
DRAFT

Chapter 1

The computational model
—and why it doesn’t matter

“The idea behind digital computers may be explained by saying
that these machines are intended to carry out any operations
which could be done by a human computer. The human computer
is supposed to be following fixed rules; he has no authority to
deviate from them in any detail. We may suppose that these
rules are supplied in a book, which is altered whenever he is put
on to a new job. He has also an unlimited supply of paper on
which he does his calculations.”
Alan Turing, 1950

The previous chapter gave an informal introduction to computation and
efficient computations in context of arithmetic. This chapter gives a more
rigorous and general definition. As mentioned earlier, one of the surprising
discoveries of the 1930s was that all known computational models are able to
simulate each other. Thus the set of computable problems does not depend
upon the computational model.

In this book we are interested in issues of computational efficiency, and
therefore in classes of “efficiently computable” problems. Here, at first
glance, it seems that we have to be very careful about our choice of a compu-
tational model, since even a kid knows that whether or not a new video game
program is “efficiently computable” depends upon his computer’s hardware.
Surprisingly though, we can restrict attention to a single abstract compu-
tational model for studying many questions about efficiency—the Turing
machine. The reason is that the Turing Machine seems able to simulate all

Web draft 2006-09-28 18:09
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

9

DRAFT

10 1.1. ENCODINGS AND LANGUAGES: SOME CONVENTIONS

physically realizable computational models with very little loss of efficiency.
Thus the set of “efficiently computable” problems is at least as large for
the Turing Machine as for any other model. (One possible exception is the
quantum computer model, but we do not currently know if it is physically
realizable.)

The Turing machine is a simple embodiment of the age-old intuition that
computation consists of applying mechanical rules to manipulate numbers,
where the person/machine doing the manipulation is allowed a scratch pad
on which to write the intermediate results. The Turing Machine can be also
viewed as the equivalent of any modern programming language — albeit
one with no built-in prohibition about memory size1. In fact, this intuitive
understanding of computation will suffice for most of the book and most
readers can skip many details of the model on a first reading, returning to
them later as needed.

The rest of the chapter formally defines the Turing Machine and the
notion of running time, which is one measure of computational effort. Sec-
tion 1.4 introduces a class of “efficiently computable” problems called P
(which stands for Polynomial time) and discuss its philosophical signifi-
cance. The section also points out how throughout the book the definition
of the Turing Machine and the class P will be a starting point for definitions
of many other models, including nondeterministic, probabilistic and quan-
tum Turing machines, Boolean circuits, parallel computers, decision trees,
and communication games. Some of these models are introduced to study
arguably realizable modes of physical computation, while others are mainly
used to gain insights on Turing machines.

1.1 Encodings and Languages: Some conventions

In general we study the complexity of computing a function whose input
and output are finite strings of bits (i.e., members of the set {0, 1}∗, see
Appendix). Note that simple encodings can be used to represent general
mathematical objects—integers, pairs of integers, graphs, vectors, matrices,
etc.— as strings of bits. For example, we can represent an integer as a string
using the binary expansion (e.g., 34 is represented as 100010) and a graph
as its adjacency matrix (i.e., an n vertex graph G is represented by an n×n
0/1-valued matrix A such that Ai,j = 1 iff the edge (i, j) is present in G).

1Though the assumption of an infinite memory may seem unrealistic at first, in the
complexity setting it is of no consequence since we will restrict the machine to use a finite
amount of tape cells (the number allowed will depend upon the input size).

Web draft 2006-09-28 18:09

DRAFT

1.1. ENCODINGS AND LANGUAGES: SOME CONVENTIONS 11

We will typically avoid dealing explicitly with such low level issues of
representation, and will use xxy to denote some canonical (and unspecified)
binary representation of the object x. Often we will drop the symbols xy and
simply use x to denote both the object and its representation. We use the
notation 〈x, y〉 to denote the ordered pair consisting of x and y. A canonical
representation for 〈x, y〉 can be easily obtained from the representations of
x and y; to reduce notational clutter, instead of x〈x, y〉y we use 〈x, y〉 to
denote not only the pair consisting of x and y but also the representation of
this pair as a binary string.

An important special case of functions mapping strings to strings is the
case of Boolean functions, whose output is a single bit. We identify such
a function f with the set Lf = {x : f(x) = 1} and call such sets languages
or decision problems (we use these terms interchangeably). We identify the
computational problem of computing f (i.e., given x compute f(x)) with the
problem of deciding the language Lf (i.e., given x, decide whether x ∈ Lf).

By representing the possible invitees to a dinner party with the vertices of
a graph having an edge between any two people that can’t stand one another,
the dinner party computational problem from the introduction becomes the
problem of finding a maximum sized independent set (set of vertices not
containing any edges) in a given graph. The corresponding language is:

INDSET = {〈G, k〉 : ∃S ⊆ V (G) s.t. |S| ≥ k and ∀u, v ∈ S, u v 6∈ E(G)}
(1)

An algorithm to solve this language will tell us, on input a graph G and
a number k, whether there exists a conflict-free set of invitees, called an
independent set, of size at least k. It is not immediately clear that such an
algorithm can be used to actually find such a set, but we will see this is
the case in Chapter 2. For now, let’s take it on faith that this is a good
formalization of this problem.

