is still inspired by the construction of (4), but instead of taking
z1, . . . , zk to be independently chosen strings (or equivalently, disjoint pieces
of the input z), we take them to be partly dependent by using combinatorial
designs. Doing this will allow us to take k so large that we can drop the
actual inputs from the generator’s output and use only f(z1) ◦ f(z2) · · · ◦
f(zk). The proof of correctness is similar to the above toy examples and
uses Yao’s technique, except the fixing of the input bits has to be done more
carefully because of dependence among the strings.

First, some notation. For a string z ∈ {0, 1}` and subset I ⊆ [`], we define
z�I to be |I|-length string that is the projection of z to the coordinates in I.
For example, z�[1..i] is the first i bits of z.

Definition 17.16 (NW Generator)
If I = {I1, . . . , Im} is a family of subsets of [`] with each |Ij | = l and f : {0, 1}n →
{0, 1} is any function then the (I, f)-NW generator (see Figure 17.2) is the function
NWf

I : {0, 1}` → {0, 1}m that maps any z ∈ {0, 1}` to

NWf
I(z) = f(z�I1) ◦ f(z�I2) · · · ◦ f(z�Im) (5)

Ij Ij+1

f f

Figure 17.2: The NW generator, given a set system I = {I1, . . . , Im} of size n sub-
sets of [`] and a function f : {0, 1}n → {0, 1} maps a string z ∈ {0, 1}` to the output
f(z�I1), . . . , f(z�Im). Note that these sets are not necessarily disjoint (although we will
see their intersections need to be small).

Conditions on the set systems and function.

We will see that in order for the generator to produce pseudorandom outputs,
function f must display some hardness, and the family of subsets must come
from an efficiently constructible combinatorial design.
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Definition 17.17 (Combinatorial designs)
If d, n, ` ∈ N are numbers with ` > n > d then a family I = {I1, . . . , Im} of
subsets of [`] is an (`, n, d)-design if |Ij | = n for every j and |Ij ∩ Ik| ≤ d for
every j 6= k.

The next lemma yields efficient constructions of these designs and is
proved later.

Lemma 17.18 (Construction of designs)
There is an algorithm A such that on input `, d, n ∈ N where n > d and

` > 10n2/d, runs for 2O(`) steps and outputs an (`, n, d)-design I containing
2d/10 subsets of [`].

The next lemma shows that if f is a hard function and I is a design
with sufficiently good parameters, than NWf

I(U`) is indeed a pseudorandom
distribution:
Lemma 17.19 (Pseudorandomness using the NW generator)
If I is an (`, n, d)-design with |I| = 2d/10 and f : {0, 1}n → {0, 1} a

function satisfying 2d <
√

Havg(f)(n), then the distribution NWf
I(U`) is a

(Havg(f)(n)/10, 1/10)-pseudorandom distribution.

Proof: Let S denote Havg(f)(n). By Yao’s Theorem, we need to prove that
for every i ∈ [2d/10] there does not exist an S/2-sized circuit C such that

Pr
Z∼U`

R=NWf
I(Z)

[C(R1, . . . , Ri−1) = Ri] ≥
1
2

+
1

10 · 2d/10
. (6)

For contradiction’s sake, assume that (6) holds for some circuit C and some
i. Plugging in the definition of NWf

I , Equation (6) becomes:

Pr
Z∼U`

[C(f(Z�I1), · · · , f(Z�Ii−1)) = f(Z�Ii)] ≥
1
2

+
1

10 · 2d/10
. (7)

Letting Z1 and Z2 denote the two independent variables corresponding
to the coordinates of Z in Ii and [`] \ Ii respectively, Equation (7) becomes:

Pr
Z1∼Un

Z2∼U`−n

[C(f1(Z1, Z2), . . . , fi−1(Z1, Z2)) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
, (8)

where for every j ∈ [2d/10], fj applies f to the coordinates of Z1 correspond-
ing to Ij ∩ Ii and the coordinates of Z2 corresponding to Ij \ Ii. By the
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averaging principle, if (8) holds then there exists a string z2 ∈ {0, 1}`−n

such that

Pr
Z1∼Un

[C(f1(Z1, z2), . . . , fi−1(Z1, z2)) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
. (9)

We may now appear to be in some trouble, since all of fj(Z1, z2) for j ≤ i−1
do depend upon Z1, and the fear is that if they together contain enough
information about Z1 then a circuit could potentially predict fi(Z1) after
looking at all of them. To prove that this fear is baseless we use the fact
that the circuit C is small and f is a very hard function.

Since |Ij ∩ Ii| ≤ d for j 6= i, the function Z1 7→ fj(Z1, z2) depends at
most d coordinates of z1 and hence can be computed by a d2d-sized circuit.
(Recall that z2 is fixed.) Thus if if (8) holds then there exists a circuit B of
size 2d/10 · d2d + S/2 < S such that

Pr
Z1∼Un

[B(Z1) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
>

1
2

+
1
S

. (10)

But this contradicts the fact that Havg(f)(n) = S. �

Remark 17.20 (Black-box proof)
Lemma 17.19 shows that if NWf

I(U`) is distinguishable from the uniform
distribution U2d/10 by some circuit D, then there exists a circuit B (of size
polynomial in the size of D and in 2d) that computes the function f with
probability noticeably larger than 1/2. The construction of this circuit B ac-
tually uses the circuit D as a black-box, invoking it on some chosen inputs.
This property of the NW generator (and other constructions of pseudoran-
dom generators) turned out to be useful in several settings. In particular,
Exercise 5 uses it to show that under plausible complexity assumptions,
the complexity class AM (containing all languages with a constant round
interactive proof, see Chapter 9) is equal to NP. We will also use this prop-
erty in the construction of randomness extractors based on pseudorandom
generators.

Putting it all together: Proof of Theorem 17.10 from Lemmas 17.18
and 17.19

As noted in Remark 17.12, we do not prove here Theorem 17.10 as stated
but only the weaker statement, that given f ∈ E and S : N → N with
Havg(f) ≥ S, we can construct an S′(`)-pseudorandom generator, where
S′(`) = S

(
ε
√

` log(S(ε
√

`)
)ε

for some ε > 0.
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For such a function f , we denote our pseudorandom generator by NW f .
Given input z ∈ {0, 1}`, the generator NWf operates as follows:

• Set n to be the largest number such that ` > 100n2/ log S(n). Set d =
log S(n)/10. Since S(n) < 2n, we can assume that ` ≤ 300n2/ log S(n).

• Run the algorithm of Lemma 17.18 to obtain an (`, n, d)-design I =
{I1, . . . , I2d/5}.

• Output the first S(n)1/40 bits of NWf
I(z).

Clearly, NWf (z) runs in 2O(`) time. Moreover, since 2d ≤ S(n)1/10,
Lemma 17.19 implies that the distribution NWf (U`) is (S(n)/10, 1/10)-pseudorandom.
Since n ≥

√
` log S(n)/300 ≥

√
` log S(

√
`

300)/300 (with the last inequality
following from the fact that S is monotone), this concludes the proof of
Theorem 17.10. �

Construction of combinatorial designs.

All that is left to complete the proof is to show the construction of combi-
natorial designs with the required parameters:
Proof of Lemma 17.18 (construction of combinatorial designs): On
inputs `, d, n with ` > 10n2/d, our Algorithm A will construct an (`, n, d)-
design I with 2d/10 sets using the simple greedy strategy:

Start with I = ∅ and after constructing I = {I1, . . . , Im} for
m < 2d/10, search all subsets of [`] and add to I the first n-sized
set I satisfying |I ∩ Ij | ≤ d for every j ∈ [m]. We denote this
latter condition by (*).

