
DRAFT

Chapter 4

Diagonalization

“..the relativized P =?NP question has a positive answer for
some oracles and a negative answer for other oracles. We feel
that this is further evidence of the difficulty of the P =?NP
question.”
Baker, Gill, Solovay. [?]

One basic goal in complexity theory is to separate interesting complexity
classes. To separate two complexity classes we need to exhibit a machine in
one class that gives a different answer on some input from every machine in
the other class. This chapter describes diagonalization, essentially the only
general technique known for constructing such a machine. The first use of
diagonalization is to prove hierarchy theorems, according to which giving
Turing machines more computational resources (such as time, space, and
non-determinism) allows them to solve a strictly larger number of problems.
We will also use it to show that if P 6= NP then there exist problems that
are neither in P nor NP-complete.

Though diagonalization led to some of these early successes of complex-
ity theory, researchers realized in the 1970s that diagonalization alone may
not resolve P versus NP and other interesting questions; see Section 4.5.
Interestingly, the limits of diagonalization are proved using diagonalization.

This last result caused diagonalization to go out of favor for many years.
But some recent results (see Section 17.3 for an example) use diagonalization
as a key component. Thus future complexity theorists should master this
simple idea before going on to anything fancier!

Web draft 2006-09-28 18:09
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

81

DRAFT

82 4.1. TIME HIERARCHY THEOREM

Machines as strings and the universal TM. The one common tool
used in all diagonalization proofs is the representation of TMs by strings,
such that given a string x a universal TM can simulate the machine Mx

represented by x with a small (i.e. at most logarithmic) overhead, see The-
orems 1.6, ?? and ??. Recall that we assume that every string x represents
some machine and every machine is represented by infinitely many strings.
For i ∈ N, we will also use the notation Mi for the machine represented by
the string that is the binary expansion of the number i.

4.1 Time Hierarchy Theorem

The Time Hierarchy Theorem shows that allowing Turing Machines more
computation time strictly increases the class of languages that they can
decide. Recall that a function f :N → N is a time-constructible function if
there is a Turing machine that, given the input 1n, writes down 1f(n) on its
tape in O(f(n)) time. Usual functions like n log n or n2 satisfy this property,
and we will restrict attention to running times that are time-constructible.

Theorem 4.1
If f, g are time-constructible functions satisfying f(n) log f(n) = o(g(n)),
then

DTIME(f(n)) (DTIME(g(n)) (1)

Proof: To showcase the essential idea of the proof of Theorem 4.1, we prove
the simpler statement DTIME(n) DTIME(n1.5).

Consider the following Turing Machine D: “On input x, run for |x|1.4
steps the Universal TM U of Theorem 1.6 to simulate the execution of Mx

on x. If Mx outputs an answer in this time, namely, Mx(x) ∈ {0, 1} then
output the opposite answer (i.e., output 1−Mx(x)). Else output 0.” Here
Mx is the machine represented by the string x.

By definition, D halts within n1.4 steps and hence the language L decided
by D is in DTIME(n1.5). We claim that L 6∈ DTIME(n).

For contradiction’s sake assume that some TM M decides L but runs in
time cn on inputs of size n. Then every x ∈ {0, 1}∗, M(x) = D(x).

The time to simulate M by the universal Turing machine U on every
input x is at most c′c|x| log |x| for some constant c′ (depending on the al-
phabet size and number of tapes and states of M , but independent of |x|).
There exists a number n0 such that for every n ≥ n0, n1.4 > c′cn log n. Let
x be a string representing the machine M of length at least n0 (there exists
such a string since M is represented by infinitely many strings). Then, D(x)

Web draft 2006-09-28 18:09

DRAFT

4.2. SPACE HIERARCHY THEOREM 83

will obtain the output M(x) within |x|1.4 steps, but by definition of D, we
have D(x) = 1−M(x) 6= M(x). Thus we have derived a contradiction. �

Figure 4.1 shows why this method is called “diagonalization”.

Mx1

x1 x2 x3

Mx2

Mx3

....

0 1 1 1

1 1 0

0 1 0

0

1

D

Figure 4.1: If we order all the strings in {0, 1}∗ as x1, x2, . . . and have a table that
contains in its 〈i, j〉th location the value of the machine represented by xi on the input xi,
then on large enough inputs, the diagonalizer D from the proof of Theorem 4.1 computes
the function that is the negation of this table’s diagonal.