Big-Oh notations. As already hinted, we will often be more interested
in the rate of growth of functions than their precise behavior. The following
well known set of notations is very convenient for such analysis. If f, g
are two functions from N to N, then we (1) say that f = O(g) if there
exists a constant c such that f(n) ≤ c · g(n) for every sufficiently large n,
(2) say that f = Ω(g) if g = O(f), (3) say that f = Θ(g) is f = O(g)
and g = O(f), (4) say that f = o(g) if for every ε > 0, f(n) ≤ ε · g(n)
for every sufficiently large n, and (5) say that f = ω(g) if g = o(f). For
example, if f(n) = 100n log n and g(n) = n2 then we have the relations
f = O(g), g = Ω(f), f = Θ(f), f = o(g), g = ω(f). (For more examples

Web draft 2006-09-28 18:09

DRAFT

12 1.2. MODELING COMPUTATION AND EFFICIENCY

and explanations, see any undergraduate algorithms text such as [?, ?] or
see Section 7.1 in Sipser’s book [?].)

1.2 Modeling computation and efficiency

We start with an informal description of computation. Let f be a function
that takes a string of bits (i.e., a member of the set {0, 1}∗) and outputs,
say, either 0 or 1. Informally speaking, an algorithm for computing f is a
set of mechanical rules, such that by following them we can compute f(x)
given any input x ∈ {0, 1}∗. The set of rules being followed is finite (i.e.,
the same set must work for all infinitely many inputs) though each rule in
this set may be applied arbitrarily many times. Each rule must involve one
of the following “elementary” operations:

1. Read a bit of the input.

2. Read a bit (or possibly a symbol from a slightly larger alphabet, say
a digit in the set {0, . . . , 9}) from the “scratch pad” or working space
we allow the algorithm to use.

3. Write a bit/symbol to the scratch pad.

4. Stop and output either 0 or 1.

5. Decide which of the above operations to apply based on the values
that were just read.

Finally, the running time is the number of these basic operations per-
formed.

Below, we formalize all of these notions.

1.2.1 The Turing Machine

The k-tape Turing machine is a concrete realization of the above informal
notion, as follows (see Figure 1.1).

Scratch Pad: The scratch pad consists of k tapes. A tape is an infinite
one-directional line of cells, each of which can hold a symbol from a finite
set Γ called the alphabet of the machine. Each tape is equipped with a tape
head that can potentially read or write symbols to the tape one cell at a
time. The machine’s computation is divided into discrete time steps, and
the head can move left or right one cell in each step. The machine also has

Web draft 2006-09-28 18:09

DRAFT

1.2. MODELING COMPUTATION AND EFFICIENCY 13

a separate tape designated as the input tape of the machine, whose head
can only read symbols, not write them —a so-called read-only head.

The k read-write tapes are called work tapes and the last one of them
is designated as the output tape of the machine, on which it writes its final
answer before halting its computation.

Finite set of operations/rules: The machine has a finite set of states,
denoted Q. The machine contains a “register” that can hold a single element
of Q; this is the ”state” of the machine at that instant. This state determines
its action at the next computational step, which consists of the following:
(1) read the symbols in the cells directly under the k+1 heads (2) for the k
read/write tapes replace each symbol with a new symbol (it has the option
of not changing the tape by writing down the old symbol again), (3) change
its register to contain another state from the finite set Q (it has the option
not to change its state by choosing the old state again) and (4) move each
head one cell to the left or to the right.

Input
tape

Work
tape

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 1 1 0 1 0 1 0 0 0 1

> 0 1

q7Register

read only head

read/write head

read/write head

Figure 1.1: A snapshot of the execution of a 2-tape Turing machine M with an input
tape, a work tape, and an output tape. We call M a 2-tape machine because the input
tape can only be read from and not written to.

Formal definition. Formally, a TM M is described by a tuple (Γ, Q, δ)
containing:

• A set Γ of the symbols that M ’s tapes can contain. We assume that Γ
contains a designated “blank” symbol, denoted �, a designated “start”
symbol, denoted B and the numbers 0 and 1. We call Γ the alphabet
of M .

Web draft 2006-09-28 18:09

DRAFT

14 1.2. MODELING COMPUTATION AND EFFICIENCY

• A set Q of possible states M ’s register can be in. We assume that
Q contains a designated start state, denoted qstart and a designated
halting state, denoted qhalt.

• A function δ : Q × Γk+1 → Q × Γk × {L,R}k+1 describing the rule
M uses in performing each step. This function is called the transition
function of M (see Figure 1.2.) (Note that δ also implicitly tells us k,
the number of work tapes allowed to the TM.)

IF THEN

input
symbol
read

work/
output
tape
symbol
read

current
state

move
input
head

new
work/
output
tape
symbol

move
work/
output
tape

new
state

...

...

a b q b’ q’

Figure 1.2: The transition function of a single-tape TM (i.e., a TM with one input tape
and one work/output tape).