Clearly, A runs in poly(m)2` = 2O(`) time and so we only need to prove
it never gets stuck. In other words, it suffices to show that if ` = 10n2/d
and {I1, . . . , Im} is a collection of n-sized subsets of [`] for m < 2d/10, then
there exists an n-sized subset I ⊆ [`] satisfying (*). We do so by showing
that if we pick I at random by choosing independently every element x ∈ [`]
to be in I with probability 2n/` then:

Pr[|I| ≥ n] ≥ 0.9 (11)

Pr[|I ∩ Ij | ≥ d] ≤ 0.5 · 2−d/10 (∀j ∈ [m]) (12)

Because the expected size of I is 2n, while the expected size of the
intersection I∩Ij is 2n2/` < d/5, both (12) and (11) follow from the Chernoff
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bound. Yet together these two conditions imply that with probability at
least 0.4, the set I will simultaneously satisfy (*) and have size at least n.
Since we can always remove elements from I without damaging (*), this
completes the proof. �

17.3 Derandomization requires circuit lowerbounds

We saw in Section 17.2 that if we can prove certain strong circuit lower-
bounds, then we can partially (or fully) derandomize BPP. Now we prove a
result in the reverse direction: derandomizing BPP requires proving circuit
lowerbounds. Depending upon whether you are an optimist or a pessimist,
you can view this either as evidence that derandomizing BPP is difficult,
or, as a reason to double our efforts to derandomize BPP.

We say that a function is in AlgP/poly if it can be computed by a poly-
nomial size arithmetic circuit whose gates are labeled by +, −, × and ÷,
which are operations over some underlying field or ring. We let perm de-
note the problem of computing the permanent of matrices over the integers.
(The proof can be extended to permanent computations over finite fields of
characteristic > 2.) We prove the following result.

Theorem 17.21 ([?])
P = BPP ⇒ NEXP * P/poly or perm /∈ AlgP/poly.

Remark 17.22
It is possible to replace the “poly” in the conclusion perm /∈ AlgP/poly with
a subexponential function by appropriately modifying Lemma 17.25. It is
open whether the conclusion NEXP * P/poly can be similarly strength-
ened.

In fact, we will prove the following stronger theorem. Recall the Poly-
nomial Identity Testing (ZEROP) problem in which the input consists of
a polynomial represented by an arithmetic circuit computing it (see Sec-
tion 7.2.2 and Example 17.1), and we have to decide if it is the identically
zero polynomial. This problem is in coRP ⊆ BPP and we will show that
if it is in P then the conclusions of Theorem 17.21 hold:

Theorem 17.23 (Derandomization implies lower bounds)
If ZEROP ∈ P then either NEXP * P/poly or perm /∈ AlgP/poly.
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The proof relies upon many results described earlier in the book.4 Recall
that MA is the class of languages that can be proven by a one round interac-
tive proof between two players Arthur and Merlin (see Definition 9.7). Merlin
is an all-powerful prover and Arthur is a polynomial-time verifier that can flip
random coins. That is, given an input x, Merlin first sends Arthur a “proof”
y. Then Arthur with y in hand flips some coins and decides whether or not
to accept x. For this to be an MA protocol, Merlin must convince Arthur
to accept strings in L with probability one while at the same time Arthur
must not be fooled into accepting strings not in L except with probability
smaller than 1/2. We will use the following result regarding MA:

Lemma 17.24 ([?],[?])
EXP ⊆ P/poly ⇒ EXP = MA.

Proof: Suppose EXP ⊆ P/poly. By the Karp-Lipton theorem (Theo-
rem 6.14), in this case EXP collapses to the second level Σp

2 of the poly-
nomial hierarchy. Hence Σp

2 = PH = PSPACE = IP = EXP ⊆ P/poly.
Thus every L ∈ EXP has an interactive proof, and furtheremore, since
EXP = PSPACE, we can just the use the interactive proof for TQBF, for
which the prover is a PSPACE machine. Hence the prover can be replaced
by a polynomial size circuit family Cn. Now we see that the interactive proof
can actually be carried out in 2 rounds, with Merlin going first. Given an
input x of length n, Merlin gives Arthur a polynomial size circuit C, which
is supposed to be the Cn for L. Then Arthur runs the interactive proof for
L, using C as the prover. Note that if the input is not in the language, then
no prover has a decent chance of convincing the verifier, so this is true also
for prover described by C. Thus we have described an MA protocol for L
implying that EXP ⊆ MA and hence that EXP = MA. �

Our next ingredient for the proof of Theorem 17.23 is the following
lemma:

Lemma 17.25
If ZEROP ∈ P, and perm ∈ AlgP/poly. Then Pperm ⊆ NP.

Proof: Suppose perm has algebraic circuits of size nc, and that ZEROP
has a polynomial-time algorithm. Let L be a language that is decided by
an nd-time TM M using queries to a perm-oracle. We construct an NP
machine N for L.

4This is a good example of “third generation” complexity results that use a clever
combination of both “classical” results from the 60’s and 70’s and newer results from the
1990’s.

Web draft 2006-09-27 16:15



DRAFT

17.3. DERANDOMIZATION REQUIRES CIRCUIT LOWERBOUNDS345

Suppose x is an input of size n. Clearly, M ’s computation on x makes
queries to perm of size at most m = nd. So N will use nondeterminism as
follows: it guesses a sequence of m algebraic circuits C1, C2, . . . , Cm where
Ci has size ic. The hope is that Ci solves perm on i× i matrices, and N will
verify this in poly(m) time. The verification starts by verifying C1, which is
trivial. Inductively, having verified the correctness of C1, . . . , Ct−1, one can
verify that Ct is correct using downward self-reducibility, namely, that for a
t× t matrix A,

perm(A) =
t∑

i=1

a1iperm(A1,i),

where A1,i is the (t−1)×(t−1) sub-matrix of A obtained by removing the 1st
row and ith column of A. Thus if circuit Ct−1 is known to be correct, then
the correctness of Ct can be checked by substituting Ct(A) for perm(A) and
Ct−1(A1,i) for perm(A1,i): this yields an identity involving algebraic circuits
with t2 inputs which can be verified deterministically in poly(t) time using
the algorithm for ZEROP. Proceeding this way N verifies the correctness of
C1, . . . , Cm and then simulates Mperm on input x using these circuits. �

The heart of the proof is the following lemma, which is interesting in its
own right:

Lemma 17.26 ([?])
NEXP ⊆ P/poly ⇒ NEXP = EXP.

Proof: We prove the contrapositive. Suppose that NEXP 6= EXP and let
L ∈ NEXP \ EXP. Since L ∈ NEXP there exists a constant c > 0 and a
relation R such that

x ∈ L ⇔ ∃y ∈ {0, 1}2|x|
c

s.t. R(x, y) holds ,

where we can test whether R(x, y) holds in time 2|x|
c′

for some constant c′.
For every constant d > 0, let Md be the following machine: on input

x ∈ {0, 1}n enumerate over all possible Boolean circuits C of size n100d that
take nc inputs and have a single output. For every such circuit let tt(C)
be the 2nc

-long string that corresponds to the truth table of the function
computed by C. If R(x, tt(C)) holds then halt and output 1. If this does
not hold for any of the circuits then output 0.

