
DRAFT

Introduction

“As long as a branch of science offers an abundance of problems,
so long it is alive; a lack of problems foreshadows extinction or
the cessation of independent development.”
David Hilbert, 1900

“The subject of my talk is perhaps most directly indicated by sim-
ply asking two questions: first, is it harder to multiply than to
add? and second, why?...I (would like to) show that there is no
algorithm for multiplication computationally as simple as that for
addition, and this proves something of a stumbling block.”
Alan Cobham, 1964 [?]

The notion of computation has existed in some form for thousands of
years. In its everyday meaning, this term refers to the process of producing
an output from a set of inputs in a finite number of steps. Here are some
examples of computational tasks:

• Given two integer numbers, compute their product.

• Given a set of n linear equations over n variables, find a solution if it
exists.

• Given a list of acquaintances and a list of containing all pairs of indi-
viduals who are not on speaking terms with each other, find the largest
set of acquaintances you can invite to a dinner party such that you do
not invite any two who are not on speaking terms.

In the first half of the 20th century, the notion of “computation” was
made much more precise than the hitherto informal notion of “a person writ-
ing numbers on a notepad following certain rules.” Many different models
of computation were discovered —Turing machines, lambda calculus, cellu-
lar automata, pointer machines, bouncing billiards balls, Conway’s Game of

Web draft 2006-09-28 18:09
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

1



DRAFT

2

life, etc.— and found to be equivalent. More importantly, they are all uni-
versal, which means that each is capable of implementing all computations
that we can conceive of on any other model (see Chapter 1). The notion
of universality motivated the invention of the standard electronic computer,
which is capable of executing all possible programs. The computer’s rapid
adoption in society in the subsequent half decade brought computation into
every aspect of modern life, and made computational issues important in
design, planning, engineering, scientific discovery, and many other human
endeavors.

However, computation is not just a practical tool (the “modern slide
rule”), but also a major scientific concept. Generalizing from models such
as cellular automata, many scientists have come to view many natural phe-
nomena as akin to computational processes. The understanding of repro-
duction in living things was triggered by the discovery of self-reproduction
in computational machines. (In fact, a famous article by Pauli predicted
the existence of a DNA-like substance in cells almost a decade before Wat-
son and Crick discovered it.) Today, computational models underlie many
research areas in biology and neuroscience. Several physics theories such as
QED give a description of nature that is very reminiscent of computation,
motivating some scientists to even suggest that the entire universe may be
viewed as a giant computer (see Lloyd [?]). In an interesting twist, such
physical theories have been used in the past decade to design a model for
quantum computation; see Chapter 21.

From 1930s to the 1950s, researchers focused on computation in the ab-
stract and tried to understand its power. They developed a theory of which
algorithmic problems are computable. Many interesting algorithmic tasks
have been found to be uncomputable or undecidable: no computer can solve
them without going into infinite loops (i.e., never halting) on certain inputs.
Though a beautiful theory, it will not be our focus here. (But, see Sipser [?]
or Rogers [?].) Instead, we focus on issues of computational efficiency. Com-
putational complexity theory asks the following simple question: how much
computational resources are required to solve a given computational task?
Below, we discuss the meaning of this question.

Though complexity theory is usually studied as part of Computer Sci-
ence, the above discussion suggests that it will be of interest in many other
disciplines. Since computational processes also arise in nature, understand-
ing the resource requirements for computational tasks is a very natural sci-
entific question. The notion of proof and good characterization are basic to
mathematics, and many aspects of the famous P versus NP question have
a bearing on such issues, as will be pointed out in several places in the book

Web draft 2006-09-28 18:09



DRAFT

3

(see Chapters 2, 9 and 19). Optimization problems arise in a host of dis-
ciplines including the life sciences, social sciences and operations research.
Complexity theory provides strong evidence that, like the independent set
problem, many other optimization problems are likely to be intractable and
have no efficient algorithm (see Chapter 2). Our society increasingly re-
lies every day on digital cryptography, which is based upon the (presumed)
computational difficulty of certain problems (see Chapter 10). Randomness
and statistics, which revolutionized several sciences including social sciences,
acquire an entirely new meaning once one throws in the notion of computa-
tion (see Chapters 7 and 17). In physics, questions about intractability and
quantum computation may help to shed light on the fundamental properties
of matter (see Chapter 21).

Meaning of efficiency

Now we explain the notion of computational efficiency and give examples.
A simple example, hinted at in Cobham’s quote at the start of the chap-

ter, concerns multiplying two integers. Consider two different methods (or
algorithms) for this task. The first is repeated addition: to compute a ·b, just
add a to itself b times. The other is the gradeschool algorithm illustrated in
Figure 1. Though the repeated addition algorithm is perhaps simpler than
the gradeschool algorithm, we somehow feel that the latter is better. Indeed,
it is much more efficient. For example, multiplying 577 and 423 by repeated
addition requires 577 additions, whereas doing it with the gradeschool al-
gorithm requires only 3 additions and 3 multiplications of a number by a
single digit.