If the machine is in state q ∈ Q and (σ1, σ2, . . . , σk+1) are the sym-
bols currently being read in the k + 1 tapes, and δ(q, (σ1, . . . , σk+1)) =
(q′, (σ′

2, . . . , σ
′
k+1), z) where z ∈ {L,R}k+1 then at the next step the σ sym-

bols in the last k tapes will be replaced by the σ′ symbols, the machine will
be in state q′, and the k + 1 heads will move left/right (i.e., L/R) as given
by z. (If the machine tries to move left from the leftmost position of a tape
then it will stay in place.)

All tapes except for the input are initialized in their first location to
the start symbol B and in all other locations to the blank symbol �. The
input tape contains initially the start symbol, a finite non-blank string (“the
input”), and the rest of its cells are initialized with the blank symbol. All
heads start at the left ends of the tapes and the machine is in the special
starting state qstart. This is called the start configuration of M on input x.
Each step of the computation is performed by applying the function δ as

Web draft 2006-09-28 18:09

DRAFT

1.2. MODELING COMPUTATION AND EFFICIENCY 15

described above. The special halting state qhalt has the property that once
the machine is in qhalt, the transition function δ does not allow it to further
modify the tape or change states. Clearly, if the machine enters qhalt then
it has halted. In complexity theory we are only interested in machines that
halt for every input in a finite number of steps.

Now we formalize the notion of running time. As every non-trivial algo-
rithm needs to at least read its entire input, by “quickly” we mean that the
number of basic steps we use is small when considered as a function of the
input length.

Definition 1.1 (Computing a function and running time)
Let f : {0, 1}∗ → {0, 1}∗ and let T : N → N be some functions. We say that a
TM M computes function f if for every x ∈ {0, 1}∗, if M is initialized to the start
configuration on input x, then it halts with f(x) written on its output tape.
We say M computes f in T (n)-time2 if for all n and all inputs x of size n, the
running time of M on that input is at most T (n).

Most of the specific details of our definition of Turing machines are quite
arbitrary. For example, the following three claims show that restricting the
alphabet Γ to be {0, 1,�,B}, restricting the machine to have a single work
tape, or allowing the tapes to be infinite in both directions will not have a
significant effect on the time to compute functions:

Claim 1.2
For every f : {0, 1}∗ → {0, 1}, T : N → N, if f is computable in time T (n)
by a TM M using alphabet Γ then it is computable in time 100 log |Γ|T (n)
by a TM M using the alphabet {0, 1,�,B}.

Claim 1.3
For every f : {0, 1}∗ → {0, 1}, T : N → N, if f is computable in time T (n)
by a TM M using k work tapes (plus additional input and output tapes)
then it is computable in time 100T (n)2 by a TM M using a single work tape
(plus additional input and output tapes).

Claim 1.4
Define a bidirectional TM to be a TM whose tapes are infinite in both
directions. For every f : {0, 1}∗ → {0, 1}∗, T : N → N as above if f is

2Formally we should use T instead of T (n), but we follow the convention of writing
T (n) to emphasize that T is applied to the input length.

Web draft 2006-09-28 18:09

DRAFT

16 1.2. MODELING COMPUTATION AND EFFICIENCY

computable in time T (n) by a bidirectional TM M then it is computable in
time 100T (n) by a standard (unidirectional) TM.

We leave the proofs of these claims as Exercises 2, 3 and 4. The reader
might wish to pause at this point and work through the proofs, as this is a
good way to obtain intuition for Turing machines and their capabilities.

Other changes that will not have a very significant effect include restrict-
ing the number of states to 100, having two or three dimensional tapes, al-
lowing the machine random access to its tape, and making the output tape
write only (see the texts [?, ?] for proofs and more examples). In particu-
lar none of these modifications will change the class P of polynomial-time
decision problems defined below in Section 1.4.

1.2.2 The expressive power of Turing machines.

When you encounter Turing machines for the first time, it may not be
clear that they do indeed fully encapsulate our intuititive notion of com-
putation. It may be useful to work through some simple examples, such
as expressing the standard algorithms for addition and multiplication in
terms of Turing machines computing the corresponding functions. (See
Exercise 7; also, Sipser’s book [?] contains many more such examples.)

Example 1.5
(This example assumes some background in computing.) We give a hand-
wavy proof that Turing machines can simulate any program written in any
of the familiar programming languages such as C or Java. First, recall that
programs in these programming languages can be translated (the technical
term is compiled) into an equivalent machine language program. This is a
sequence of simple instructions to read from memory into one of a finite
number of registers, write a register’s contents to memory, perform basic
arithmetic operations, such as adding two registers, and control instructions
that perform actions conditioned on, say, whether a certain register is equal
to zero.

All these operations can be easily simulated by a Turing machine. The
memory and register can be implemented using the machine’s tapes, while
the instructions can be encoded by the machine’s transition function. For
example, it’s not hard to show TM’s that add or multiply two numbers, or
a two-tape TM that, if its first tape contains a number i in binary represen-
tation, can move the head of its second tape to the ith location.

Web draft 2006-09-28 18:09

DRAFT

1.3. THE UNIVERSAL TURING MACHINE 17

1.3 The Universal Turing Machine

Underlying the computer revolution of the 20th century is one simple but
crucial observation: programs can be considered as strings of symbols, and
hence can be given as input to other programs. The notion goes back to Tur-
ing, who described a universal TM that can simulate the execution of every
other TM M given M ’s description as input. This enabled the construction
of general purpose computers that are designed not to achieve one particular
task, but can be loaded with a program for any arbitrary computation.