Since Md runs in time 2n101d+nc
, under our assumption that L 6∈ EXP,

for every d there exists an infinite sequence of inputs Xd = {xi}i∈N on which
Md(xi) outputs 0 even though xi ∈ L (note that if Md(x) = 1 then x ∈ L).
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This means that for every string x in the sequence Xd and every y such that
R(x, y) holds, the string y represents the truth table of a function on nc bits
that cannot be computed by circuits of size n100d, where n = |x|. Using the
pseudorandom generator based on worst-case assumptions (Theorem ??),
we can use such a string y to obtain an `d-pseudorandom generator.

Now, if NEXP ⊆ P/poly then as noted above NEXP ⊆ MA and hence
every language in NEXP has a proof system where Merlin proves that an
n-bit string is in the language by sending a proof which Arthur then verifies
using a probabilistic algorithm of at most nd steps. Yet, if n is the input
length of some string in the sequence Xd and we are given x ∈ Xd with
|x| = n, then we can replace Arthur by non-deterministic poly(nd)2nc

time
algorithm that does not toss any coins: Arthur will guess a string y such that
R(x, y) holds and then use y as a function for a pseudorandom generator to
verify Merlin’s proof.

This means that there is a constant c > 0 such that every language in
NEXP can be decided on infinitely many inputs by a non-deterministic
algorithm that runs in poly(2nc

)-time and uses n bits of advice (consisting
of the string x ∈ Xd). Under the assumption that NEXP ⊆ P/poly we
can replace the poly(2nc

) running time with a circuit of size nc′ where c′ is
a constant depending only on c, and so get that there is a constant c′ such
that every language in NEXP can be decided on infinitely many inputs by
a circuit family of size n + nc′ . Yet this can be ruled out using elementary
diagonalization. �

Remark 17.27
It might seem that Lemma 17.26 should have an easier proof that goes along
the proof that EXP ⊆ P/poly ⇒ EXP = MA, but instead of using the
interactive proof for TQBF uses the multi-prover interactive proof system for
NEXP. However, we do not know how to implement the provers’ strategies
for this latter system in NEXP. (Intuitively, the problem arises from the
fact that a NEXP statement may have several certificates, and it is not
clear how we can ensure all provers use the same one.)

We now have all the ingredients for the proof of Theorem 17.23.

Proof of Theorem 17.23: For contradiction’s sake, assume that the
following are all true:

ZEROP ∈ P (13)
NEXP ⊆ P/poly, (14)

perm ∈ AlgP/poly. (15)
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Statement (14) together with Lemmas 17.24 and 17.26 imply that NEXP =
EXP = MA. Now recall that MA ⊆ PH, and that by Toda’s Theorem
(Theorem 8.11) PH ⊆ P#P. Recall also that by Valiant’s Theorem (Theo-
rem 8.8) perm is #P-complete. Thus, under our assumptions

NEXP ⊆ Pperm. (16)

Since we assume that ZEROP ∈ P, Lemma 17.25 together with statements
(15) and (16) implies that NEXP ⊆ NP, contradicting the Nondeterminis-
tic Time Hierarchy Theorem (Theorem 4.3). Thus the three statements at
the beginning of the proof cannot be simultaneously true. �

17.4 Weak Random Sources and Extractors

Suppose, that despite the philosophical difficulties, we are happy with prob-
abilistic algorithms, and sees no need to “derandomize” them, especially at
the expense of some unproven assumptions. We still need to tackle the fact
that real world sources of randomness and unpredictability rarely, if ever,
behave as a sequence of perfectly uncorrelated and unbiased coin tosses. Can
we still execute probabilistic algorithms using real-world “weakly random”
sources?

Min Entropy

For starters, we need to define what we mean by a weakly random source.
It turns out that following notion best captures the amount of randomness
in a distribution:

Definition 17.28
Let X be a random variable. The min entropy of X, denoted by H∞(X),
is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the
range of X.

It is not hard to see that if X is a random variable over {0, 1}n then
H∞(X) ≤ n with H∞(X) = n if and only if X is distributed according to
the uniform distribution Un. Our goal in this section is to be able to execute
probabilistic algorithms given access to a distribution X with H∞(X) as
small as possible. It can be shown that, in general, to execute a probabilistic
algorithm that uses k random bits, we need access to a distribution X with
H∞(X) ≥ k (see Exercise ??), we call such a distribution an (n, k)-source.
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Example 17.29
Here are some examples for distributions X over {0, 1}n and their min-
entropy:

• (Bit fixing and generalized bit fixing sources) If there is subset S ⊆ [n]
with |S| = k such that X’s projection to the coordinates in S is uniform
over {0, 1}k, and X’s projection to [n] \S is a fixed string (say the all-
zeros string) then H∞(X) = k. The same holds if X’s projection to
[n] \ S is a fixed deterministic function of its projection to S. For
example, if the bits in the odd positions of X are independent and
uniform and for every even position 2i, X2i = X2i−1 then H∞(X) =
d n

2 e. This may model a scenario where we measure some real world
data at too high a rate (think of measuring every second a physical
event that changes only every minute).

• (Linear subspaces) If X is the uniform distribution over a linear sub-
space of GF(2)n of dimension k, then H∞(X) = k. (In this case X is
actually a generalized bit-fixing source— can you see why?)

• (Biased coins) If X is composed of n independent coins, each out-
putting 1 with probability δ < 1/2 and 0 with probability 1 − δ, then
as n grows, H∞(X) tends to H(δ)n where H is the Shannon entropy
function. That is, H(δ) = δ log 1

δ + (1− δ) log 1
1−δ .

• (Santha-Vazirani sources) If X has the property that for every i ∈ [n],
and every string x ∈ {0, 1}i−1, conditioned on X1 = x1, . . . , Xi−1 =
xi−1 it holds that both Pr[Xi = 0] and Pr[Xi = 1] are between δ
and 1 − δ then H∞(X) ≥ H(δ)n. This can model sources such as
stock market fluctuations, where current measurements do have some
limited dependence on the previous history.

• (Uniform over subset) If X is the uniform distribution over a set S ⊆
{0, 1}n with |S| = 2k then H∞(X) = k. As we will see, this is a
very general case that “essentially captures” all distributions X with
H∞(X) = k.

We see that min entropy is a pretty general notion, and distributions with
significant min entropy can model many real-world sources of randomness.
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Thoughts on our definition of an imperfect source. The reader may
wonder how sensitive our results will be to our definition of an imperfect
source of randomness, specifically, the use of min-entropy. We briefly argue
now that our definition is the “right” one. Of course, this does not imply
that such sources actually exist; that is ultimately a question for physics.

First, note that the definition of an (N, k)-source (due to Zuckerman)
was not arbitrary. The definition evolved over several years, and contains
all previous attempted definitions as subcases.

Second, our goal in the definition is to capture the minimum properties
necessary for running probabilistic computations, and for this purpose high
min-entropy is necessary and sufficient. Suppose we have an (N, k) source
and desire to run a Turing machine computation that requires m random bits
and runs in time T . The exercises ask you to prove that if the Turing machine
is simulated in “black box” fashion (i.e., without looking at the working of
the algorithm), then m cannot exceed k + O(log T ). Thus nontrivial min-
entropy is necessary for simulating randomized algorithms. The sufficiency
follows from a simulation we give below in Section 17.5.2 that allows m =
k1/3, regardless of T . The proof can be tightened to work for m = k1−ε for
any ε > 0 and more recent constructions allow m = Ω(k).