We will quantify the efficiency of an algorithm by studying the number of
basic operations it performs as the size of the input increases. Here, the basic
operations are single-digit addition and multiplication. (In other settings,
we may wish to throw in division as a basic operation.) The size of the input
is the number of digits in the numbers. The number of basic operations used
to multiply two n-digit numbers (i.e., numbers between 10n−1 and 10n) is
at most 2n2 for the gradeschool algorithm and at least n10n−1 for repeated
addition. Phrased this way, the huge difference between the two algorithms
is apparent: even for 11-digit numbers, a pocket calculator running the
gradeschool algorithm would beat the best current supercomputers running
the repeated addition algorithm. For slightly larger numbers even a fifth
grader with pen and paper would outperform a supercomputer. We see
that the efficiency of an algorithm is to a considerable extent much more

Web draft 2006-09-28 18:09



DRAFT

4

4 2 3
5 7 7

2 9 6 1
2 9 6 1

2 1 1 5
2 4 3 0 7 1

Figure 1: Grade-school algorithm for multiplication. Illustrated for computing 423 ·577.

important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication
that uses the Fast Fourier Transform. It was only discovered some 40 years
ago and multiplies two n-digit numbers using cn log n operations where c is
some absolute constant independent on n. Using the familiar asymptotic
notation, we call this an O(n log n)-step algorithm.

Similarly, for the problem of solving linear equations, the classic Gaus-
sian elimination algorithm (named after Gauss but known in some form to
Chinese mathematicians of the first century) uses O(n3) basic arithmetic
operations to solve n equations over n variables. In the late 1960’s, Strassen
found a more efficient algorithm that uses roughly O(n2.81) operations, and
the best current algorithm takes O(n2.376) operations.

The dinner party problem also has an interesting story. As in the case of
multiplication, there is an obvious and simple inefficient algorithm: try all
possible subsets of the n people from the largest to the smallest, and stop
when you find a subset that does not include any pair of guests who are not
on speaking terms. This algorithm can take as much time as the number
of subsets of a group of n people, which is 2n. This is highly unpractical
—an organizer of, say, a 70-person party, would need to plan at least a
thousand years in advance, even if she has a supercomputer at her disposal.
Surprisingly, we still do not know of a significantly better algorithm. In
fact, as we will see in Chapter 2, we have reasons to suspect that no efficient
algorithm exists for this problem. We will see that this problem is equivalent
to the independent set problem, which, together with thousands of other
famous problems, is NP-complete. The famous “P versus NP” question
asks whether or not any of these problems has an efficient algorithm.

Web draft 2006-09-28 18:09



DRAFT

5

Proving nonexistence of efficient algorithms

We have seen that sometimes computational problems have nonintuitive al-
gorithms, which are quantifiably better (i.e., more efficient) than algorithms
that were known for thousands of years. It would therefore be really interest-
ing to prove for interesting computational tasks that the current algorithm is
the best —in other words, no better algorithms exist. For instance, we could
try to prove that the O(n log n)-step algorithm for multiplication can never
be improved (thus implying that multiplication is inherently more difficult
than addition, which does have an O(n)-step algorithm). Or, we could try
to prove that there is no algorithm for the dinner party problem that takes
fewer than 2n/10 steps.

It may be possible to mathematically prove such statements, since com-
putation is a mathematically precise notion. There are several precedents
for proving impossibility results in mathematics, such as the independence
of Euclid’s parallel postulate from the other basic axioms of geometry, or the
impossibility of trisecting an arbitrary angle using a compass and straight-
edge. Impossibility proofs are among the most interesting, fruitful, and
surprising results in mathematics.

Subsequent chapters of this book identify many interesting questions
about the inherent computational complexity of tasks, usually with respect
to the Turing Machine model. Most such questions are still unanswered, but
tremendous progress has been made in the past few decades in showing that
many of the questions are interrelated, sometimes in unexpected ways. This
interrelationship is usually exhibited using a reduction. For an intriguing
example of this, see the last chapter (Chapter 23), which uses computa-
tional complexity to explain why we are stuck in resolving the central open
questions concerning computational complexity.

Web draft 2006-09-28 18:09



DRAFT

6

Web draft 2006-09-28 18:09



DRAFT

7

Conventions: A whole number is a number in the set Z = {0,±1,±2, . . .}.
A number denoted by one of the letters i, j, k, `, m, n is always assumed to
be whole. If n ≥ 1, then we denote by [n] the set {1, . . . , n}. For a real
number x, we denote by dx e the smallest n ∈ Z such that n ≥ x and by
bx c the largest n ∈ Z such that n ≤ x. Whenever we use a real number
in a context requiring a whole number, the operator d e is implied. We
denote by log x the logarithm of x to the base 2. We say that a condition
holds for sufficiently large n if it holds for every n ≥ N for some number N
(for example, 2n > 100n2 for sufficiently large n). We use expressions such
as

∑
i f(i) (as opposed to, say,

∑n
i=1 f(i)) when the range of values i takes

is obvious from the context. If u is a string or vector, then ui denotes the
value of the ith symbol/coordinate of u.

Web draft 2006-09-28 18:09



DRAFT

8

Web draft 2006-09-28 18:09


	Introduction

