
DRAFT

Chapter 20

More PCP Theorems and
the Fourier Transform
Technique

The PCP Theorem has several direct applications in complexity theory,
in particular showing that unless P = NP, many NP optimization prob-
lems can not be approximated in polynomial-time to within arbitrary preci-
sion. However, for some applications, the standard PCP Theorem does not
suffice, and we need stronger (or simply different) “PCP Theorems”. In
this chapter we survey some of these results and their proofs. The Fourier
transform technique turned out to be especially useful in advanced PCP
constructions, and in other areas in theoretical computer science. We de-
scribe the technique and show two of its applications. First, we use Fourier
transforms to prove the correctness of the linearity testing algorithm of Sec-
tion 19.4, completing the proof of the PCP Theorem. We then use it to
prove a stronger PCP Theorem due to H̊astad, showing tight inapproxima-
bility results for many important problems, including MAX3SAT.

20.1 Parallel Repetition of PCP’s

Recall that the soundness parameter of a PCP system is the probability
that the verifier may accept a false statement. Definition 19.1 specified
the soundness parameter to be 1/2, but as we noted, it can be reduced
to an arbitrary small constant by increasing the number of queries. Yet
for some applications we need a system with, say, three queries, but an
arbitrarily small constant soundness parameter. Raz has shown that this

Web draft 2006-09-28 18:09
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

457

DRAFT

458 20.1. PARALLEL REPETITION OF PCP’S

can be achieved if we consider systems with non binary alphabet. (For a
finite set S, we say that a PCP verifier uses alphabet S if it takes as input a
proof string π in S∗.) The idea is simple and natural: use parallel repetition.
That is, we take a PCP verifier V and run " independent copies of it, to
obtain a new verifier V ! such that a query of V ! is the concatenation of
the " queries of V , and an answer is a concatenation of the " answers. (So,
if the original verifier V used proofs over, say, the binary alphabet, then
the verifier V ! will use the alphabet {0, 1}!.) The verifier V ! accepts the
proof only of all the " executions of V accept. Formally, we define parallel
repetition as follows:
Definition 20.1 (Parallel repetition)
Let S be a finite set. Let V be a PCP verifier using alphabet S and let
" ∈ N. The "-times parallel repeated V is the verifier V ! that operates as
follows:

1. V ! uses the alphabet Ŝ = S!. We denote the input proof string to V !

by π̂.

2. Let q denote the number of queries V makes. On any input x, V !

chooses " independent random tapes r1, . . . , r! for V , and runs V on
the input and these tapes to obtain " sets of q queries

i11, i12, . . . , i1q

i21, i22, . . . , i2q

. . .

i!1, i!2, . . . , i!q

3. V ! makes q queries i1, . . . , iq to π̂ where ij is 〈i1j , . . . , i!j〉 (under a
suitable encoding of N! into N).

4. For j ∈ [q], denote 〈a1
j , . . . , a

!
j〉 = π̂(ij). The verifier V ! accepts if and

only for every k ∈ ["], the verifier V on random tape rk accepts when
given the responses ak

1, . . . , a
k
q .

Remark 20.2
For every input x, if there is a proof π such that on input x, the verifier V
accepts π with probability one, then there is a proof π̂ such that on input
x, the verifier V ! accepts π̂ with probability one. Namely, for every "-tuple
of positions i1, . . . , i!, the proof π̂ contains the tuple 〈π[i1], . . . ,π[i!]〉. Note
that |π̂| = |π|!.

Web draft 2006-09-28 18:09

DRAFT

20.1. PARALLEL REPETITION OF PCP’S 459

Original V Parallel repeated V ! Sequential repeated V seq!

Alphabet size W W ! W
Proof size m m! m
Random coins used r !r !r
Number of queries q q !q
Completeness probability 1 1 1
soundness parameter 1 − δ (1 − δa)b! (1 − δ)!

Table 20.1: Parameters of !-times parallel repeated verifier V ! vs. parameters for
sequential repetition.

Why is it called “parallel repetition”? We call the verifier V ! the
parallel repeated version of V to contrast with sequential repetition. If V
is a PCP verifier and ! ∈ N, we say that !-times sequentially repeated V ,
denoted V seq!, is the verifier that chooses ! random tapes for V , then makes
the q! queries corresponding to these tapes one after the other, and accepts
only if all the instances accept. Note that V seq! uses the same alphabet as
V , and uses proofs of the same size. The relation between the parameters
of V , V ! and V seq! is described in Table 20.1.

It is a simple exercise to show that if V ’s soundness parameter was 1− δ
then V seq! soundness parameter will be equal to (1−δ)!. One may expect the
soundness parameter of the parallel repeated verifier V ! to also be (1− δ)!.
It turns out this is not the case (there is a known counterexample [?]),
however the soundness parameter does decay exponentially with the number
of repetitions:
Theorem 20.3 (Parallel Repetition Lemma, [Raz98])
There exist constants a, b (independent of ! but depending on the alphabet

size used and number of queries) such that the soundness parameter of V !

is at most (1 − δa)b!