Statistical distance and Extractors

Now we try to formalize what it means to extract random —more precisely,
almost random— bits from an (n, k) source. To do so we will need the
following way of quantifying when two distributions are close.

Definition 17.30 (statistical distance)
For two random variables X and Y with range {0, 1}m, their statistical dis-
tance (also known as variation distance) is defined as δ(X, Y ) = maxS⊆{0,1}m{|Pr[X ∈
S] − Pr[Y ∈ S]|}. We say that X, Y are ε-close, denoted X ≈ε Y , if
δ(X, Y ) ≤ ε.

Statistical distance lies in [0, 1] and satisfies triangle inequality, as sug-
gested by its name. The next lemma gives some other useful properties; the
proof is left as an exercise.

Lemma 17.31
Let X, Y be any two distributions taking values in {0, 1}n.

1. δ(X, Y ) = 1
2

∑
x∈{0,1}n |Pr[X = x]−Pr[Y = x]| .
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2. (Restatement of Definition 17.30) δ(X, Y ) ≥ ε iff there is a boolean
function D :{0, 1}m → {0, 1} such that |Prx∈X [D(x) = 1]− Pry∈Y [D(y) = 1]| ≥
ε.

3. If f :{0, 1}n → {0, 1}s is any function, then δ(f(X), f(Y )) ≤ δ(X, Y ).
(Here f(X) is a distribution on {0, 1}s obtained by taking a sample of
X and applying f .)

Now we define an extractor. This is a (deterministic) function that
transforms an (N, k) source into an almost uniform distribution. It uses a
small number of additional truly random bits, denoted by t in the definition
below.
Definition 17.32
A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε) extractor if for any
(n, k)-source X, the distribution Ext(X, Ut) is ε-close to Um. (For every `,
U` denotes the uniform distribution over {0, 1}`.)

Equivalently, if Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε) extractor,
then for every distribution X ranging over {0, 1}n of min-entropy k, and for
every S ⊆ {0, 1}m, we have

|Pra∈X,z∈{0,1}t [Ext(a, z) ∈ S]−Prr∈{0,1}m [r ∈ S]| ≤ ε

We use this fact to show in Section 17.5.2 how to use extractors and (n, k)-
sources to to simulate any probabilistic computation.

Why an additional input? Our stated motivation for extractors is to
execute probabilistic algorithms without access to perfect unbiased coins.
Yet, it seems that an extractor is not sufficient for this task, as we only
guarantee that its output is close to uniform if it is given an additional in-
put that is uniformly distributed. First, we note that the requirement of
an additional input is necessary: for every function Ext : {0, 1}n → {0, 1}m

and every k ≤ n − 1 there exists an (n, k)-source X such that the first bit
of Ext(X) is constant (i.e, is equal to some value b ∈ {0, 1} with probability
1), and so is at least of statistical distance 1/2 from the uniform distribu-
tion (Exercise 7). Second, if the length t of the second input is sufficiently
short (e.g., t = O(log n)) then, for the purposes of simulating probabilistic
algorithms, we can do without any access to true random coins, by enumer-
ating over all the 2t possible inputs (see Section 17.5.2). Clearly, t has to be
somewhat short for the extractor to be non-trivial: for t ≥ m, we can have
a trivial extractor that ignores its first input and outputs the second input.
This second input is called the seed of the extractor.
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17.4.1 Extractors based upon hash functions

One can use pairwise independent (and even weaker notions of) hash func-
tions to obtain extractors. In this section, H denotes a family of hash
functions h : {0, 1}n → {0, 1}k. We say it has collision error δ if for any
x1 6= x2 ∈ {0, 1}n, Prh∈H[h(x1) = h(x2)] ≤ (1 + δ)/2k. We assume that one
can choose a random function h ∈ H by picking a string at random from
{0, 1}t. We define the extractor Ext :×{0, 1}t → {0, 1}k+t as follows:

Ext(x, h) = h(x) ◦ h, (17)

where ◦ denotes concatenation of strings.
To prove that this is an extractor, we relate the min-entropy to the

collision probability of a distribution, which is defined as
∑

a p2
a, where pa

is the probability assigned to string a.

Lemma 17.33
If a distribution X has min-entropy at least k then its collision probability

is at most 1/2k.

Proof: For every a in X’s range, let pa be the probability that X = a.
Then,

∑
a p2

a ≤ maxa {pa} (
∑

a pa) ≤ 1
2k · 1 = 1

2k . �

Lemma 17.34 (Leftover hash lemma)
If x is chosen from a distribution on {0, 1}n with min-entropy at least k/δ

and H has collision error δ, then h(X) ◦ h has distance at most
√

2δ to the
uniform distribution.

Proof: Left as exercise. (Hint: use the relation between the L2 and L1

norms �

17.4.2 Extractors based upon random walks on expanders

This section assumes knowledge of random walks on expanders, as described
in Chapter 16.

Lemma 17.35
Let ε > 0. For every n and k ≤ n there exists a (k, ε)-extractor Ext :
{0, 1}n × {0, 1}t → {0, 1}n where t = O(n− k + log 1/ε).

Proof: Suppose X is an (n, k)-source and we are given a sample a from
it. Let G be a (2n, d, 1/2)-graph for some constant d (see Definition 16.9 and
Theorem 16.24).
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Let z be a truly random seed of length t = 10 log d(n − k + log 1/ε) =
O(n− k + log 1/ε). We interpret z as a random walk in G of length 10(n−
k + log 1/ε) starting from the node whose label is a. (That is, we think of z
as 10(n − k + log 1/ε) labels in [d] specifying the steps taken in the walk.)
The output Ext(a, z) of the extractor is the label of the final node on the
walk.

We have ‖X − 1‖2
2 ≤ ‖X‖2

2 =
∑

a Pr[X = a]2, which is at most 2−k by
Lemma 17.33 since X is an (n, k)-source. Therefore, after a random walk of
length t the distance to the uniform distribution is (by the upperbound in
(??)):

‖M tX − 1
2N

1‖1 ≤ λt
2‖X − 1

2N
1‖2

√
2N ≤ λt

22
(N−k)/2.

When t is a sufficiently large multiple of N − k + log 1/ε, this distance is
smaller than ε. �

17.4.3 An extractor based upon Nisan-Wigderson

Now we describe an elegant construction of extractors due to Trevisan.
Suppose we are given a string x obtained from an (N, k)-source. How can

we extract k random bits from it, given O(log N) truly random bits? Let us
check that the trivial idea fails. Using 2 log N random bits we can compute
a set of k (where k < N − 1) indices that are uniformly distributed and
pairwise independent. Maybe we should just output the corresponding bits
of x? Unfortunately, this does not work: the source is allowed to set N − k
bits (deterministically) to 0 so long as the remaining k bits are completely
random. In that case the expected number of random bits in our sample is
at most k2/N , which is less than even 1 if k <

√
N .

This suggests an important idea: we should first apply some transfor-
mation on x to “smear out” the randomness, so it is not localized in a few
bit positions. For this, we will use error-correcting codes. Recall that such
codes are used to introduce error-tolerance when transmitting messages over
noisy channels. Thus intuitively, the code must have the property that it
“smears” every bit of the message all over the transmitted message.

Having applied such an encoding to the weakly random string, the con-
struction selects bits from it using a better sampling method than pairwise
independent sampling, namely, the Nisan-Wigderson combinatorial design.