Of course, since we are so used to having a universal computer on our
desktops or even in our pockets, we take this notion for granted. But it
is good to remember why it was once counterintuitive. The parameters of
the universal TM are fixed —alphabet size, number of states, and number of
tapes. The corresponding parameters for the machine being simulated could
be much larger. The reason this is not a hurdle is, of course, the ability to
use encodings. Even if the universal TM has a very simple alphabet, say
{0, 1}, this is sufficient to allow it to represent the other machine’s state and
and transition table on its tapes, and then follow along in the computation
step by step.

Now we state a computationally efficient version of Turing’s construction
due to Hennie and Stearns [?]. To give the essential idea we first prove a
slightly relaxed variant where the term t log t of Condition 4 below is replaced
with t2. But since the efficient version is needed a few times in the book, a
full proof is also given at the end of the chapter.

Theorem 1.6 (Efficient Universal Turing machine)
There exists a TM U and a representation scheme of TM’s satisfying:

1. Every string α ∈ {0, 1}∗ is a representation of some TM Mα.

2. Every TM M is represented by infinitely many strings α ∈ {0, 1}∗.
3. For every t ∈ N and x, α ∈ {0, 1}∗, if on input x, the machine Mα outputs a

string y within at most t steps, then U(t, x, α) = y.

4. On every triple 〈t, x, α〉, the machine U runs for at most Ct log t steps, where
C is a constant depending on Mα’s alphabet and number of states and tapes
but independent of |α|, |x|, |t|.

Web draft 2006-09-28 18:09

DRAFT

18 1.3. THE UNIVERSAL TURING MACHINE

Proof: Represent a TM M in the natural way as the tuple 〈γ, q, δ, z〉 where
γ = |Γ| is the size of M ’s alphabet, q is the size of M ’s state space Q,
the transition function δ is described by a table listing all of its inputs and
outputs, and z is a table describing the elements of Γ, Q that correspond to
the special symbols and states (i.e., B,�, 0, 1, qstart, qhalt). We also allow the
description to end with an arbitrary number of 1’s to ensure Condition 2.3

If a string is not a valid representation of a TM according to these rules then
we consider it a representation of some canonical TM (i.e., a machine that
reads its input and immediately halts and outputs 0) to ensure Condition 1.

Our universal TM U will use the alphabet {0, 1,�,B} and have, in ad-
dition to the input and output tape, five work tapes. We do not give the
transition function of U explicitly but describe its operation in words. Sup-
pose U is given the input α, t, x, where α represents some TM M . Denote
by k the number of work tapes used by M . Note that if U were to have
k + 2 tapes, the same alphabet as M , and more states than M , then it
could trivially simulate M ’s execution by dedicating one tape to store the
description of M and at each computational step, the universal machine can
scan the transition function of M and decide how to proceed according to
its rules. Thus the main difficulty is that M may use a larger number of
states, a larger alphabet and more tapes than U .

Input
tape

Work
tapes

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 0 1

Description of M

Current state of M

Counter.

Contents of M’s work tapes.

Auxiliary work tape.

Figure 1.3: The universal TM U has in addition to the input and output tape, five
work tapes, used to store the description of the simulated machine M , its current state,
a counter that is decremented from t to 0, a tape that contains all the information in
M ’s work tapes, and an auxiliary “scratch” work tape that is used by U for various
computations.

3One can consider this convention as analogous to the comments feature common in
many programming languages (e.g., the /*..*/ syntax in C and Java).

Web draft 2006-09-28 18:09

DRAFT

1.3. THE UNIVERSAL TURING MACHINE 19

These difficulties are resolved as follows (see Figure 1.3). U uses the input
and output tapes in the same way that M uses them, and uses a single work
tape —called the main work tape—to store the contents of all the remaining
work tapes of M . Notice, each symbol of M ’s alphabet is represented by
log γ bits. Furthermore, U uses one work tape to keep track of what state M
is currently in (this only requires log q bits) and one work tape to maintain a
counter (or ”clock”)) that counts down from t to 0. Finally, one more work
tape acts as the ”scratch pad” for M ’s own computation.

To TM U stores the k work tapes of M using interleaving: the first
symbol from each of the k tapes is stored first, then the second symbol from
each tape, and so on (see Figure 1.4). The symbol ? marks the position of
the head at each tape.

M’s 3 work tapes:

c o m p l e t e l y

r e p l a c e d

m a c h i n e s

Encoding this in one tape of U:

c r m o * a m e c * p * p l h l a i
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Tape 1:

Tape 2:

Tape 3:

Figure 1.4: We encode k tapes into one tape by placing the contents of the first tape in
positions 1, k+1, 2k+1, . . ., the contents of the second tape in positions 2, k+2, 2k+2, . . .,
etc. We use the symbol ? to mark the position of the head in each tape.

To simulate a single computational step of M , the machine U performs
the following actions:

1. Scan the main work tape (the one containing the contents of M ’s k
tapes), and copy into its scratch tape the k symbols that follow the ?
symbol of each tape.