We omit the proof of Theorem 20.3 for lack of space. Roughly speaking,
the reason analyzing soundness of V ! is so hard is the following: for every
tuple 〈i1, . . . , i!〉, the corresponding position in the proof for V ! is “sup-
posed” to consist of the values π[i1] ◦ · · · π[i!] where π is some proof for V .
However, a priori, we do not know if the proof satisfies this property. It
may be that the proof is inconsistent and that two tuples containing the ith

position “claim” a different assignment for π[i].
Remark 20.4
The Gap Amplification Lemma (Lemma 19.29) of the previous chapter has
a similar flavor, in the sense that it also reduced the soundness parameter

Web draft 2006-09-28 18:09

DRAFT

460 20.2. HÅSTAD’S 3-BIT PCP THEOREM

at the expense of an increase in the alphabet size. However, that lemma
assumed that the soundness parameter is very close to 1, and its proof does
not seem to generalize for soundness parameters smaller than 1/2. We note
that a weaker version of Theorem 20.3, with a somewhat simpler proof, was
obtained by Feige and Kilian [?]. This weaker version is sufficient for many
applications, including for H̊astad’s 3-query PCP theorem (see Section 20.2
below).

20.2 H̊astad’s 3-bit PCP Theorem

In most cases, the PCP Theorem does not immediately answer the question
of exactly how well can we approximate a given optimization problem (even
assuming P != NP). For example, the PCP Theorem implies that if P !=
NP then MAX3SAT cannot be c-approximated in polynomial-time for some
constant ρ < 1. But if one follows closely the proof of Theorem 19.13, this
constant ρ turns out to be very close to one, and in particular it is larger than
0.999. On the other hand, as we saw in Example 19.6, there is a known 7/8-
approximation algorithm for MAX3SAT. What is the true “approximation
complexity” of this problem? In particular, is there a polynomial-time 0.9-
approximation algorithm for it? Similar questions are the motivation behind
many stronger PCP theorems. In particular, the following theorem by
H̊astad implies that for every ε > 0 there is no polynomial-time (7/8+ε)-
approximation for MAX3SAT unless P = NP:
Theorem 20.5 (Håstad’s 3-bit PCP [?])
For every ε > 0 and every language L ∈ NP there is a PCP-verifier V for L
making three (binary) queries having completeness probability at least 1− ε
and soundness parameter at most 1/2 + ε.

Moreover, the test used by V are linear. That is, given a proof π ∈
{0, 1}m, V chooses a triple (i1, i2, i3) ∈ [m]3 and b ∈ {0, 1} according to
some distribution and accepts iff πi1 + πi2 + πi3 = b (mod 2).

Theorem 20.5 immediately implies that the problem MAXE3LIN is NP-
hard to 1/2+ε-approximate for every ε > 0, where MAXE3LIN is the problem
of finding a solution maximizing the number of satisfied equations among a
given system of linear equations over GF(2), with each equation containing
at most 3 variables. Note that this hardness of approximation result is tight
since a random assignment is expected to satisfy half of the equations. Also
note that finding out whether there exists a solution satisfying all of the
equations can be done in polynomial-time using Gaussian elimination (and
hence the imperfect completeness in Theorem 20.5 is inherent).

Web draft 2006-09-28 18:09

DRAFT

20.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE 461

The result for MAX3SAT is obtained by the following corollary:

Corollary 20.6
For every ε > 0, computing (7/8+ε)-approximation to MAX3SAT is NP-
hard.

Proof: We reduce MAXE3LIN to MAX3SAT. Take any instance of MAXE3LIN
where we are interested in determining whether (1 − ε) fraction of the
equations can be satisfied or at most 1/2 + ε are. Represent each lin-
ear constraint by four 3CNF clauses in the obvious way. For example,
the linear constraint a + b + c = 0 (mod 2) is equivalent to the clauses
(a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c). If a, b, c satisfy the linear con-
straint, they satisfy all 4 clauses and otherwise they satisfy at most 3 clauses.
We conclude that in one case at least (1 − ε) fraction of clauses are simul-
taneously satisfiable, and in the other case at most 1− (1

2 − ε)× 1
4 = 7

8 −
ε
4

fraction are. The ratio between the two cases tends to 7/8 as ε decreases.
Since Theorem 20.5 implies that distinguishing between the two cases is
NP-hard for every constant ε, the result follows. !

20.3 Tool: the Fourier transform technique

The continuous Fourier transform is extremely useful in mathematics and
engineering. Likewise, the discrete Fourier transform has found many uses
in algorithms and complexity, in particular for constructing and analyzing
PCP’s. The Fourier transform technique for PCP’s involves calculating
the maximum acceptance probability of the verifier using Fourier analysis
of the functions presented in the proof string. It is delicate enough to give
“tight” inapproximability results for MAX INDSET, MAX3SAT, and many
other problems.

To introduce the technique we start with a simple example: analysis
of the linearity test over GF(2) (i.e., proof of Theorem 19.23). We then
introduce the Long Code and show how to test for membership in it. These
ideas are then used to prove H̊astad’s 3-bit PCP Theorem.

20.3.1 Fourier transform over GF(2)n

The Fourier transform over GF(2)n is a tool to study functions on the
Boolean hypercube. In this chapter, it will be useful to use the set {+1,−1} =
{±1} instead of {0, 1}. To transform {0, 1} to {±1}, we use the mapping
b $→ (−1)b (i.e., 0 $→ +1 , 1 $→ −1). Thus we write the hypercube as {±1}n

Web draft 2006-09-28 18:09

DRAFT

462 20.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE

instead of the more usual {0, 1}n. Note this maps the XOR operation (i.e.,
addition in GF(2)) into the multiplication operation.