Nisan-Wigderson as a sampling method:

In (??) we defined a function NWf,S(z) using any function f : {0, 1}l →
{0, 1} and a combinatorial design S. Note that the definition works for
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every function, not just hard-to-compute functions. Now we observe that
NWf,S(z) is actually a way to sample entries from the truth table of f .

Think of f as a bitstring of length 2l, namely, its truth table. (Like-
wise, we can think of any circuit with l-bit inputs and with 0/1 outputs
as computing a string of length 2l.) Given any z (“the seed”), NWf,S(z)
is just a method to use z to sample a sequence of m bits from f . This is
completely analogous to pairwise independent sampling considered above;
see Figure ??.

Figure unavailable in pdf file.

Figure 17.3: Nisan-Wigderson as a sampling method: An (l, α)-design (S1, S2, . . . , Sm)
where each Si ⊆ [t], |Si| = l can be viewed as a way to use z ∈ {0, 1}t to sample m bits from
any string of length 2l, which is viewed as the truth table of a function f :{0, 1}l → {0, 1}.

List-decodable codes

The construction will use the following kind of codes.

Definition 17.36
If δ > 0, a mapping σ :{0, 1}N → {0, 1}N̄ is called an error-correcting code

that is list-decodable up to error 1/2−δ if for every w ∈ {0, 1}N̄ , the number
of y ∈ BN such that w, σ(y) disagree in at most 1/2 − δ fraction of bits is
at most 1/δ2.

The set
{

σ(x) : x ∈ {0, 1}N
}

is called the set of codewords.

The name “list-decodable” owes to the fact that if we transmit x over a noisy
channel after first encoding with σ then even if the channel flips 1/2 − δ
fraction of bits, there is a small “list” of y that the received message could
be decoded to. (Unique decoding may not be possible, but this will be of no
consequence in the construction below.) The exercises ask you to prove that
list-decodable codes exist with N̄ = poly(N, 1/δ), where σ is computable in
polynomial time.

Trevisan’s extractor:

Suppose we are given an (N, k)-source. We fix σ : {0, 1}N → {0, 1}N̄ , a
polynomial-time computable code that is list-decodable upto to error 1/2−
ε/m. We assume that N̄ is a power of 2 and let l = log2 N̄ . Now every string
x ∈ {0, 1}N̄ may be viewed as a boolean function < x >: {0, 1}log N̄ → {0, 1}
whose truth table is x. Let S = (S1, . . . , Sm) be a (l, log m) design over [t].

The extractor ExtNW : {0, 1}N × {0, 1}t → {0, 1}m is defined as
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ExtNWσ,S(x, z) = NW<σ(x)>,S(z) .

That is, ExtNW encodes its first (“weakly random”) input x using an error-
correcting code, then uses Nisan-Wigderson sampling on the resulting string
using the second (“truly random”) input z as a seed.

Lemma 17.37
For sufficiently large m and for ε > 2−m2

, ExtNWσ,S is a (m3, 2ε)-extractor.

Proof: Let X be an (N, k) source where the min-entropy k is m3. To
prove that the distribution ExtNW (a, z) where a ∈ X, z ∈ {0, 1}t is close
to uniform, it suffices (see our remarks after Definition 17.30) to show for
each function D : {0, 1}m → {0, 1} that∣∣∣Prr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣ ≤ 2ε. (18)

For the rest of this proof, we fix an arbitrary D and prove that (18) holds
for it.

The role played by this test D is somewhat reminiscent of that played
by the distinguisher algorithm in the definition of a pseudorandom genera-
tor, except, of course, D is allowed to be arbitrarily inefficient. This is why
we will use the black-box version of the Nisan-Wigderson analysis (Corol-
lary ??), which does not care about the complexity of the distinguisher.

Let B be the set of bad a’s for this D, where string a ∈ X is bad for D
if ∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣ > ε.

We show that B is small using a counting argument: we exhibit a 1-1
mapping from the set of bad a’s to another set G, and prove G is small.
Actually, here is G:

G =
{
circuits of size O(m2)

}
× {0, 1}2 log(m/ε) × {0, 1}2 .

The number of circuits of size O(m2) is 2O(m2 log m), so |G| ≤ 2O(m2 log m) ×
2(m/ε)2 = 2O(m2 log m).

Let us exhibit a 1-1 mapping from B to G. When a is bad, Corollary ??
implies that there is a circuit C of size O(m2) such that either the circuit
D(C()) or its negation –XORed with some fixed bit b—agrees with σ(a)
on a fraction 1/2 + ε/m of its entries. (The reason we have to allow either
D(C()) or its complement is the |·| sign in the statement of Corollary ??.)
Let w ∈ {0, 1}N̄ be the string computed by this circuit. Then σ(a) disagrees
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with w in at most 1/2 − ε/m fraction of bits. By the assumed property of
the code σ, at most (m/ε)2 other codewords have this property. Hence a
is completely specified by the following information: (a) circuit C; this is
specified by O(m2 log m) bits (b) whether to use D(C()) or its complement
to compute w, and also the value of the unknown bit b; this is specified by
2 bits (c) which of the (m/ε)2 codewords around w to pick as σ(a); this is
specified by d2 log(m/ε)e bits assuming the codewords around w are ordered
in some canonical way. Thus we have described the mapping from B to G.

We conclude that for any fixed D, there are at most 2O(m2 log m) bad
strings. The probability that an element a taken from X is bad for D is (by
Lemma ??) at most 2−m3 · 2O(m2 log m) < ε for sufficiently large m. We then
have ∣∣∣Prr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣
≤

∑
a

Pr[X = a]
∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣
≤ Pr[X ∈ B] + ε ≤ 2ε,

where the last line used the fact that if a 6∈ B, then by definition of B,∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]
∣∣∣ ≤ ε. �

The following theorem is an immediate consequence of the above lemma.

Theorem 17.38
Fix a constant ε; for every N and k = NΩ(1) there is a polynomial-time

computable (k, ε)-extractor Ext : {0, 1}N×{0, 1}t → {0, 1}m where m = k1/3

and t = O(log N).

17.5 Applications of Extractors

Extractors are deterministic objects with strong pseudorandom properties.
We describe a few important uses for them; many more will undoubtedly be
found in future.

17.5.1 Graph constructions

An extractor is essentially a graph-theoretic object; see Figure ??. (In fact,
extractors have been used to construct expander graphs.) Think of a (k, ε)
extractor Ext : {0, 1}N × {0, 1}t → {0, 1}m as a bipartite graph whose left
side contains one node for each string in {0, 1}N and the right side contains
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a node for each string in {0, 1}m. Each node a on the left is incident to 2t

edges, labelled with strings in {0, 1}t, with the right endpoint of the edge
labeled with z being Ext(a, z).

An (N, k)-source corresponds to any distribution on the left side with
min-entropy at least k. The extractor’s definition implies that picking a node
according to this distribution and a random outgoing edge gives a node on
the right that is essentially uniformly distributed.

Figure unavailable in pdf file.

Figure 17.4: An extractor Ext : {0, 1}N × {0, 1}T → {0, 1}m defines a bipartite graph
where every node on the left has degree 2T .

This implies in particular that for every set X on the left side of size
exactly 2k —notice, this is a special case of an (N, k)-source— its neighbor
set Γ(X) on the right satisfies |Γ(X)| ≥ (1− ε)2m.