4.2 Space Hierarchy Theorem

The space hierarchy theorem is completely analogous to the time hierarchy
theorem. One restricts attention to space-constructible functions, which are
functions f :N→ N for which there is a machine that, given any n-bit input,
constructs f(n) in space O(f(n)). The proof of the next theorem is com-
pletely analogous to that of Theorem 4.1. (The theorem does not have the
log f(n) factor because the universal machine for space-bounded computa-
tion incurs only a constant factor overhead in space; see Theorem ??.)

Theorem 4.2
If f, g are space-constructible functions satisfying f(n) = o(g(n)), then

SPACE(f(n)) (SPACE(g(n)) (2)

Web draft 2006-09-28 18:09

DRAFT

84 4.3. NONDETERMINISTIC TIME HIERARCHY THEOREM

4.3 Nondeterministic Time Hierarchy Theorem

The following is the hierarchy theorem for non-deterministic Turing ma-
chines.

Theorem 4.3
If f, g are time constructible functions satisfying f(n+ 1) = o(g(n)), then

NTIME(f(n)) NTIME(g(n)) (3)

Proof: Again, we just showcase the main idea by proving NTIME(n)
NTIME(n1.5). The technique from the previous section does not directly
apply, since it has to determine the answer of a TM in order to flip it. To
determine the answer of a nondeterminisitic that runs in O(n) time, we
may need to examine as many as 2Ω(n) possible strings of non-deterministic
choices. So it is unclear that how the “diagonalizer” machine can determine
in O(n1.5) (or even O(n100)) time how to flip this answer. Instead we in-
troduce a technique called lazy diagonalization, which is only guaranteed to
flip the answer on some input in a fairly large range.

For every i ∈ N we denote by Mi the non-deterministic TM represented
by i’s binary expansion according to the universal NDTM NU (see The-
orem ??). We define the function f : N → N as follows: f(1) = 2 and
f(i+ 1) = 2f(i)1.2 . Note that given n, we can can easily find in O(n1.5) time
the number i such that n is sandwiched between f(i) and f(i + 1). Our
diagonalizing machine D will try to flip the answer of Mi on some input in
the set {1n : f(i) < n ≤ f(i+ 1)}. It is defined as follows:

“On input x, if x 6∈ 1∗, reject. If x = 1n, then compute i such that
f(i) < n ≤ f(i+ 1) and

1. If f(i) < n < f(i + 1) then simulate Mi on input 1n+1 using nonde-
terminism in n1.1 time and output its answer. (If the simulation takes
more than that then halt and accept.)

2. If n = f(i+ 1), accept 1n iff Mi rejects 1f(i)+1 in (f(i) + 1)1.5 time.”

Note that Part 2 requires going through all possible exp((f(i) + 1)1.1)
branches of Mi on input 1f(i)+1, but that is fine since the input size f(i+1)
is 2f(i)1.2 . We conclude that NDTM D runs in O(n1.5) time. Let L be the
language decided by D. We claim that L 6∈ NTIME(n).

Indeed, suppose for the sake of contradiction that L is decided by an
NDTM M running in cn steps (for some constant c). Since each NDTM is
represented by infinitely many strings, we can find i large enough such that

Web draft 2006-09-28 18:09

DRAFT

4.4. LADNER’S THEOREM: EXISTENCE OF NP-INTERMEDIATE
PROBLEMS. 85

M = Mi and on inputs of length n ≥ f(i), Mi can be simulated in less than
n1.1 steps. Thus the two steps in the description of D ensure respectively
that

If f(i) < n < f(i+ 1), then D(1n) = Mi(1n+1) (4)
D(1f(i+1)) 6= Mi(1f(i)+1) (5)

see Figure 4.2.

D(1f(i)+1) D(1f(i)+2) D(1f(i+1))

Mi(1
f(i)+1) Mi(1

f(i)+2) Mi(1
f(i+1))

= = = = = = = = =

=

Figure 4.2: The values of D and Mi on inputs 1n for n ∈ (f(i), f(i + 1)]. Full lines
denote equality by the design of D, dashed lines denote equality by the assumption that
D(x) = Mi(x) for every x, and the dashed arrow denotes inequality by the design of D.
Note that together all these relations lead to contradiction.