The set of functions from {±1}n to R defines a 2n-dimensional Hilbert
space (see Section ??) as follows. Addition and multiplication by a scalar are
defined in the natural way: (f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x)
for every f, g : {±1}n → R, α ∈ R. We define the inner product of two
functions f, g, denoted 〈f, g〉, to be Ex∈{±1}n [f(x)g(x)].

The standard basis for this space is the set {ex}x∈{±1}n , where ex(y)
is equal to 1 if y = x, and equal to 0 otherwise. This is an orthonormal
basis, and every function f : {±1}n → R can be represented in this basis as
f =

∑
x axex. For every x ∈ {±1}n, the coefficient ax is equal to f(x). The

Fourier basis for this space is the set {χα}α⊆[n] where χα(x) =
∏

i∈α xi (χ∅
is the constant 1 function). These correspond to the linear functions over
GF(2). To see this, note that every linear function of the form b %→ a & b
(with a,b ∈ {0, 1}n) is mapped by our transformation to the function taking
x ∈ {±1}n to

∏
i s.t. ai=1 xi.

The Fourier basis is indeed an orthonormal basis for the Hilbert space.
Indeed, the random subsum principle implies that for every α, β ⊆ [n],
〈χα,χβ〉 = δα,β where δα,β is equal to 1 iff α = β and equal to 0 otherwise.
This means that every function f : {±1}n → R can be represented as
f =

∑
α⊆[n] f̂αχα. We call f̂α the αth Fourier coefficient of f .

We will often use the following simple lemma:

Lemma 20.7
Every two functions f, g :{±1}n → R satisfy

1. 〈f, g〉 =
∑

α f̂αĝα.

2. (Parseval’s Identity) 〈f, f〉 =
∑

α f̂2
α

Proof: The second property follows from the first. To prove the first we
expand

〈f, g〉 = 〈
∑

α

f̂αχα,
∑

β

ĝβχβ〉 =

∑

α,β

f̂αĝβ〈χα,χβ〉 =
∑

α,β

f̂αĝβδα,β =
∑

α

f̂αĝα

!

Web draft 2006-09-28 18:09

DRAFT

20.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE 463

Example 20.8
Some examples for the Fourier transform of particular functions:

1. If f(u1, u2, . . . , un) = ui (i.e., f is a coordinate function, a concept we
will see again soon) then f = χ{i} and so f̂{i} = 1 and f̂α = 0 for
α != {i}.

2. If f is a random boolean function on n bits, then each f̂α is a random
variable that is a sum of 2n binomial variables (equally likely to be
1,−1) and hence looks like a normally distributed variable with stan-
dard deviation 2n/2 and mean 0. Thus with high probability, all 2n

Fourier coefficients have values in [−poly(n)
2n/2 , poly(n)

2n/2].

The connection to PCPs: High level view

In the PCP context we are interested in Boolean-valued functions, i.e., those
from GF (2)n to GF (2). Under our transformation these are mapped to
functions from {±1}n to {±1}. Thus, we say that : f {±1}n → R is Boolean
if f(x) ∈ {±1} for every x ∈ {±1}n. Note that if f is Boolean then 〈f, f〉 =
Ex[f(x)2] = 1.

On a high level, we use the Fourier transform in the soundness proofs for
PCP’s to show that if the verifier accepts a proof π with high probability then
π is “close to” being “well-formed” (where the precise meaning of “close-to”
and “well-formed” is context dependent). Technically, we will often be able
to relate the acceptance probability of the verifier to an expectation of the
form 〈f, g〉 = Ex[f(x)g(x)], where f and g are Boolean functions arising
from the proof. We then use techniques similar to those used to prove
Lemma 20.7 to relate this acceptance probability to the Fourier coefficients
of f, g, allowing us to argue that if the verifier’s test accepts with high
probability, then f and g have few relatively large Fourier coefficients. This
will provide us with some nontrivial useful information about f and g, since
in a “generic” or random function, all the Fourier coefficient are small and
roughly equal.

20.3.2 Analysis of the linearity test over GF (2)

We will now prove Theorem 19.23, thus completing the proof of the PCP
Theorem. Recall that the linearity test is provided a function f :GF(2)n →

Web draft 2006-09-28 18:09

DRAFT

464 20.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE

GF(2) and has to determine whether f has significant agreement with a
linear function. To do this it picks x,y ∈ GF(2)n randomly and accepts iff
f(x + y) = f(x) + f(y).

Now we rephrase this test using {±1} instead of GF(2), so linear func-
tions turn into Fourier basis functions. For every two vectors x,y ∈ {±1}n,
we denote by xy their componentwise multiplication. That is, xy = (x1y1, . . . , xnyn).
Note that for every basis function χα(xy) = χα(x)χα(y).

For two Boolean functions f, g, 〈f, g〉 is equal to the fraction of inputs
on which they agree minus the fraction of inputs on which they disagree.
It follows that for every ε ∈ [0, 1] and functions f, g : {±1}n → {±1}, f
has agreement 1

2 + ε
2 with g iff 〈f, g〉 = ε. Thus, if f has a large Fourier

coefficient then it has significant agreement with some Fourier basis function,
or in the GF(2) worldview, f is close to some linear function. This means
that Theorem 19.23 can be rephrased as follows:

Theorem 20.9
Suppose that f : {±1}n → {±1} satisfies Prx,y[f(xy) = f(x)f(y)] ≥ 1

2 + ε.