One can in fact show a converse, that high expansion implies that the
graph is an extractor; see Chapter notes.

17.5.2 Running randomized algorithms using weak random
sources

We now describe how to use extractors to simulate probabilistic algorithms
using weak random sources. Suppose that A(·, ·) is a probabilistic algorithm
that on an input of length n uses m = m(n) random bits, and suppose that
for every x we have Prr[A(x, r) = right answer ] ≥ 3/4. If A’s answers are
0/1, then such algorithms can be viewed as defining a BPP language, but
here we allow a more general scenario. Suppose Ext : {0, 1}N × {0, 1}t →
{0, 1}m is a (k, 1/4)-extractor.

Consider the following algorithm A′: on input x ∈ {0, 1}n and given a
string a ∈ {0, 1}N from the weakly random source, the algorithm enumerates
all choices for the seed z and computes A(x,Ext(a, z). Let

A′(x, a) = majority value of
{
A(x, Ext(a, z)) : z ∈ {0, 1}t} (19)

The running time of A′ is approximately 2t times that of A. We show that if
a comes from an (n, k + 2) source, then A′ outputs the correct answer with
probability at least 3/4.

Fix the input x. Let R = {r ∈ {0, 1}m : A(x, r) = right answer }, and
thus |R| ≥ 3

42m. Let B be the set of strings a ∈ {0, 1}N for which the
majority answer computed by algorithm A′ is incorrect, namely,
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B =
{

a : Prz∈{0,1}t [A(x, Ext(a, z)) = right answer] < 1/2
}

=
{

a : Prz∈{0,1}t [Ext(a, z) ∈ R] < 1/2
}

claim: |B| ≤ 2k.
Let random variable Y correspond to picking an element uniformly at ran-
dom from B. Thus Y has min-entropy log B, and may be viewed as a
(N, log B)-source. By definition of B,

Pra∈Y,z∈{0,1}t [Ext(a, z) ∈ R] < 1/2.

But |R| = 3
42m, so we have∣∣∣Pra∈Y,z∈{0,1}t [Ext(a, z) ∈ R]−Prr∈{0,1}m [r ∈ R]

∣∣∣ > 1/4,

which implies that the statistical distance between the uniform distribution
and Ext(Y, z) is at least 1/4. Since Ext is a (k, 1/4)-extractor, Y must have
min-entropy less than k. Hence |B| ≤ 2k and the Claim is proved.

The correctness of the simulation now follows since

Pra∈X [A′(x, a) = right answer ] = 1−Pra∈X [a ∈ B]

≥ 1− 2−(k+2) · |B| ≥ 3/4, (by Lemma ??).

Thus we have shown the following.

Theorem 17.39
Suppose A is a probabilistic algorithm running in time TA(n) and using m(n)
random bits on inputs of length n. Suppose we have for every m(n) a con-

struction of a (k(n), 1/4)-extractor Extn : {0, 1}N × {0, 1}t(n) → {0, 1}m(n)

running in TE(n) time. Then A can be simulated in time 2t(TA + TE) using
one sample from a (N, k + 2) source.

17.5.3 Recycling random bits

We addressed the issue of recycling random bits in Section ??. An extractor
can also be used to recycle random bits. (Thus it should not be surprising
that random walks on expanders, which were used to recycle random bits in
Section ??, were also used to construct extractors above.)

Suppose A be a randomized algorithm that uses m random bits. Let
Ext : {0, 1}N × {0, 1}t) → {0, 1}m be any (k, ε)-extractor. Consider the
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following algorithm. Randomly pick a string a ∈ {0, 1}N , and obtain 2t

strings in {0, 1}m obtained by computing Ext(a, z) for all z ∈ {0, 1}t. Run A
for all these random strings. Note that this manages to run A as many as 2t

times while using only N random bits. (For known extractor constructions,
N � 2tm, so this is a big saving.)

Now we analyse how well the error goes down. Suppose D ⊆ {0, 1}m be
the subset of strings for which A gives the correct answer. Let p = |D| /2m;
for a BPP algorithm p ≥ 2/3. Call an a ∈ {0, 1}N bad if the above algorithm
sees the correct answer for less than p − ε fraction of z’s. If the set of all
bad a’s were to have size more than 2k, the (N, k)-source X corresponding
to drawing uniformly at random from the bad a’s would satisfy

Pr[Ext(X, Ut) ∈ D]− Pr[Um ∈ D] > ε,

which would contradict the assumption that Ext is a (k, ε)-extractor. We
conclude that the probability that the above algorithm gets an incorrect
answer from A in p− ε fraction of the repeated runs is at most 2k/2N .

17.5.4 Pseudorandom generators for spacebounded compu-
tation

Now we describe Nisan’s pseudo-random generators for space-bounded ran-
domized computation, which allows randomized logspace computations to
be run with O(log2 n) random bits.

Throughout this section we represent logspace machines by their config-
uration graph, which has size poly(n).

Theorem 17.40 (Nisan)
For every d there is a c > 0 and a polynomial-time computable function

g : {0, 1}c log2 n → {0, 1}nd

such that for every space-bounded machine M
that has a configuration graph of size ≤ nd on inputs of size n:∣∣∣∣∣ Pr

r∈{0,1}nd
[M(x, r) = 1]− Pr

z∈{0,1}c log2 n
[M(x, g(z)) = 1]

∣∣∣∣∣ <
1
10

. (20)

We give a proof due to Impagliazzo, Nisan, and Wigderson [?] (with
further improvements by Raz and Reingold [?]) that uses extractors. Nisan’s
original paper did not explicitly use extractors —the definition of extractors
came later and was influenced by results such as Nisan’s.

In fact, Nisan’s construction proves a result stronger than Theorem 17.40:
there is a polynomial-time simulation of every algorithm in BPL using
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O(log2 n) space. (See Exercises.) Note that Savitch’s theorem (Theorem ??)
also implies that BPL ⊆ SPACE(log2 n), but the algorithm in Savitch’s
proof takes nlog n time. Saks and Zhou [?] improved Nisan’s ideas to show
that BPL ⊆ SPACE(log1.5 n), which leads many experts to conjecture
that BPL = L (i.e., randomness does not help logspace computations at
all). (For partial progress, see Section ?? later.)

The main intuition behind Nisan’s construction —and also the conjecture
BPL = L— is that the logspace machine has one-way access to the random
string and only O(log n) bits of memory. So it can only “remember” O(log n)
of the random bits it has seen. To exploit this we will use the following simple
lemma, which shows how to recycle a random string about which only a little
information is known. (Throughout this section, ◦ denotes concatenation of
strings.)

Lemma 17.41 (Recycling lemma)
Let f :{0, 1}n → {0, 1}s be any function and Ext :{0, 1}n×{0, 1}t → {0, 1}m

be a (k, ε/2)-extractor, where k = n− (s + 1)− log 1
ε . When X ∈R {0, 1}n,

W ∈R {0, 1}m, z ∈R {0, 1}t, then

f(X) ◦W ≈ε f(X) ◦ Ext(X, z).

Remark 17.42
When the lemma is used, s � n and n = m. Thus f(X), which has length
s, contains only a small amount of information about X. The Lemma says
that using an appropriate extractor (whose random seed can have length as
small as t = O(s+log(1/ε)) if we use Lemma 17.35) we can get a new string
Ext(X, z) that looks essentially random, even to somebody who knows f(X).