By our assumptionMi andD agree on all inputs 1n for n ∈ (f(i), f(i+1)].
Together with (4), this implies that D(1f(i+1)) = Mi(1f(i)+1), contradict-
ing(5). �

4.4 Ladner’s Theorem: Existence of NP-intermediate
problems.

One of the striking aspects of NP-completeness is the surprisingly large
number of NP-problems –including some that were studied for many decades—
that turned out to be NP-complete. This phenomenon suggests a bold con-
jecture: every problem in NP is either in P or NP complete. We show
that if P 6= NP then this is false —there is a language L ∈ NP \ P that
is not NP-complete. (If P = NP then the conjecture is trivially true but
uninteresting.) The rest of this section proves this.

Web draft 2006-09-28 18:09

DRAFT

86
4.4. LADNER’S THEOREM: EXISTENCE OF NP-INTERMEDIATE

PROBLEMS.

Theorem 4.4 (Ladner’s Theorem [?])
Suppose that P 6= NP. Then there exists a language L ∈ NP \ P that is
not NP-complete.

Proof: If P 6= NP then we know at least one language in NP\P: namely,
the NP-complete language SAT. Consider the language SATH of length n
satisfiable formulae that are padded with nH(n) 1’s for some polynomial-time
computable functionH : N→ N (i.e., SATH =

{
ψ01n

H(n)
: ψ ∈ SAT and n = |ψ|

}
).

Consider two possibilities:

(a) H(n) is at most some constant c for every n. In this case SATH is
simply SAT with a polynomial amount of “padding.” Thus, SATH is
also NP-complete and is not in P if P 6= NP.

(b) H(n) tends to infinity with n, and thus the padding is of superpolyno-
mial size. In this case, we claim that SATH cannot be NP-complete.
Indeed, if there is a O(ni)-time reduction f from SAT to SATH then
such a reduction reduces the satisfiability of SAT instances of length
n to instances of SATH of length O(ni), which must have the form
ψ01|ψ|H(|ψ|)

, where |ψ| + |ψ|H(|ψ|) = O(ni), and hence |ψ| = o(n). In
other words, we have a polynomial-time reduction from SAT instances
of length n to SAT instances of length o(n), which implies SAT can
be solved in polynomial time. (The algorithm consists of applying the
reduction again and again, reducing the size of the instances each time
until the instance is of size O(1) and can be solved in O(1) time by
brute force) This is a contradiction to the assumption P 6= NP.

The proof of the Theorem uses a language SATH for a function H that
in some senses combines the two cases above. This function tends to infinity
with n, so that SATH is not NP-complete as in Case (b), but grows slowly
enough to assure SATH 6∈ P as in Case (a). Function H is defined as follows:

H(n) is the smallest number i < log log n such that for every
x ∈ {0, 1}∗ with |x| ≤ log n,

Mi halts on x within i|x|i steps and Mi outputs 1 iff x ∈ SATH

where Mi is the machine represented by the binary expansion of
i according to the representation scheme of the universal Turing
machine U of Theorem 1.6. If there is no such i then we let
H(n) = log log n.

Web draft 2006-09-28 18:09

DRAFT

4.4. LADNER’S THEOREM: EXISTENCE OF NP-INTERMEDIATE
PROBLEMS. 87

Notice, this is implicitly a recursive definition since the definition ofH de-
pends on SATH , but a moment’s thought shows that H is well-defined since
H(n) determines membership in SATH of strings whose length is greater
than n, and the definition of H(n) only relies upon checking the status of
strings of length at most log n.

There is a trivial algorithm to compute H(n) in O(n3) time. After
all, we only need to (1) compute H(k) for every k ≤ log n, (2) simu-
late at most log log n machines for every input of length at most log n for
log log n(log n)log logn = o(n) steps, and (3) compute SAT on all the inputs
of length at most log n.

Now we have the following two claims.

claim 1: SATH is not in P. Suppose, for the sake of contradiction, that
there is a machine M solving SATH in at most cnc steps. Since M is repre-
sented by infinitely many strings, there is a number i > c such that M = Mi.
By the definition of H(n) this implies that for n > 22i , H(n) ≤ i. But this
means that for all sufficiently large input lengths, SATH is simply the lan-
guage SAT padded with a polynomial (i.e., ni) number of 1’s, and so cannot
be in P unless P = NP.

claim 2: SATH is not NP-complete. As in Case (b), it suffices to show that
H(n) tends to infinity with n. We prove the equivalent statement that for
every integer i, there are only finitely many n’s such that H(n) = i: since
SATH 6∈ P, for each i we know that there is an input x such that given i|x|i
time, Mi gives the incorrect answer to whether or not x ∈ SATH . Then the
definition of H ensures that for every n > 2|x|, H(x) 6= i.

