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Chapter 22

Logic in complexity theory

Very sketchy

As mentioned in the book’s introduction, complexity theory (indeed, all
of computer science) arose from developments in mathematical logic in the
first half of the century. Mathematical logic continues to exert an influence
today, suggesting terminology and choice of problems (e.g., “boolean sat-
isfiability”) as well as approaches for attacking complexity’s central open
questions. This chapter is an introduction to the basic concepts.

Mathematical logic has also influenced many other areas of computer
science, such as programming languages, program verification, and model
checking. We will not touch upon them, except to note that they supply
interesting examples of hard computational problems —ranging from NP-
complete to EXPSPACE-complete to undecidable.

The rest of the chapter assumes only a nodding familiarity with logic
terminology, which we now recount informally; for details see a logic text.

A logic usually refers to a set of rules about constructing valid sentences.
Here are a few logics we will encounter. Propositional logic concerns sen-
tences such as (p∨¬q)∧ (¬p∨ r) where p, q, r are boolean variables. Recall
that the SAT problem consists of determining the satisfiability of such sen-
tences. In first order logic, we allow relation and function symbols as well
as quantification symbols ∃ and ∀. For instance, the statement ∀xS(x) 6= x
is a first order sentence in which x is quantified universally, S() is a unary
relation symbol and 6= is a binary relation. Such logics are used in well-
known axiomatizations of mathematics, such as Euclidean geometry, Peano
Arithmetic or Zermelo Frankel set theory. Finally, second order logic allows
sentences in which one is allowed quantification over structures, i.e., func-
tions and relations. An example of a second order sentence is ∃S∀xS(x) 6= x,
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where S is a unary relation symbol.
A sentence (or collection of sentences) in a logic has no intrinsic “mean-

ing.” The meaning —including truth or falsehood—can be discussed only
with reference to a structure, which gives a way of interpreting all symbols
in the sentence. To give an example, Peano arithmetic consists of five sen-
tences (“axioms”) in a logic that consists of symbols like S(x), =, + etc. The
standard structure of these sentences is the set of positive integers, with S()
given the intepretation of “successor function,” + given the interpretation
of addition, and so on. A structure is said to be a model for a sentence or a
group of sentences if those sentences are true in that structure.

Finally, a proof system consists of a set of sentences Σ called axioms and
one or more derivation rules for deriving new sentences from the axioms.
We say that sentence σ can be proved from Σ, denoted Σ ` σ, if it can be
derived from Σ using a finite number of applications of the derivation rules.
A proveable sentence is called a theorem.

Note that a theorem is a result of a mechanical (essentially, algorithmic)
process of applying derivation rules to the axioms. There is a related notion
of whether or not σ is logically implied by Σ, denoted Σ |= σ, which means
that every model of Σ is also a model of σ. In other words, there is no
“counterexample model” in which the axioms Σ are true but σ is not. The
two notions are in general different but Gödel in his completeness theorem
for first order theories exhibited a natural set of derivation rules such that
logically implied sentences are exactly the set of theorems. (This result was
a stepping stone to his even more famous incompleteness theorem.)

Later in this chapter we give a complexity-theoretic definition of a proof
system, and introduce the area of proof complexity that studies the size of
the smallest proof of a mathematical statement in a given proof system.

22.1 Logical definitions of complexity classes

Just as Church and others defined computation using logic without refer-
ring to any kind of computing machine, it is possible to give “machineless”
characterizations of many complexity classes using logic. We describe a few
examples below.

22.1.1 Fagin’s definition of NP

In 1974, just as the theory of NP-completeness was coming into its own,
Fagin showed how to define NP using second-order logic. We describe his
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idea using an example.

Example 22.1
(Representing 3-COLOR) We show how to represent the set of 3-colorable
graphs using second order logic.

Let E be a symbol for a binary relation, and C0, C1, C2 be symbols
for unary relations, and φ(E,C0, C1, C2) be a first order formula that is a
conjunction of the following formulae where i + 1, i + 2 are meant to be
understood modulo 3:

∀u, v E(u, v) = E(v, u) (1)
∀u ∧i=1,2,3 (Ci(u) ⇒ ¬(Ci+1(u) ∨ Ci+2(u)) (2)
∀uCi(u) ∨ Ci+1(u) ∨ Ci+2(u) (3)
∀u, v E(u, v) ⇒ ∧i=1,2,3(Ci(u) ⇒ ¬Ci(v)) (4)

What set of E’s defined on a finite set satisfy ∃C0∃C1∃C2φ(E,C0, C1, C2)?
If E is defined on a universe of size n (i.e., u, v take values in this universe)
then (1) says that E is symmetric, i.e., it may be viewed as the edge set of an
undirected graph on n vertices. Conditions (2) and (3) say that C0, C1, C2

partition the vertices into three classes. Finally, condition (4) says that the
partition is a valid coloring.

Now we can sketch the general result. To represent a general NP prob-
lem, there is a unary relation symbol that represents the input (in the above
case, E). The witness is a tableau (see Chapter 2) of an accepting compu-
tation. If the tableau has size nk, the witness can be represented by a k-ary
relation (in the above case the witness is a 3-coloring, which has represen-
tation size 3n and hence was represented using 3 unary relations). The first
order formula uses the Cook-Levin observation that the tableau is correct
iff it is correct in all 2× 3 “windows”.

The formal statement of Fagin’s theorem is as follows; the proof is left
as an exercise.

Theorem 22.2 (Fagin)
To be written.
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CONP

22.1.2 MAX-SNP

22.2 Proof complexity as an approach to NP ver-
sus coNP

Proof complexity tries to study the size of the smallest proof of a statement
in a given proof system. First, we need a formal definition of what a proof
system is. The following definition due to Cook and Reckow focuses atten-
tion on the intuitive property that a mathematical proof is “easy to check.”

Definition 22.3
A proof system consists of a polynomial-time Turing machine M . A state-
ment T is said to be a theorem of this proof system iff there is a string
π ∈ {0, 1}∗ such that M accepts (T, π).

If T is a theorem of proof system M , then the proof complexity of T with
respect to M is the minimun k such that there is some π ∈ {0, 1}k for which
M accepts (T, π).

Note that the definition of theoremhood ignores the issue of the length
of the proof, and insists only that the M ’s running time is polynomial in the
input length |T |+ |π|. The following is an easy consequence of the definition
and the motivation for much of the field of proof complexity.

Theorem 22.4
A proof system M in which SAT has polynomial proof complexity exists iff
NP = coNP.

Many branches of mathematics, including logic, algebra, geometry, etc.
give rise to proof systems. Algorithms for SAT and automated theorem
provers (popular in some areas of computer science) also may be viewed as
proof systems.

22.2.1 Resolution

This concerns

22.2.2 Frege Systems

22.2.3 Polynomial calculus

22.3 Is P 6= NP unproveable?
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