Then, there is some α ⊆ [n] such f̂α ≥ 2ε.

Proof: We can rephrase the hypothesis as Ex,y[f(xy)f(x)f(y)] ≥ (1
2 +ε)−

(1
2 − ε) = 2ε. We note that from now on we do not need f to be Boolean,

but merely to satisfy 〈f, f〉 = 1.
Expressing f by its Fourier expansion,

2ε ≤ Ex,y[f(xy)f(x)f(y)] = Ex,y[(
∑

α

f̂αχα(xy))(
∑

β

f̂βχβ(x))(
∑

γ

f̂γχγ(y))].

Since χα(xy) = χα(x)χα(y) this becomes

= Ex,y[
∑

α,β,γ

f̂αf̂β f̂γχα(x)χα(y)χβ(x)χγ(y)].

Using linearity of expectation:

=
∑

α,β,γ

f̂αf̂β f̂γEx,y[χα(x)χα(y)χβ(x)χγ(y)]

=
∑

α,β,γ

f̂αf̂β f̂γEx [χα(x)χβ(x)]Ey [χα(y)χγ(y)]

(because x,y are independent).

Web draft 2006-09-28 18:09

DRAFT

20.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE 465

By orthonormality Ex[χα(x)χβ(x)] = δα,β, so we simplify to

=
∑

α

f̂3
α

≤ (max
α

f̂α)× (
∑

α

f̂2
α)

Since
∑

α f̂2
α = 〈f, f〉 = 1, this expression is at most maxα

{
f̂α

}
. Hence

maxα f̂α ≥ 2ε and the theorem is proved. !

20.3.3 Coordinate functions, Long code and its testing

Let W ∈ N. We say that f : {±1}W → {±1} is a coordinate function if
there is some w ∈ [W], such that f(x1, x2, . . . , xW) = xw; in other words,
f = χ{w}.

Definition 20.10 (Long Code)
The long code for [W] encodes each w ∈ [W] by the table of all values of the
function χ{w} : {±1}[W] → {±1}.

Remark 20.11
Note that w, normally written using log W bits, is being represented using
a table of 2W bits, a doubly exponential blowup! This inefficiency is the
reason for calling the code “long.”

Similar to the test for the Walsh-Hadamard code, when testing the long
code, we are given a function f : {±1}W → {±1}, and want to find out if
f has good agreement with χ{w} for some w, namely, f̂{w} is significant.
Such a test is described in Exercise 16 of the previous chapter, but it is not
sufficient for the proof of H̊astad’s Theorem, which requires a test using only
three queries. Below we show such a three query test albeit at the expense
of achieving the following weaker guarantee: if the test passes with high
probability then f has a good agreement with a function χα with |α| small
(but not necessarily equal to 1). This weaker conclusion will be sufficient in
the proof of Theorem 20.5.

Let ρ > 0 be some arbitrarily small constant. The test picks two uni-
formly random vectors x,y ∈ {±1}W and then a vector z ∈ {±1}[W]
according to the following distribution: for every coordinate i ∈ [W], with
probability 1 − ρ we choose zi = +1 and with probability ρ we choose

Web draft 2006-09-28 18:09

DRAFT

466 20.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE

zi = −1. Thus with high probability, about ρ fraction of coordinates in z
are −1 and the other 1−ρ fraction are +1. We think of z as a “noise” vector.
The test accepts iff f(x)f(y) = f(xyz). Note that the test is similar to the
linearity test except for the use of the noise vector z.

Suppose f = χ{w}. Then

f(x)f(y)f(xyz) = xwyw(xwywzw) = 1 · zw

Hence the test accepts iff zw = 1 which happens with probability 1− ρ. We
now prove a certain converse:

Lemma 20.12
If the test accepts with probability 1/2 + ε then

∑
α f̂3

α(1− 2ρ)|α| ≥ 2ε.

Proof: If the test accepts with probability 1/2+ε then E[f(x)f(y)f(xyz)] =
2ε. Replacing f by its Fourier expansion, we have

2ε ≤ Ex,y,z

(
∑

α

f̂αχα(x)) · (
∑

β

f̂βχβ(y)) · (
∑

γ

f̂γχγ(xyz))

= Ex,y,z

∑

α,β,γ

f̂αf̂β f̂γχα(x)χβ(y)χγ(x)χγ(y)χγ(z)

=
∑

α,β,γ

f̂αf̂β f̂γEx,y,z [χα(x)χβ(y)χγ(x)χγ(y)χγ(z)] .

Orthonormality implies the expectation is 0 unless α = β = γ, so this is

=
∑

α

f̂3
αEz[χα(z)]

Now Ez[χα(z)] = Ez
[∏

w∈α zw
]
which is equal to

∏
w∈α E[zw] = (1−2ρ)|α|

because each coordinate of z is chosen independently. Hence we get that

2ε ≤
∑

α

f̂3
α(1− 2ρ)|α|

!
The conclusion of Lemma 20.12 is reminiscent of the calculation in the

proof of Theorem 20.9, except for the extra factor (1 − 2ρ)|α|. This factor
depresses the contribution of f̂α for large α, allowing us to conclude that the
small α’s must contribute a lot. This formalized in the following corollary
(left as Exercise 2).