�

Remark 4.5
We do not know of a natural decision problem that, assuming NP 6= P, is
proven to be in NP \ P but not NP-complete, and there are remarkably
few candidates for such languages. However, there are a few fascinating
examples for languages not known to be either in P nor NP-complete. Two
such examples are the Factoring and Graph isomorphism languages (see
Example 2.3). No polynomial-time algorithm is currently known for these
languages, and there is some evidence that they are not NP complete (see
Chapter 9).

Web draft 2006-09-28 18:09

DRAFT

88
4.5. ORACLE MACHINES AND THE LIMITS OF

DIAGONALIZATION?

4.5 Oracle machines and the limits of diagonaliza-
tion?

Quantifying the limits of “diagonalization” is not easy. Certainly, the di-
agonalization in Sections 4.3 and 4.4 seems more clever than the one in
Section 4.1 or the one that proves the undecidability of the halting problem.

For concreteness, let us say that “diagonalization” is any technique that
relies upon the following properties of Turing machines

1. The existence of an effective representation of Turing machines by
strings.

2. The ability of one TM to simulate any another without much overhead
in running time or space.

Any argument that only uses these facts is treating machines as black-
boxes: the machine’s internal workings do not matter. We show a general
way to define a variant of Turing Machines called oracle Turing Machines
that still satisfy the above two properties. However, one way of defining the
variants results in TMs for which P = NP, whereas the other way results
in TMs for which P 6= NP. We conclude that to resolve P versus NP we
need to use some other property besides the above two.

Oracle machines will be used elsewhere in this book in other contexts.
These are machines that are given access to an “oracle” that can magically
solve the decision problem for some language O ⊆ {0, 1}∗. The machine has
a special oracle tape on which it can write a string q ∈ {0, 1}∗ on a and in
one step gets an answer to a query of the form “Is q in O?”. This can be
repeated arbitrarily often with different queries. If O is a difficult language
that cannot be decided in polynomial time then this oracle gives an added
power to the TM.

Definition 4.6 (Oracle Turing Machines)
An oracle Turing machine is a TM M that has a special read/write tape we
call M ’s oracle tape and three special states qquery, qyes, qno. To execute M ,
we specify in addition to the input a language O ⊆ {0, 1}∗ that is used as
the oracle for M . Whenever during the execution M enters the state qquery,
the machine moves into the state qyes if q ∈ O and qno if q 6∈ O, where q
denotes the contents of the special oracle tape. Note that, regardless of the
choice of O, a membership query to O counts only as a single computational
step. If M is an oracle machine, O ⊆ {0, 1}∗ a language, and x ∈ {0, 1}∗,
then we denote the output of M on input x and with oracle O by MO(x).

Nondeterministic oracle TMs are defined similarly.

Web draft 2006-09-28 18:09

DRAFT

4.5. ORACLE MACHINES AND THE LIMITS OF
DIAGONALIZATION? 89

Definition 4.7
For every O ⊆ {0, 1}∗, PO is the set of languages decided by a polynomial-
time deterministic TM with oracle access to O and NPO is the set of lan-
guages decided by a polynomial-time non-deterministic TM with oracle ac-
cess to O.

To illustrate these definitions we show a few simple claims.

Claim 4.8
1. Let SAT denote the language of unsatisfiable formulae. Then SAT ∈

PSAT.

2. Let O ∈ P. Then PO = P.

3. Let TQBF be the PSPACE-complete language of true quantified
Boolean formulae (see Section 3.3). Then PTQBF = NPTQBF = PSPACE.

Proof:

1. Given oracle access to SAT, to decide whether a formula ϕ is in SAT,
the machine asks the oracle if ϕ ∈ SAT, and then gives the opposite
answer as its output.

2. Allowing an oracle can only help compute more languages and so P ⊆
PO. If O ∈ P then it is redundant as an oracle, since we can transform
any polynomial-time oracle TM using O into a standard (no oracle)
by simply replacing each oracle call with the computation of O. Thus
PO ⊆ P.