Proof: For v ∈ {0, 1}s we denote by Xv the random variable that is uni-
formly distributed over the set f−1(v). Then we can express ‖ (f(X) ◦W −
f(X) ◦ Ext(X, z) ‖ as

=
1
2

∑
v,w

∣∣∣Pr[f(X) = v ∧W = w]− Pr
z

[f(X) = v ∧ Ext(X, z) = w]
∣∣∣

=
∑

v

Pr[f(X) = v]· ‖ W − Ext(Xv, z) ‖ (21)

Let V =
{
v : Pr[f(X) = v] ≥ ε/2s+1

}
. If v ∈ V , then we can view Xv

as a (n, k)-source, where k ≥ n − (s + 1) − log 1
ε . Thus by definition of

an extractor, Ext(Xv, r) ≈ε/2 W and hence the contributions from v ∈ V
sum to at most ε/2. The contributions from v 6∈ V are upperbounded by∑

v 6∈V Pr[f(X) = v] ≤ 2s × ε
2s+1 = ε/2. The lemma follows. �
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Now we describe how the Recycling Lemma is useful in Nisan’s construc-
tion. Let M be a logspace machine. Fix an input of size n and view the
graph of all configurations of M on this input as a leveled branching pro-
gram. For some d ≥ 1, M has ≤ nd configurations and runs in time L ≤ nd.
Assume without loss of generality —since unneeded random bits can always
be ignored— that it uses 1 random bit at each step. Without loss of gen-
erality (by giving M a separate worktape that maintains a time counter),
we can assume that the configuration graph is leveled: it has L levels, with
level i containing configurations obtainable at time i. The first level con-
tains only the start node and the last level contains two nodes, “accept” and
“reject;” every other level has W = nd nodes. Each level i node has two
outgoing edges to level i + 1 nodes and the machine’s computation at this
node involves using the next bit in the random string to pick one of these
two outgoing edges. We sometimes call L the length of the configuration
graph and W the width.

Figure unavailable in pdf file.

Figure 17.5: Configuration graph for machine M

For simplicity we first describe how to reduce the number of random
bits by a factor 2. Think of the L steps of the computation as divided in
two halves, each consuming L/2 random bits. Suppose we use some random
string X of length L/2 to run the first half, and the machine is now at node
v in the middle level. The only information known about X at this point
is the index of v, which is a string of length d log n. We may thus view
the first half of the branching program as a (deterministic) function that
maps {0, 1}L/2 bits to {0, 1}d log n bits. The Recycling Lemma allows us to
use a random seed of length O(log n) to recycle X to get an almost-random
string Ext(X, z) of length L/2, which can be used in the second half of the
computation. Thus we can run L steps of computation using L/2+O(log n)
bits, a saving of almost a factor 2. Using a similar idea recursively, Nisan’s
generator runs L steps using O(log n log L) random bits.

Now we formally define Nisan’s generator.

Definition 17.43 (Nisan’s generator)
For some r > 0 let Extk :{0, 1}kr×{0, 1}r → {0, 1}kr be an extractor function
for each k ≥ 0. For every integer k ≥ 0 the associated Nisan generator Gk :
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{0, 1}kr → {0, 1}2k
is defined recursively as (where |a| = (k − 1)r, |z| = r)

Gk(a ◦ z) =


z1 (i.e., first bit of z) k = 1

Gk−1(a) ◦Gk−1(Extk−1(a, z)) k > 1

Now we use this generator to prove Theorem 17.40. We only need to
show that the probability that the machine goes from the start node to the
“accept” node is similar for truly random strings and pseudorandom strings.
However, we will prove a stronger statement involving intermediate steps as
well.

If nodes u is a node in the configuration graph, and s is a string of
length 2k, then we denote by fu,2k(s) the node that the machine reaches
when started in u and its random string is s. Thus if s comes from some
distribution D, we can define a distribution fu,2k(D) on nodes that are 2k

levels further from u.

Theorem 17.44
Let r = O(log n) be such that for each k ≤ d log n, Extk :{0, 1}kr×{0, 1}r →
{0, 1}kr is a (kr − 2d log n, ε)-extractor. For every machine of the type de-
scribed in the previous paragraphs, and every node u in its configuration
graph:

‖ fu,2k(U2k)− fu,2k(Gk(Ukr)) ‖≤ 3kε, (22)

where Ul denotes the uniform distribution on {0, 1}l.

Remark 17.45
To prove Theorem 17.40 let u = u0, the start configuration, and 2k = L, the
length of the entire computation. Choose 3kε < 1/10 (say), which means
log 1/ε = O(log L) = O(log n). Using the extractor of Section 17.4.2 as Extk,
we can let r = O(log n) and so the seed length kr = O(r log L) = O(log2 n).

Proof: (Theorem 17.44) Let εk denote the maximum value of the left hand
side of (22) over all machines. The lemma is proved if we can show induc-
tively that εk ≤ 2εk−1 + 2ε. The case k = 1 is trivial. At the inductive step,
we need to upperbound the distance between two distributions fu,2k(D1),
fu,2k(D4), for which we introduce two distributions D2,D3 and use triangle
inequality:

‖ fu,2k(D1)− fu,2k(D4) ‖≤
3∑

i=1

‖ fu,2k(Di)− fu,2k(Di+1) ‖ . (23)
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The distributions will be:

D1 = U2k

D4 = Gk(Ukr)
D2 = U2k−1 ◦Gk−1(U(k−1)r)

D3 = Gk−1(U(k−1)r) ◦Gk−1(U ′
(k−1)r) (U,U ′ are identical but independent).

We bound the summands in (23) one by one.

Claim 1: ‖ fu,2k(D1)− fu,2k(D2) ‖≤ εk−1.
Denote Pr[fu,2k−1(U2k−1) = w] by pu,w and Pr[fu,2k−1(Gk−1(U(k−1)r)) = w]
by qu,w. According to the inductive assumption,

1
2

∑
w

|pu,w − qu,w| =‖ fu,2k−1(U2k−1)− fu,2k−1(Gk−1(U(k−1)r)) ‖≤ εk−1.

Since D1 = U2k may be viewed as two independent copies of U2k−1 we have

‖ fu,2k(D1)− fu,2k(D2) ‖ =
∑

v

1
2

∣∣∣∣∣∑
w

puwpwv −
∑
w

puwqwv

∣∣∣∣∣
where w, v denote nodes 2k−1 and 2k levels respectively from u

=
∑
w

puw
1
2

∑
v

|pwv − qwv|

≤ εk−1 (using inductive hypothesis and
∑
w

puw = 1)

Claim 2: ‖ fu,2k(D2)− fu,2k(D3) ‖≤ εk−1.

The proof is similar to the previous case.