2. Scan the transition function of M to find out how M behaves on these
symbols (what M writes on its tapes, how it changes its state register,
and how it moves the head). Then write down this information on the
scratch pad.

Web draft 2006-09-28 18:09

DRAFT

20 1.4. DETERMINISTIC TIME AND THE CLASS P.

3. Scan the main work tape and update it (both symbols written and
head locations) according to the scratch pad.

4. Update the tape containing M ’s state according to the new state.

5. Use the same head movement and write instructions of M on the input
and output tape.

6. Decrease the counter by 1, check if it has reached 0 and if so halt.

Now let’s count how many computational steps U performs to simulate a
single step of M : U ’s main tape contains at most kt symbols, and so scanning
it takes O(t) steps (as k is a constant depending only on M). Decreasing the
counter takes O(log t) steps. The transition function, the current state, and
the scratch pad only require a constant number of bits to store (where this
constant depends on M ’s alphabet size, and number of tapes and states)
and so only require a constant number of operations to read and update.
Thus, simulating a single step of M takes O(t + log t) = O(t) operations,
and simulating M for t steps takes O(t2) operations. �

1.4 Deterministic time and the class P.

A complexity class is a set of functions that can be computed within a given
resource. We will now introduce our first complexity classes. For reasons
of technical convenience, throughout most of this book we will pay special
attention to functions with one bit output, also known as decision problems
or languages.

Definition 1.7 (The class DTIME.)
Let T : N → N be some function. We let DTIME(T (n)) be the set of all
Boolean (one bit output) functions that are computable in c · T (n)-time for
some constant c > 0.

Remark 1.8 (Time-constructible functions)
A function T : N → N is time constructible if the function x 7→ 1T (|x|)

(i.e., x is mapped to a sequence of 1’s of length T (|x|)) is computable in
T (n) time. Examples for time-constructible functions are n, n log n, n2, 2n.
Almost all functions encountered in this book will be time-constructible and
we will typically restrict our attention to the class DTIME(T (n)) for time-
constructible T . We also typically assume that T (n) ≥ n as to allow the
algorithm time to read its input.

Web draft 2006-09-28 18:09

DRAFT

1.4. DETERMINISTIC TIME AND THE CLASS P. 21

The following class will serve as our rough approximation for the class
of decision problems that are efficiently solvable.

Definition 1.9 (The class P)
P = ∪c≥1DTIME(nc)

Thus, we can phrase the question from the introduction as to whether
INDSET has an efficient algorithm as follows: “Is INDSET ∈ P?”

1.4.1 On the philosophical importance of P

The class P is felt to capture the notion of decision problems with “feasi-
ble” decision procedures. Of course, one may argue whether DTIME(n100)
really represents “feasible” computation in the real world. However, in prac-
tice, whenever we show that a problem is in P, we usually find an n3 or n5

time algorithm (with reasonable constants), and not an n100 algorithm. (It
has also happened a few times that the first polynomial-time algorithm for
a problem had high complexity, say n20, but soon somebody simplified it to
say an n5 algorithm.)

Note that the class P is useful only in a certain context. Turing machines
are a poor model if one is designing algorithms that must run in a fraction
of a second on the latest PC (in which case one must carefully account for
fine details about the hardware). However, if the question is whether any
subexponential algorithms exist for say INDSET then even an n20 algorithm
on the Turing Machine would be a fantastic breakthrough.

We note that P is also a natural class from the viewpoint of a program-
mer. Suppose undergraduate programmers are asked to invent the definition
of an “efficient” computation. Presumably, they would agree that a compu-
tation that runs in linear or quadratic time is “efficient.” Next, since pro-
grammers often write programs that call other programs (or subroutines),
they might find it natural to consider a program “efficient” if it performs
only “efficient” computations and calls subroutines that are “efficient”. The
notion of “efficiency” obtained turns out to be exactly the class P (Cob-
ham [?]). Of course, Cobham’s result makes intuitive sense since composing
a polynomial function with another polynomial function gives a polynomial
function (for every c, d > 0, (nc)d = ncd) but the exact proof requires some
care.

Web draft 2006-09-28 18:09

DRAFT

22 1.4. DETERMINISTIC TIME AND THE CLASS P.

1.4.2 Criticisms of P and some efforts to address them

Now we address some possible criticisms of the definition of P, and some
related complexity classes that address these.

Worst-case exact computation is too strict. The definition of P only
considers algorithms that compute the function exactly on every possi-
ble input. However, not all possible inputs arise in practice (although
it’s not always easy to characterize the inputs that do). Chapter 15
gives a theoretical treatment of average-case complexity and defines the
analogue of P in that context. Sometimes, users are willing to settle
for approximate solutions. Chapter 19 contains a rigorous treatment
of the complexity of approximation.

Other physically realizable models. If we were to make contact with
an advanced alien civilization, would their class P be any different
from the class defined here?

As mentioned earlier, most (but not all) scientists believe the Church-
Turing (CT) thesis, which states that every physically realizable com-
putation device— whether it’s silicon-based, DNA-based, neuron-based
or using some alien technology— can be simulated by a Turing ma-
chine. Thus they believe that the set of computable problems would
be the same for aliens as it is for us. (The CT thesis is not a theorem,
merely a belief about the nature of the world.)