3. Because TQBF is PSPACE-complete, we can decide every language in
PSPACE using one oracle call to it, and hence PSPACE ⊆ PTQBF.
Note also that clearly PTQBF ⊆ NPTQBF. If M is a non-deterministic
polynomial-time oracle TM, we can simulate its execution with a
TQBF oracle in polynomial space: it only requires polynomial space to
enumerate all of M ’s non-deterministic choices and to solve the TQBF
oracle queries. Thus, PSPACE ⊆ PTQBF ⊆ NPTQBF ⊆ PSPACE.

�

The key fact to note about oracle TMs is the following: Regardless of
what oracle O is, the set of all oracle TM’s with access to oracle O satisfy
Properties 1 and 2 above. The reason is that we can represent TMs with
oracle O as strings, and we have a universal TM OU that, using access

Web draft 2006-09-28 18:09

DRAFT

90
4.5. ORACLE MACHINES AND THE LIMITS OF

DIAGONALIZATION?

to O, can simulate every such machine with logarithmic overhead, just as
Theorem 1.6 shows for non-oracle machines. Indeed, we can prove this in
exactly the same way of Theorem 1.6, except that whenever in the simulation
M makes an oracle query, OU forwards the query to its own oracle.

Thus any result about TMs or complexity classes that uses only Prop-
erties 1 and 2 above also holds for the set of all TMs with oracle O. Such
results are called relativizing results.

All of the results on universal Turing machines and the diagonalizations
results in this chapter are of this type.

The next theorem implies that whichever of P = NP or P 6= NP is
true, it cannot be a relativizing result.

Theorem 4.9 (Baker, Gill, Solovay [?])
There exist oracles A,B such that PA = NPA and PB 6= NPB.

Proof: As seen in Claim 4.8, we can use A = TQBF. Now we construct B.
For any language B, let UB be the unary language

UB = {1n : some string of length n is in B} .

For every oracleB, the language UB is clearly in NPB, since a non-deterministic
TM can make a non-deterministic guess for the string x ∈ {0, 1}n such that
x ∈ B. Below we construct an oracle B such that UB 6∈ PB, implying that
PB 6= NPB.

Construction of B: For every i, we let Mi be the oracle TM represented
by the binary expansion of i. We construct B in stages, where stage i ensures
that MB

i does not decide UB in 2n/10 time. Initially we let B be empty, and
gradually add strings to it. Each stage determines the status (i.e., whether
or not they will ultimately be in B) of a finite number of strings.

Stage i: So far, we have declared for a finite number of strings whether
or not they are in B. Choose n large enough so that it exceeds the length
of any such string, and run Mi on input 1n for 2n/10 steps. Whenever
it queries the oracle about strings whose status has been determined, we
answer consistently. When it queries strings whose status is undetermined,
we declare that the string is not in B. Note that until this point, we have
not declared that B has any string of length n. Now we make sure that
if Mi halts within 2n/10 steps then its answer on 1n is incorrect. If Mi

accepts, we declare that all strings of length n are not in B, thus ensuring
1n 6∈ Bu. If Mi rejects, we pick a string of length n that it has not queried
(such a string exists because Mi made at most 2n/10 queries) and declare

Web draft 2006-09-28 18:09

DRAFT

4.5. ORACLE MACHINES AND THE LIMITS OF
DIAGONALIZATION? 91

that it is in B, thus ensuring 1n ∈ Bu. In either case, the answer of Mi is
incorrect. Our construction ensures that UB is not in PB (and in fact not
in DTIMEB(f(n)) for every f(n) = o(2n)). �

Let us now answer our original question: Can diagonalization or any
simulation method resolve P vs NP? Answer: Possibly, but it has to use
some fact about TMs that does not hold in presence of oracles. Such facts
are termed nonrelativizing and we will later see examples of such facts.
However, a simple one was already encountered in Chapter ??: the Cook-
Levin theorem! It is not true for a general oracle A that every language
L ∈ NPA is polynomial-time reducible to 3SAT (see Exercise 6). Note
however that nonrelativizing facts are necessary, not sufficient. It is an open
question how to use known nonrelativizing facts in resolving P vs NP (and
many interesting complexity theoretic conjectures).

Whenever we prove a complexity-theoretic fact, it is useful to check
whether or not it can be proved using relativizing techniques. The reader
should check that Savitch’s theorem (Corollary ??) and Theorem 3.18 do
relativize.