Claim 3: ‖ fu,2k(D3)− fu,2k(D4) ‖≤ 2ε.
We use the Recycling Lemma. Let gu : {0, 1}(k−1)r → [1,W ] be defined as
gu(a) = fu,2k−1(Gk−1(a)). (To put it in words, apply the Nisan generator
to the seed a and use the result as a random string for the machine, using
u as the start node. Output the node you reach after 2k−1 steps.) Let
X, Y ∈ U(k−1)r and z ∈ Ur. According to the Recycling Lemma,

gu(X) ◦ Y ≈ε gu(X) ◦ Extk−1(X, z),
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and then part 3 of Lemma 17.31 implies that the equivalence continues to
hold if we apply a (deterministic) function to the second string on both
sides. Thus

gu(X) ◦ gw(Y ) ≈ε gu(X) ◦ gw(Extk−1(X, z))

for all nodes w that are 2k−1 levels after u. The left distribution corresponds
to fu,2k(D3) (by which we mean that Pr[fu,2k(D3) = v] =

∑
w Pr[gu(X) =

w ∧ gw(Y ) = v]) and the right one to fu,2k(D4) and the proof is completed.
�

Chapter notes and history

The results of this section have not been presented in chronological order
and some important intermediate results have been omitted. Yao [?] first
pointed out that cryptographic pseudorandom generators can be used to de-
randomize BPP. A short paper of Sipser [?] initiated the study of “hardness
versus randomness,” and pointed out the usefulness of a certain family of
highly expanding graphs that are now called dispersers (they are reminiscent
of extractors). This research area received its name as well as a thorough
and brilliant development in a paper of Nisan and Wigderson [?]. missing
discussion of followup works to NW94

Weak random sources were first considered in the 1950s by von Neu-
mann [?]. The second volume of Knuth’s seminal work studies real-life
pseudorandom generators and their limitations. The study of weak random
sources as defined here started with Blum [?]. Progressively weaker models
were then defined, culminating in the “correct” definition of an (N, k) source
in Zuckerman [?]. Zuckerman also observed that this definition generalizes
all models that had been studied to date. (See [?] for an account of various
models considered by previous researchers.) He also gave the first simula-
tion of probabilistic algorithms with such sources assuming k = Ω(N). A
succession of papers has improved this result; for some references, see the
paper of Lu, Reingold, Vadhan, and Wigderson [?], the current champion
in this area (though very likely dethroned by the time this book appears).

The earliest work on extractors —in the guise of leftover hash lemma of
Impagliazzo, Levin, and Luby [?] mentioned in Section 17.4.1— took place
in context of cryptography, specifically, cryptographically secure pseudoran-
dom generators. Nisan [?] then showed that hashing could be used to define
provably good pseudorandom generators for logspace.
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The notion of an extractor was first formalized by Nisan and Zucker-
man [?]. Trevisan [?] pointed out that any “black-box” construction of
a pseudorandom generator gives an extractor, and in particular used the
Nisan-Wigderson generator to construct extractors as described in the chap-
ter. His methodology has been sharpened in many other papers (e.g.,see [?]).

Our discussion of derandomization has omitted many important papers
that successively improved Nisan-Wigderson and culminated in the result
of Impagliazzo and Wigderson [?]that either NEXP = BPP (randomness
is truly powerful!) or BPP has an a subexponential “simulation.” 5 Such
results raised hopes that we were getting close to at least a partial de-
randomization of BPP, but these hopes were dashed by the Impagliazzo-
Kabanets [?] result of Section 17.3.

Trevisan’s insight about using pseudorandom generators to construct
extractors has been greatly extended. It is now understood that three com-
binatorial objects studied in three different fields are very similar: pseudo-
random generators (cryptography and derandomization), extractors (weak
random sources) and list-decodable error-correcting codes (coding theory
and information theory). Constructions of any one of these objects often
gives constructions of the other two. For a survey, see Vadhan’s lecture
notes [?].

Exercises

§1 Verify Corollary 17.6.

§2 Show that there exists a number ε > 0 and a function G : {0, 1}∗ →
{0, 1}∗ that satisfies all of the conditions of a 2εn-pseudorandom gener-
ator per Definition ??, save for the computational efficiency condition.

Hint:showthatifforeveryn,arandomfunctionmappingnbits
to2

n/10
bitswillhavedesiredpropertieswithhighprobabilities.

§3 Show by a counting argument (i.e., probabilistic method) that for every
large enough n there is a function f : {0, 1}n → {0, 1}, such that
Havg(f) ≥ 2n/10.

§4 Prove that if there exists f ∈ E and ε > 0 such that Havg(f)(n) ≥ 2εn

for every n ∈ N, then MA = NP.
5The “simulation” is in quotes because it could fail on some instances, but finding such

instances itself requires exponential computational power, which nature presumably does
not have.
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§5 We define an oracle Boolean circuit to be a Boolean circuit that have
special gates with unbounded fanin that are marked ORACLE. For a
Boolean circuit C and language O ⊆ {0, 1}∗, we define by CO(x) the
output of C on x, where the operation of the oracle gates when fed
input q is to output 1 iff q ∈ O.

(a) Prove that if every f ∈ E can be computed by a polynomial-
size circuits with oracle to SAT, then the polynomial hierarchy
collapses.

(b) For a function f : {0, 1}∗ → {0, 1} and O ⊆ {0, 1}∗, define
Havg

O(f) to be the function that maps every n ∈ N to the largest
S such that Prx∈R{0,1}n [CO(x) = f(x)] ≤ 1/2 + 1/S.

§6 Prove Lemma 17.31.

§7 Prove that for every function Ext : {0, 1}n → {0, 1}m and there exists
an (n, n − 1)-source X and a bit b ∈ {0, 1} such that Pr[Ext(X)1 =
b] = 1 (where Ext(X)1 denotes the first bit of Ext(X)). Prove that this
implies that δ(Ext(X), Um) ≥ 1/2.

§8 Show that there is a constant c > 0 such that if an algorithm runs in
time T and requires m random bits, and m > k + c log T , then it is
not possible in general to simulate it in a blackbox fashion using an
(N, k) source and O(log n) truly random bits.

Hint:Foreachsourceshowthatthereisarandomizedalgorithm
—itneednotbeefficient,sinceitisbeingusedasa“blackbox”—
forwhichthesimulationfails.

§9 A flat (N, k) source is a (N, k) source where for every x ∈ {0, 1}N px

is either 0 or exactly 2−k.

Show that a source X is an (N, k)-source iff it is a distribution on flat
sources. In other words, there is a set of flat (N, k)-sources X1, X2, . . .
and a distribution D on them such that drawing a sample of X corre-
sponds to picking one of the Xi’s according to D, and then drawing a
sample from Xi.

Hint:Youneedtoviewadistributionasapointina2
N

-
dimensionalspace,andshowthatXisintheconvexhullofthe
pointsthatrepresentallpossibleflatsources.
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§10 Use Nisan’s generator to give an algorithm that produces universal
traversal sequences for n-node graphs (see Definition ??) in nO(log n)-
time and O(log2 n) space.

§11 Suppose boolean function f is (S, ε)-hard and let D be the distribution
on m-bit strings defined by picking inputs x1, x2, . . . , xm uniformly at
random and outputting f(x1)f(x2) · · · f(xm). Show that the statistical
distance between D and the uniform distribution is at most εm.

§12 Prove Lemma 17.34.

§13 (Klivans and van Melkebeek 1999) Suppose the conclusion of Lemma ??
is true. Then show that MA ⊆ i.o.−[NTIME(2n)/n].

(Slightly harder) Show that if NEXP 6= EXP then AM ⊆ i.o.−[NTIME(2n)/n].

§14 Prove Lemma ??.

Hint:WhataretheeigenvectorsofG
l
?Youonlyneedtoidentify

nofthem.

§15 Show that if S is any subset of at most half the vertices in a multigraph
G = (V,E) then the number of edges

∣∣E(S, S)
∣∣ going from S to S is

at least (1− λ(G)) |S| /2.

Hint:UsetheCourant-Fishercharacterization.Youwillneedto
pickaparticularvectorthatisorthogonaltothefirsteigenvector,
whichis(1,1,...,1).
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