However, when it comes to efficiently computable problems, the sit-
uation is less clear. The strong form of the CT thesis says that
every physically realizable computation model can be simulated by a
TM with polynomial overhead (in other words, t steps on the model
can be simulated in tc steps on the TM, where c is a constant that
depends upon the model). If true, it implies that the class P defined
by the aliens will be the same as ours. However, several objections
have been made to this strong form.

(a) Issue of precision: TM’s compute with discrete symbols, whereas
physical quantities may be real numbers in R. Thus TM computations
may only be able to approximately simulate the real world. Though
this issue is not perfectly settled, it seems so far that TMs do not suffer
from an inherent handicap. After all, real-life devices suffer from noise,
and physical quantities can only be measured up to finite precision.
Thus a TM could simulate the real-life device using finite precision.

Web draft 2006-09-28 18:09

DRAFT

1.4. DETERMINISTIC TIME AND THE CLASS P. 23

(Note also that we often only care about the most significant bit of the
result, namely, a 0/1 answer.)

Even so, in Chapter 14 we also consider a modification of the TM
model that allows computations in R as a basic operation. The re-
sulting complexity classes have fascinating connections with the usual
complexity classes.

(b) Use of randomness: The TM as defined is deterministic. If ran-
domness exists in the world, one can conceive of computational models
that use a source of random bits (i.e., ”coin tosses”). Chapter 7 consid-
ers Turing Machines that are allowed to also toss coins, and studies the
class BPP, that is the analogue of P for those machines. (However,
we will see in Chapter 17 the intriguing possibility that randomized
computation may be no more powerful than deterministic computa-
tion.)

(c) Use of quantum mechanics: A more clever computational model
might use some of the counterintuitive features of quantum mechanics.
In Chapter 21 we define the class BQP, that generalizes P in such a
way. We will see problems in BQP that may not be in P. However,
currently it is unclear whether the quantum model is truly physically
realizable. Even if it is realizable it currently seems only able to ef-
ficiently solve only very few ”well-structured” problems that are not
in P. Hence insights gained from studying P could still be applied to
BQP.

(d) Use of other exotic physics, such as string theory. Though an
intriguing possibility, it hasn’t yet had the same scrutiny as quantum
mechanics.

Decision problems are too limited. Some computational problems are
not easily expressed as decision problems. Indeed, we will introduce
several classes in the book to capture tasks such as computing non-
Boolean functions, solving search problems, approximating optimiza-
tion problems, interaction, and more. Yet the framework of decision
problems turn out to be surprisingly expressive, and we will often use
it in this book.

1.4.3 Edmonds’ quote

We conclude this section with a quote from Edmonds [?], that in the paper
showing a polynomial-time algorithm for the maximum matching problem,

Web draft 2006-09-28 18:09

DRAFT

24 1.4. DETERMINISTIC TIME AND THE CLASS P.

explained the meaning of such a result as follows:

For practical purposes computational details are vital. However,
my purpose is only to show as attractively as I can that there is
an efficient algorithm. According to the dictionary, “efficient”
means “adequate in operation or performance.” This is roughly
the meaning I want in the sense that it is conceivable for maxi-
mum matching to have no efficient algorithm.

...There is an obvious finite algorithm, but that algorithm in-
creases in difficulty exponentially with the size of the graph. It
is by no means obvious whether or not there exists an algorithm
whose difficulty increases only algebraically with the size of the
graph.

...When the measure of problem-size is reasonable and when the
sizes assume values arbitrarily large, an asymptotic estimate of
... the order of difficulty of an algorithm is theoretically impor-
tant. It cannot be rigged by making the algorithm artificially
difficult for smaller sizes.

...One can find many classes of problems, besides maximum match-
ing and its generalizations, which have algorithms of exponential
order but seemingly none better ... For practical purposes the
difference between algebraic and exponential order is often more
crucial than the difference between finite and non-finite.

...It would be unfortunate for any rigid criterion to inhibit the
practical development of algorithms which are either not known
or known not to conform nicely to the criterion. Many of the
best algorithmic idea known today would suffer by such theoreti-
cal pedantry. ... However, if only to motivate the search for good,
practical algorithms, it is important to realize that it is mathe-
matically sensible even to question their existence. For one thing
the task can then be described in terms of concrete conjectures.

Web draft 2006-09-28 18:09

DRAFT

1.4. DETERMINISTIC TIME AND THE CLASS P. 25

What have we learned?

• There are many equivalent ways to mathematically model computational pro-
cesses; we use the standard Turing machine formalization.

• Turing machines can be represented as strings. There is a universal TM that
can emulate (with small overhead) any TM given its representation.

• The class P consists of all decision problems that are solvable by Turing ma-
chines in polynomial time. We say that problems in P are efficiently solvable.

• Most low-level choices (number of tapes, alphabet size, etc..) in the definition
of Turing machines are immaterial, as they will not change the definition of
P.

Chapter notes and history

The Turing Machine should be thought of as a logical construct, rather
than as a piece of hardware. Most computers today are implementations of a
universal computer using silicon chips. But many other physical phenomena
can be used to construct universal TMs: amusing examples include bouncing
billiards balls, cellular automata, and Conway’s Game of life. It is also
possible to study complexity theory axiomatically in a machine-independent
fashion. See Cobham [?] and Blum [?] for two approaches.