Web draft 2006-09-28 18:09

DRAFT

20.4. PROOF OF THEOREM ?? 467

Corollary 20.13
If f passes the long code test with probability 1/2 + δ then

∑

α:|α|≤k

f̂3
α ≥ 2δ − ε,

where k = 1
2ρ log 1

ε .

20.4 Proof of Theorem 20.5

Recall that our proof of the PCP Theorem implies that there are constants
γ > 0, s ∈ N such that (1−γ)-GAP 2CSPs is NP-hard (see Claim 19.36). This
means that for every NP-language L we have a PCP-verifier for L mak-
ing two queries over alphabet {0, . . . , s − 1} with perfect completeness and
soundness parameter 1−γ. Furthermore this PCP system has the property
that the verifier accepts the answer pair z1, z2 iff z2 = hr(z1) where hr is a
function (depending on the verifier’s randomness r) mapping {0, . . . , s− 1}
to itself (see Exercise 3). We call this the projection property. Using the
Raz’s parallel repetition lemma (Theorem 20.3), we can reduce the sound-
ness parameter to an arbitrary small constant at the expense of increasing
the alphabet. Note that parallel repetition preserves the projection property.

Let L be an NP-language and ε > 0 an arbitrarily small constant. By
the above there exists a constant W and PCP-verifier VRaz (having the
projection property) that makes two queries to a polynomial-sized PCP
proof π with alphabet {1, . . . ,W} such that for every x, if x ∈ L then there
exists π such that Pr[V π

Raz(x) = 1] = 1 and if x $∈ L then Pr[V π
Raz(x) = 1] < ε

for every π.
Now we describe H̊astad’s verifier VH . It essentially follows VRaz, but

it expects each entry in the PCP proof π to be encoded using the long
code. It expects these encodings to be bifolded, a technical property we now
define and is motivated by the observation that coordinate functions satisfy
χ{w}(−u) = −χ{w}(u), where −u is the vector (−u1, . . . ,−uW).

Definition 20.14
A function f : {±1}W → {±1} is bifolded if for all u ∈ {±1}W , f(−u) =
−f(u).

Whenever the PCP proof is supposed to contain a longcode codeword
then we may assume without loss of generality that the function is bifolded.
The reason is that the verifier can identify, for each pair of inputs u,−u, one
designated representative —say the one whose first coordinate is +1— and

Web draft 2006-09-28 18:09

DRAFT

468 20.4. PROOF OF THEOREM ??

just define f(−u) to be −f(u). One benefit —though of no consequence in
the proof— of this convention is that bifolded functions require only half as
many bits to represent. We will use the following fact:

Lemma 20.15
If f : {±1}W → {±1} is bifolded and f̂α #= 0 then |α| must be an odd
number (and in particular, nonzero).

Proof: By definition,

f̂α = 〈f,χα〉 = 1
2n

∑

u

f(u)
∏

i∈α

ui.

If |α| is even then
∏

i∈α ui =
∏

i∈α(−ui). So if f is bifolded, the terms
corresponding to u and −u have opposite signs and the entire sum is 0. !

H̊astad’s verifier. Recall that VRaz uses its randomness to select a func-
tion two entries i, j in the table π and a function h : [W] → [W], and
accepts iff π(j) = h(π(i)). H̊astad’s verifier, denoted VH , expects the proof
π̃ to consist of (bifolded) longcode encodings of each entry of π. The veri-
fier VH emulates VRaz to pick two locations i,j in the table and a function
h : [W] → [W] such that VRaz’s test is to accept iff π[j] = h(π[i]). The proof
π̃ contains in the locations i and j two functions f and g respectively (which
may or may not be the longcode encoding of π(i) and π(j)). Instead of read-
ing the long codes f, g in their entirety, the verifier VH performs a simple test
that is reminiscent of the long code test. For a string y ∈ {±1}W we denote
by h−1(y) the string such that for every w ∈ [W], h−1(y)w = yh(w). In other
words, for each u ∈ [W], the bit yu appears in all coordinates of h−1(y) that
are indexed by integers in the subset h−1(u). This is well defined because{
h−1(u) : u ∈ [W]

}
is a partition of [W]. VH chooses uniformly at random

u,y ∈ {±1}W and chooses z ∈ {±1}W by letting zi = +1 with probability
1− ρ and zi = −1 with probability ρ. It then accepts Iff

f(u)g(y) = f(h−1(y)uz) (1)

Translating back from {±1} to {0, 1}, note that VH ’s test is indeed linear,
as it accepts iff π̃[i1] + π̃[i2] + π̃[i3] = b for some i1, i2, i3 ∈ [m2W] and
b ∈ {0, 1}. (The bit b can indeed equal 1 because of the way VH ensures the
bifolding property.)

Web draft 2006-09-28 18:09

DRAFT

20.4. PROOF OF THEOREM ?? 469

Completeness of VH . Suppose f, g are long codes of two integers w, u sat-
isfying h(w) = u (in other words, Vraz would have accepted the assignments
represented by these integers). Then

f(u)g(y)f(h−1(y)uz) = uwyu(h−1(y)uzw

= uwyu(yh(w)uwzw) = zw.

Hence VH accepts iff zw = 1, which happens with probability 1− ρ.