Later in the book we see other attempts to separate complexity classes,
and we will also try to quantify —using complexity theory itself!—why they
do not work for the P versus NP question.

What have we learned?

• Diagonalization uses the representation of Turing machines as strings to sep-
arate complexity classes.

• We can use it to show that giving a TM more of the same type of resource
(time, non-determinism, space) allows it to solve more problems, and to show
that, assuming NP 6= P, NP has problems neither in P nor NP-complete.

• Results proven solely using diagonalization relativize in the sense that they
hold also for TM’s with oracle access to O, for every oracle O ⊆ {0, 1}∗. We
can use this to show the limitations of such methods. In particular, relativizing
methods alone cannot resolve the P vs. NP question.

Chapter notes and history

Georg Cantor invented diagonalization in the 19th century to show that the
set of real numbers is uncountable. Kurt Gödel used a similar technique in

Web draft 2006-09-28 18:09

DRAFT

92
4.5. ORACLE MACHINES AND THE LIMITS OF

DIAGONALIZATION?

his proof of the Incompleteness Theorem. Computer science undergraduates
often encounter diagonalization when they are taught the undecidabilty of
the Halting Problem.

The time hierarchy theorem is from Hartmanis and Stearns’ pioneering
paper [?]. The space hierarchy theorem is from Stearns, Hartmanis, and
Lewis [?]. The nondeterministic time hierarchy theorem is from Cook [?],
though the simple proof given here is essentially from [?]. A similar proof
works for other complexity classes such as the (levels of the) polynomial
hierarchy discussed in the next chapter. Ladner’s theorem is from [?] but
the proof here is due to an unpublished manuscript by Impagliazzo. The
notion of relativizations of the P versus NP question is from Baker, Gill,
and Solovay [?], though the authors of that paper note that other researchers
independently discovered some of their ideas. The notion of relativization is
related to similar ideas in logic (such as independence results) and recursive
function theory.

The notion of oracle Turing machines can be used to study interrelation-
ships of complexity classes. In fact, Cook [?] defined NP-completeness using
oracle machines. A subfield of complexity theory called structural complex-
ity has carried out a detailed study of oracle machines and classes defined
using them; see [].

Whether or not the Cook-Levin theorem is a nonrelativizing fact de-
pends upon how you formalize the question. There is a way to allow the
3SAT instance to “query” the oracle, and then the Cook-Levin theorem does
relativize. However, it seems safe to say that any result that uses the locality
of computation is looking at the internal workings of the machine and hence
is potentially nonrelativizing.

The term superiority introduced in the exercises does not appear in the
literature but the concept does. In particular, ??? have shown the limita-
tions of relativizing techniques in resolving certain similar open questions.

Exercises

§1 Show that the following language is undecidable:{
xMy : M is a machine that runs in 100n2 + 200 time

}
.

§2 Show that SPACE(n) 6= NP. (Note that we do not know if either
class is contained in the other.)

§3 Show that there is a language B ∈ EXP such that NPB 6= PB.

Web draft 2006-09-28 18:09

DRAFT

4.5. ORACLE MACHINES AND THE LIMITS OF
DIAGONALIZATION? 93

§4 Say that a class C1 is superior to a class C2 if there is a machine M1

in class C1 such that for every machine M2 in class C2 and every large
enough n, there is an input of size between n and n2 on which M1 and
M2 answer differently.

(a) Is DTIME(n1.1) superior to DTIME(n)?

(b) Is NTIME(n1.1) superior to NTIME(n)?

§5 Show that there exists a function that is not time-constructible.

§6 Show that there is an oracle A and a language L ∈ NPA such that
L is not polynomial-time reducible to 3SAT even when the machine
computing the reduction is allowed access to A.

§7 Suppose we pick a random language B, by deciding for each string
independently and with probability 1/2 whether or not it is in B.
Show that with high probability PB 6= NPB. (To give an answer that
is formally correct you may need to know elementary measure theory.)

Web draft 2006-09-28 18:09

DRAFT

94
4.5. ORACLE MACHINES AND THE LIMITS OF

DIAGONALIZATION?

Web draft 2006-09-28 18:09

	Diagonalization
	Time Hierarchy Theorem
	Space Hierarchy Theorem
	Nondeterministic Time Hierarchy Theorem
	Ladner's Theorem: Existence of NP-intermediate problems.
	Oracle machines and the limits of diagonalization?
	Chapter notes and history
	Exercises