We omitted a detailed discussion of formal complexity, and in particular
the fact that the class DTIME(f(n)) can be paradoxical if f is not a proper
complexity function (see the standard text [?]). We say f is proper if f(n) ≥
f(n− 1) and there is a TM that on input x outputs a string of length f(|x|)
using time O(|x|+ f(|x|)) and space O(f(|x|)). This notion will reappear in
Chapter 4.

Exercises

§1 Prove that there exists a function f : {0, 1}∗ → {0, 1} that is not
computable in time T (n) for every function T : N → N.

Web draft 2006-09-28 18:09

DRAFT

26 1.4. DETERMINISTIC TIME AND THE CLASS P.

Hint:foranystringα∈{0,1}
∗
,letMαbetheTMdescribedby

αanddefinefαsuchthatforeveryx,fα(x)=1ifMαoninputx

haltswithoutput1withinafinitenumberofstepsandfα(x)=0
otherwise.Youneedtofindf:{0,1}

∗
→{0,1}suchthatforevery

αthereexistsxwithf(x)6=fα(x).

§2 Prove Claim 1.2.

§3 Prove Claim 1.3.

Hint:Tostoretheinformationofktapesonasingletape,use
positions1,k+1,2k+1,...tostorethecontentsofthefirsttape,
usepositions2,k+2,3k+2,...tostorethecontentsofthesecond
tape,andsoon.

§4 Prove Claim 1.4.

Hint:tosimulateabidirectionalTMusingalphabetsizeγusea
unidirectionalTMofalphabetsizeγ

2
.

§5 Define a TM M to be oblivious if its head movement does not depend
on the input but only on the input length. That is, M is oblivious if for
every input x ∈ {0, 1}∗ and i ∈ N, the location of each of M ’s heads at
the ith step of execution on input x is only a function of |x| and i. Show
that for every time-constructible T : N → N, if L ∈ DTIME(T (n))
then there is an oblivious TM that decides L in time O(T (n)2).

§6 Show that for every time-constructible T : N → N, if L ∈ DTIME(T (n))
then there is an oblivious TM that decides L in time O(T (n) log T (n)).

Hint:showthattheuniversalTMUobtainedbytheproofof
Theorem1.6canbetweakedtobeoblivious.

§7 Define FDTIME and FP to be the generalization of DTIME and P
for non-Boolean functions (with more than one bit of output). That
is, f ∈ FDTIME(T (n)) if f is computable in T (n) time and FP =
∪c≥1FDTIME(nc).

Prove that the addition and multiplication functions are in FP.

Proof of Theorem 1.6: Universal Simulation in O(t log t)-
time

We now show how to prove Theorem 1.6 as stated, with an O(t log t) time
simulation. Our machine U will use the same structure and number of tapes

Web draft 2006-09-28 18:09

DRAFT

1.4. DETERMINISTIC TIME AND THE CLASS P. 27

described in Section 1.3 (see Figure 1.3). The crucial different will be the
organization of the main tape of U .

If M uses the alphabet Γ, then, as we saw before, we may assume that
U uses the alphabet Γk (as this can be simulated with a constant overhead).
Thus we can encode in each cell of U ’s work tape k symbols of Γ, each
corresponding to a symbol from one of M ’s tapes. However, we still have
to deal with the fact that M has k read/write heads that can each move
independently to the left or right, whereas U ’s work tape only has a single
head. We handle this following the dictum

“If the mountain will not come to Muhammad then Muhammad
will go to the mountain”.

That is, since we can not move U ’s read/write head in different directions
at once, we simply move the tape “under” the head. To be more specific,
since we consider U ’s work tape alphabet to be Γk, we can think of it as
consisting of k parallel tapes; that is, k tapes with the property that in each
step either all their read/write heads go in unison one location to the left or
they all go one location to the right (see Figure 1.5). To simulate a single
step of M we shift all the non-blank symbols in each of these parallel tapes
until the head’s position in these parallel tapes corresponds to the heads’
positions of M ’s k tapes. For example, if k = 3 and in some particular step
M ’s transition function specifies the movements L,R, R then U will shift all
the non-blank entries of its first parallel tape one cell to the right, and shift
the non-blank entries of its second and third tapes one cell to the left. For
convenience, we think of U ’s parallel tapes as infinite in both the left and
right directions (again, this can be easily simulated with minimal overhead,
see Claim 1.4).

The approach above is still not good enough to get O(t log t)-time simu-
lation. The reason is that there may be as much as t non-blank symbols in
each tape, and so each shift operation may cost U as much as O(t) opera-
tions, resulting in O(kt) operations of U per each step of M . Our approach
to deal with this is to create “buffer zones”: rather than having each of U ’s
parallel tapes correspond exactly to a tape of M , we add a special kind of
blank symbol �� to the alphabet of U ’s parallel tapes with the semantics that
this symbol is ignored in the simulation. That is, if the non-blank contents
of M ’s tape are 010 then this can be encoded in the corresponding parallel
tape of U not just by 010 but also by 0�� 01 or 0���� 1�� 0 and so on.