Soundness of VH . We now show that if VH accepts f, g with probability
significantly more than 1/2, then the Fourier transforms of f, g must be
correlated. To formalize this we define for α ⊆ [W],

h2(α) =
{
u ∈ [W] :

∣∣h−1(u) ∩ α
∣∣ is odd

}

Notice in particular that for every u ∈ h2(α) there is at least one w ∈ α
such that h(w) = u.

In the next Lemma δ is allowed to be negative.

Lemma 20.16
Let f, g : {±1}W → {±1}, h : [W]→ [W] be bifolded functions passing VH ’s
test (1) with probability at least 1/2 + δ. Then

∑

α⊆[W],α #=∅

f̂2
αĝh2(α)(1− 2ρ)|α| ≥ 2δ

Proof: By hypothesis, f, g are such that E[f(u)f(uh−1(y)z)g(y)] ≥ 2δ.
Replace f, g by their Fourier expansions. We get that

2δ ≤ = Eu,y,z

(
∑

α

f̂αχα(x))(
∑

β

ĝβχβ(y))(
∑

γ

f̂γχγ(uh−1(y)z))

=
∑

α,β,γ

f̂αĝβ f̂γEu,y,z
[
χα(u)χβ(y)χγ(u)χγ(h−1(y))χγ(z)

]

By orthonormality this simplifies to

=
∑

α,β

f̂2
αĝβEy,z

[
χβ(y)χα(h−1(y))χα(z)

]

=
∑

α,β

f̂2
αĝβ(1− 2ρ)|α|Ey

[
χα(h−1(y)χβ(y)

]
(2)

Web draft 2006-09-28 18:09

DRAFT

470 20.4. PROOF OF THEOREM ??

since χα(z) = (1−2ρ)|α|, as noted in our analysis of the long code test. Now
we have

Ey[χα(h−1(y))χβ(y)] = Ey[
∏

w∈α

h−1(y)w

∏

u∈β

yu]

= Ey[
∏

w∈α

yh(w)

∏

u∈β

yu],

which is 1 if h2(α) = β and 0 otherwise. Hence (2) simplifies to
∑

α

f̂2
αĝh2(α)(1− 2ρ)|α|.

Finally we note that since the functions are assumed to be bifolded, the
Fourier coefficients f̂∅ and ĝ∅ are zero. Thus those terms can be dropped
from the summation and the Lemma is proved. !

The following corollary of Lemma 20.16 completes the proof of H̊astad’s
3-bit PCP Theorem.
Corollary 20.17
Let ε be the soundness parameter of VRaz. If ρ, δ satisfy ρδ2 > ε then the
soundness parameter of VH is at most 1/2 + δ.

Proof: Suppose VH accepts a proof π̃ with probability at least 1/2 + δ. We
give a probabilistic construction of a proof π causing VRaz to accept the
same statement with probability at least ρδ2.

Suppose that VRaz uses proofs π with m entries in [W]. We can think of
π̃ as providing, for every i ∈ [m], a function fi : {±1}W {±1}. We will use
π̃ to construct a proof π for VRaz as follows: we first use fi to come up with
a distribution Di over [W]. We then let π[i] be a random element from Di.

The distribution Di. Let f = fi. The distribution Di is defined by first
selecting α ⊆ [W] with probability f̂2

α and then selecting w at random from
α. This is well defined because

∑
α f̂2

α = 1 and (due to bifolding) f∅ = 0.
Recall that VRaz picks using its random tape a pair i, j of locations and

a function h : [W] → [W] and then verifies that π[j] = h(π[i]). Let r be
some possible random tape of VRaz and let i, j, h be the pair of entries in
π and function that are determined by r. We define the indicator random
variable Ir to be 1 if for w ∈R Di and u ∈R Dj it holds that w = h(u) and
to be 0 otherwise. Thus, our goal is to show that

Eπ=D1,...,Dm [Er[Ir]] ≥ ρδ2 (3)

Web draft 2006-09-28 18:09

DRAFT

20.4. PROOF OF THEOREM ?? 471

since that would imply that there exists a table π causing VRaz to accept
with probability at least ρδ2, proving the corollary.

To prove (3) we first notice that linearity of expectation allows us to
exchange the order of the two expectations and so it is enough to bound
Er[EDi,Dj [Ir]] where i, j are the entries determined by the random tape r.
For every r denote by δr the probability that VH accepts π̃ when it uses r
as the random tape for VRaz. The acceptance probability of VH is Er[12 + δr]
and hence Er[δr] = δ.

Let i, j, h be the pair and function determined by r and denote by f = fi

and g = fj where fi (resp. fj) is the function at the ith (resp. jth) entry
of the table π̃. What is the chance that a pair of assignments w ∈R Di and
v ∈R Dj will satisfy the constraint? (i.e., will satisfy v = h(w)?). Recall
that we pick w and u by choosing α with probability f̂2

α, β with probability
ĝ2
β and choosing w ∈R α, v ∈R β. Now if β = h2(α) then for every v ∈ β

there exists w ∈ α with h(w) = v and hence the probability the constraint
is satisfied is at least 1/|α|. Thus, we have that

∑

α

1
|α| f̂

2
αĝ2

h2(α) ≤ EDi,Dj [Ir] (4)

This is similar to (but not quite the same as) the expression in Lemma 20.16,
according to which

2δr ≤
∑

α

f̂2
αĝh2(α)(1− 2ρ)|α|.

However, since one can easily see that (1− 2ρ)|α| ≤ 2√
ρ |α|

we have

2δr ≤
∑

α

f̂2
α

∣∣ĝh2(α)

∣∣ 2√
ρ |α|

Or
δr
√

ρ ≤
∑

α

f̂2
α

∣∣ĝh2(α)

∣∣ 1√
|α|

Applying the Cauchy-Schwartz inequality,
∑

i aibi ≤ (
∑

i a
2
i)

1/2(
∑

i b
2
i)

1/2,
with f̂α

∣∣ĝπ2(α)

∣∣ 1√
|α|

playing the role of the ai’s and f̂α playing that of the

bi’s, we obtain

δr
√

ρ ≤
∑

α

f̂2
α

∣∣ĝh2(α)

∣∣ 1√
|α|
≤

(
∑

α

f̂2
α

)1/2 (
∑

α

f̂α
2
ĝ2
h2(α)

1
|α|

)1/2

(5)

Web draft 2006-09-28 18:09

DRAFT

472 20.5. LEARNING FOURIER COEFFICIENTS

Since
∑

α f̂2
α = 1, by squaring (5) and combining it with (4) we get that

for every r,
δ2
rρ ≤ EDi,Dj [Ir]

taking expectation over r and using E[X]2 ≤ E[X2] we get that

δ2ρ = Er[δr]2ρ ≤ Er[δ2
r]ρ ≤ Er[EDi,Dj [Ir]]

proving (3). !

20.5 Learning Fourier Coefficients

Suppose that you are given random access to a Boolean function f : {±1}n →
{±1} and want to find the high Fourier coefficients of f . Of course, we can
compute all of the coefficients in time polynomial in 2n, but is there a faster
algorithm? By the Parseval equality (Lemma 20.7) we know that there can
be at most 1/ε2 coefficients with absolute value larger than ε, and so we can
hope to learn these coefficients in time polynomial in n, and 1/ε. It turns
out we can (almost) achieve this goal:

Theorem 20.18 ([?])
There is an algorithm A that given input n ∈ N,ε ∈ (0, 1) and random
access to a function f : {±1}n → {±1}, runs in poly(n, 1/ε) time and with
probability at least 0.9 outputs a set L of size at most O(1/ε2) such that for
every α ⊆ [n], if |f̂α| > ε then α ∈ L.

Proof: We identify subsets of [n] with strings in {0, 1}m in the obvious
way. For k ≤ n and α ∈ {0, 1}k denote

f̃α" =
∑

β∈{0,1}n−k

f̂2
α◦β,

where ◦ denotes concatenation. By Parseval (Lemma 20.7) f̃" = 1. Note
also that for every k < n and α ∈ {0, 1}k, f̃α" = f̃α0" + f̃α1". Therefore, if
we think of the full depth-n binary labeled by binary strings of length ≤ n
(with the root being the empty word and the two children of α are α0 and
α1), then at any level of this tree there can be at most 1/ε2 strings α such
that f̃α" > ε2 (the kth level of the tree corresponds to all strings of length
k). Note that if a string α satisfies f̃α" < ε2 then the same holds for every
string of the form α◦β. Our goal will be to find all these strings at all levels,

Web draft 2006-09-28 18:09

DRAFT

20.5. LEARNING FOURIER COEFFICIENTS 473

and then output all the strings that label leaves in the tree (i.e., all n-bit
strings).

The heart of the algorithm is a procedure Estimate that given α and
oracle access to f(·), outputs an estimate of fα within ε/4 accuracy with
probability 1 − ε2

100n . Using this procedure we work our way from the root
down, and whenever Estimate(α) gives a value smaller than ε/2 we “kill”
this node and will not deal with it and its subnodes. Note that unless the
output of Estimate is more than ε/4-far from the real value (which we will
ensure by the union bound happens with probability less than 0.1 over all
the levels) at most 4/ε nodes will survive at any level. The algorithm will
output the 4/ε leaves that survive.

The procedure Estimate uses the following claim:
Claim 20.19
For every α,

f̃α# = Ex,x′∈R{0,1}k,y∈R{0,1}n−k [f(x ◦ y)f(x′ ◦ y)χα(x)χα(x′)]

Proof: We start with the case that α = 0k. To get some intuition, suppose
that f̃0k# = 1. This means that f can be expressed as a sum of functions of
the form χ0k◦β and hence it does not depend on its first k variables. Thus
f(x◦y) = f(x′◦y) and we’ll get that E[f(x◦y)f(x′◦y)] = E[f(z)2] = 1. More
generally, if f̃0k# is large then that means that in the Fourier representation,
the weight of functions not depending on the first k variables is large and
hence we expect large correlation between f(x′ ◦ y) and f(x ◦ y). This is
verified by the following calculations:

2−n−k
∑

x,x′,y

f(x ◦ y)f(x′ ◦ y) =
basis change

2−n−k
∑

x,x′,y

∑

γ◦β
f̂(γ ◦ β)χγ◦β(x ◦ y)

∑

γ′◦β′
f̂(γ′ ◦ β′)χγ′◦β′(x′ ◦ y)

 =
χγ◦β(x ◦ y) = χγ(x)χβ(y)

2−n−k
∑

x,x′,y

∑

γ◦β
f̂(γ ◦ β)χγ(x)χβ(y)

∑

γ′◦β′
f̂(γ′ ◦ β′)χγ′(x′)χβ′(y)