Since U ’s parallel tapes are considered bidirectional we can index their
locations by 0,±1,±2, Normally we keep U ’s head on location 0 of these

Web draft 2006-09-28 18:09

DRAFT

28 1.4. DETERMINISTIC TIME AND THE CLASS P.

M’s 3 independent tapes:

c o m p l e t e l y

r e p l a c e d b y

m a c h i n e s

U’s 3 parallel tapes (i.e., one tape encoding 3 tapes)

c o m p l e t e l y

r e p l a c e d b y

m a c h i n c e s

Figure 1.5: Packing k tapes of M into one tape of U . We consider U ’s single work tape
to be composed of k parallel tapes, whose heads move in unison, and hence we shift the
contents of these tapes to simulate independent head movement.

parallel tapes. We will only move it temporarily to perform a shift when,
following our dictum, we simulate a left head movement by shifting the tape
to the right and vice versa. At the end of the shift we return the head to
location 0.

We split the tapes into zones L1, R1, L2, R2, . . . , Llog t+1, Rlog t+1 where
zone Li contains the cells in the interval [2i−1 + 1..2i] and zone Ri contains
the cells in the interval [−2i.. − 2i−1 − 1] (location 0 is not in any zone).
Initially, we set all the zones to be half-full. That is, half of the symbols in
each zones will be �� and the rest will contain symbols corresponding to the
work tapes of M . We always maintain the following invariants:

• Each of the zones is either empty, full, or half-full. That is, the number
of symbols in zone Li that are not �� is either 0,2i−1, or 2i and the
same holds for Ri. (We treat the ordinary � symbol the same as any
other symbol in Γ and in particular a zone full of �’s is considered
full.)

Web draft 2006-09-28 18:09

DRAFT

1.4. DETERMINISTIC TIME AND THE CLASS P. 29

- c o m p l e t e - - - - - - - l y

r e p - - l a c e - - - -

- - m a c h - - - - i n e s

R1 R2 R3L2L3 L1

..... -3 -2 -1 0 +1 +2 +3

Before:

p l e t - - e - l y - - - - - -

r - e p - l a c e - - - -

m a c - h i n - - - - - e s

R1 R2 R3L2L3 L1

After:

Figure 1.6: Performing a shift of the parallel tapes. The left shift of the first tape involves
zones L1, R1, L2, R2, L3, R3, the right shift of the second tape involves only L1, R1, while
the left shift of the third tape involves zones L1, R1, L2, R2. We maintain the invariant
that each zone is either empty, half-full or full. Note that - denotes ��.

• The total number of non-�� symbols in Li ∪ Ri is 2i. That is, if Li is
full then Ri is empty and vice versa.

• Location 0 always contains a non-�� symbol.

The advantage in setting up these zones is that now when performing
the shifts, we do not always have to move the entire tape, but can restrict
ourselves to only using some of the zones. We illustrate this by showing how
U performs a left shift on the first of its parallel tapes (see Figure 1.6):

1. U finds the smallest i such that Ri is not empty. Note that this is also
the smallest i such that Li is not full.

2. U puts the leftmost non-�� symbol of Ri in position 0 and shifts the
remaining leftmost 2i−1 − 1 non-�� symbols from Ri into the zones
R1, . . . , Ri−1 filling up exactly half the symbols of each zone. Note

Web draft 2006-09-28 18:09

DRAFT

30 1.4. DETERMINISTIC TIME AND THE CLASS P.

that there is room to perform this since all the zones R1, . . . , Ri−1

were empty and that indeed 2i−1 =
∑i−2

j=0 2j + 1.

3. U performs the symmetric operation to the left of position 0: it shifts
into Li the 2i−1 leftmost symbols in the zones Li−1, . . . , L1 and reor-
ganizes Li−1, . . . , Li such that the remaining

∑i−1
j=1 2j−2i−1 = 2i−1−1

symbols, plus the symbol that was originally in position 0 (modified
appropriately according to M ’s transition function) take up exactly
half of each of the zones Li−1, . . . , Li.

4. Note that at the end of the shift, all of the zones L1, R1, . . . , Li−1, Ri−1

are half-full.

Performing such a shift costs O(
∑i

j=1 2j) = O(2i) operations. However,
once we do this, we will not touch Li again until we perform at least 2i−1

shifts. Thus, we perform a shift involving Li and Ri when simulating at
most a 1

2i−1 of the t steps of M . We perform a shift for every one of the
k tapes, but k is a constant, as is the overhead to simulate the alphabet
(Γ∪��)k using the alphabet {0, 1,B,�} and to read the transition function
and state information. Thus total number of operations used by these shifts
is

O(
log t+1∑

i=1

t

2i−1
2i) = O(t log t)

where we need an additional O(t log t) operations to maintain the counter.4

�

4In fact, a more careful analysis shows that only O(t) operations are necessary to
decrease a counter from t to 0.

Web draft 2006-09-28 18:09

	The computational model ---and why it doesn't matter
	Encodings and Languages: Some conventions
	Modeling computation and efficiency
	The Turing Machine
	The expressive power of Turing machines.

	The Universal Turing Machine
	Deterministic time and the class P.
	On the philosophical importance of P
	Criticisms of P and some efforts to address them
	Edmonds' quote

	Chapter notes and history
	Exercises