 =
reordering terms

∑

γ,β,γ′,β′

f̂(γβ)f̂(γ′β′)2−k

(
∑

x

χγ′(x)

)
2−k

(
∑

x′

χγ(x′)

)
2−(n−k)

(
∑

y

χβ(y)χβ′(y)

)
=

Σχγ(x) = 0 for γ $= 0k

∑

β,β′

f̂(0k ◦ β)f̂(0k ◦ β′)δβ,β′ =
∑

β

f̂(0k ◦ β)2 = f̃0k#

Web draft 2006-09-28 18:09

DRAFT

474 20.6. OTHER PCP THEOREMS: A SURVEY

For the case α != 0k, we essentially add these factors to translate it to the
case α = 0k. Indeed one can verify that if we define g(x◦y) = f(x◦y)χα(x)
then for every β ∈ {0, 1}n−k. g0k◦β = fα◦β. !

By the Chernoff bound, we can estimate the expectation of Claim 20.19
(and hence f̃α#) using repeated sampling, thus obtaining the procedure
Estimate and completing the proof. !

20.6 Other PCP Theorems: A Survey

The following variants of the PCP Theorem have been obtained and used
for various applications.

20.6.1 PCP’s with sub-constant soundness parameter.

Because $-times parallel repetition transforms a proof of size m to a proof
of size m$, we cannot use it with $ larger than a constant and still have a
polynomial-sized proof. Fortunately, there have been direct constructions
of PCP’s achieving low soundness using larger alphabet size, but without
increasing the proof’s size. Raz and Safra [?] show that there is an absolute
constant q such that for every W ≤

√
log n, every NP language has a q-

query verifier over alphabet {0, . . . ,W − 1} that uses O(log n) random bits,
and has soundness 2−Ω(log W).

20.6.2 Amortized query complexity.

Some applications require binary-alphabet PCP systems enjoying a tight
relation between the number of queries (that can be an arbitrarily large
constant) and the soundness parameter. The relevant parameter here turns
out to be the free bit complexity [?, ?]. This parameter is defined as follows.
Suppose the number of queries is q. After the verifier has picked its random
string, and picked a sequence of q addresses, there are 2q possible sequences
of bits that could be contained in those addresses. If the verifier accepts
for only t of those sequences, then we say that the free bit parameter is
log t (note that this number need not be an integer). In fact, for most
applications it suffices to consider the amortized free bit complexity [?]. This
parameter is defined as lims→0 fs/ log(1/s), where fs is the number of free
bits needed by the verifier to ensure the soundness parameter is at most
s. H̊astad constructed systems with amortized free bit complexity tending
to zero [?]. That is, for every ε > 0, he gave a PCP-verifier for NP that

Web draft 2006-09-28 18:09

DRAFT

20.6. OTHER PCP THEOREMS: A SURVEY 475

uses O(log n) random bits and ε amortized free bits. He then used this
PCP system to show (using tools from [?, ?, ?]) that MAX INDSET (and
so, equivalently, MAXCLIQUE) is NP-hard to approximate within a factor
of n1−ε for arbitrarily small ε > 0.

20.6.3 Unique games.

Exercises

§1 Prove that there is a polynomial-time algorithm that given a satisfi-
able 2CSPW instance ϕ over {0..W−1} where all the constraints are
permutations (i.e, ϕi checks that uj′ = h(uj) for some j, j′ ∈ [n] and
permutation h : {0..W−1} → {0..W−1}) finds a satisfying assignment
u for ϕ.

§2 Prove Corollary 20.13.

§3 Prove that the PCP system resulting from the proof of Claim 19.36
(Chapter 19) satisfies the projection property.

§4 Let f : {±1}n → {±1} and let I ⊆ [n]. Let MI be the following
distribution: we choose z ∈R MI by for i ∈ I, choose zi to be +1 with
probability 1/2 and −1 with probability 1/2 (independently of other
choices), for i %∈ I choose zi = +1. We define the variation of f on I
to be Prx∈R{±1}n,z∈RMI

[f(x) %= f(xz)].
Suppose that the variation of f on I is less than ε. Prove that there
exists a function g : {±1}n → R such that (1) g does not depend on
the coordinates in I and (2) g is 10ε-close to f (i.e., Prx∈R{±1}n [f(x) %=
g(x)] < 10ε). Can you come up with such a g that outputs values in
{±1} only?

§5 For f : {±1}n → {±1} and x ∈ {±1}n we define Nf (x) to be the
number of coordinates i such that if we let y to be x flipped at the ith

coordinate (i.e., y = xei where ei has −1 in the ith coordinate and +1
everywhere else) then f(x) %= f(y). We define the average sensitivity
of f , denoted by as(f) to be the expectation of Nf (x) for x ∈R {±1}n.

(a) Prove that for every balanced function f : {±1}n → {±1} (i.e.,
Pr[f(x) = +1] = 1/2), as(f) ≥ 1.

(b) Let f be balanced function from {±1}n to {±1} with as(f) = 1.
Prove that f is a coordinate function or its negation (i.e., f(x) =
xi or f(x) = −xi for some i ∈ [n] and for every x ∈ {±1}n).

Web draft 2006-09-28 18:09

DRAFT

476 20.6. OTHER PCP THEOREMS: A SURVEY

Web draft 2006-09-28 18:09

