
DRAFT

Chapter 23

Why are circuit lowerbounds
so difficult?

Why have we not been able to prove strong lower bounds for circuits? In
1994 Razborov and Rudich formalized the notion of a “natural mathematical
proof,” for a circuit lowerbound. They pointed out that current lowerbound
arguments involve “natural” mathematical proofs, and show that obtaining
strong lowerbound with such techniques would violate a widely believed
cryptographic assumption (namely, that factoring integers requires time 2nε

for some fixed ε > 0). Thus presumably we need to develop mathematical
arguments that are not natural. This result may be viewed as a modern
analogue of the Baker, Gill, Solovay result from the 1970s (see Chapter ??)
that showed that diagonalization alone cannot resolve P versus NP and
other questions.

Basically, a natural technique is one that proves a lowerbound for a
random function and is “constructive.” We formalize “constructive” later
but first consider why lowerbound proofs may need to work for random
functions.

23.1 Formal Complexity Measures

Let us imagine at a high level how one might approach the project of prov-
ing circuit lower bounds. For concreteness, focus on formulas, which are
boolean circuits where gates have indegree 2 and outdegree 1. It is tempt-
ing to use some kind of induction. Suppose we have a function like the
one in Figure 23.1 that we believe to be “complicated.” Since the function
computed at the output is “complicated”, intuition says that at least one

Web draft 2006-09-28 18:10
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

497

DRAFT

498 23.1. FORMAL COMPLEXITY MEASURES

Figure unavailable in pdf file.

Figure 23.1: A formula for a hard function.

of the functions on the incoming edges to the output gate should also be
“pretty complicated” (after all those two functions can be combined with a
single gate to produce a “complicated” function). Now we try to formalize
this intuition, and point out why one ends up proving a lowerbound on the
formula complexity of random functions.

The most obvious way to formalize a “complicatedness” is as a function µ
that maps every boolean function on {0, 1}n to a nonnegative integer. (The
input to µ is the truth table of the function.) We say that µ is a formal
complexity measure if it satisfies the following properties: First, the measure
is low for trivial functions: µ(xi) ≤ 1 and µ(x̄i) ≤ 1 for all i. Second, we
require that

• µ(f ∧ g) ≤ µ(f) + µ(g) for all f, g; and

• µ(f ∨ g) ≤ µ(f) + µ(g) for all f, g.

For instance, the following function ρ is trivially a formal complexity mea-
sure

ρ(f) = 1 + the smallest formula size for f. (1)

In fact, it is easy to prove the following by induction.

Theorem 23.1
If µ is any formal complexity measure, then µ(f) is a lowerbound on the
formula complexity of f .

Thus to formalize the inductive approach outlined earlier, it suffices to de-
fine a measure µ such that µ(CLIQUE) is high (say superpolynomial). For
example, one could try “fraction of inputs for which the function agrees with
the CLIQUE function” or some suitably modified version of this. In general,
one imagines that defining a measure that lets us prove a good lowerbound
for CLIQUE would involve some deep observation about the CLIQUE func-
tion. The next lemma seems to show, however, that even though all we care
about is the CLIQUE function, our lowerbound necessarily must reason
about random functions.

Web draft 2006-09-28 18:10

DRAFT

23.2. NATURAL PROPERTIES 499

Lemma 23.2
Suppose µ is a formal complexity measure and there exists a function f :
{0, 1}n → {0, 1} such that µ(f) ≥ c for some large number c. Then for at
least 1/4 of all functions g : {0, 1}n → {0, 1} we must have µ(g) ≥ c/4.

Proof: Let g : {0, 1}n → {0, 1} be any function. Write f as f = h⊕g where
h = f ⊕ g. So f = (h̄ ∧ g) ∨ (h ∧ ḡ) and µ(f) ≤ µ(g) + µ(g) + µ(h) + µ(h).

Now suppose for contradiction’s sake that {g : µ(g) < c/4} contains
more than 3/4 of all boolean functions on n-bit inputs. If we pick the above
function g randomly, then g, h, h are also random (though not independent).
Using the trivial union bound we have Pr[All of h, h̄, g, ḡ have µ < c/4] > 0.
Hence µ(f) < c, which contradicts the assumption. Thus the lemma is
proved. �

In fact, the following stronger theorem holds:

Theorem 23.3
If µ(f) > c then for all ε > 0 and for at least 1− ε of all functions g we have
that,

µ(g) ≥ Ω
(

c

(n + log(1/ε))2

)
.

The idea behind the proof of the theorem is to write f as the boolean
combination of a small number of functions and then proceed similarly as
in the proof of the lemma.

23.2 Natural Properties

Moving the above discussion forward, we think of a lowerbound proof as
identifying some property of “hard” functions that is not shared by “easy”
functions.
Definition 23.4
A property Φ is a map from boolean functions to {0, 1}. A P-natural property
useful against P/poly is a property Φ such that:

1. Φ(f) = 1 for at least a 1/2n fraction of all boolean functions on n bits
(recall that there are 22n

functions on n bits);

2. Φ(f) = 1 implies that f 6∈ P/poly (or more concretely, that f has
circuit complexity at least nlog n, say); and

3. Φ is computable on n-bit functions in 2O(n) time (i.e., polynomial in
the length of the function’s truth table).

Web draft 2006-09-28 18:10

DRAFT

500 23.2. NATURAL PROPERTIES

The term P-natural refers to requirement (3). The property is useful against
P/poly because of requirement (2). (Note that this requirement also ensures
that Φ is not trivial, since it must be 0 for functions in P/poly.) Requirement
(1) corresponds to our above intuition that circuit lowerbounds should prove
the hardness of a random function.

By suitably modifying (2) and (3) we can analogously define, for any
complexity class C1 and circuit class C2, a C1-natural property that is useful
against circuit class C2. We emphasize that when the property is computed,
the input is the truth table of a function, whose size is 2n. Thus a P-
natural property is computed in time 2cn for some constant c > 1 and a
PSPACE-natural property is computed in space 2cn.

Example 23.5
The result that PARITY is not computable in AC0 (Section ??) involved
the following steps. (a) Show that every AC0 circuit can be simplified by
restricting at most n − nε input bits so that it then becomes a constant
function. (b) Show that the PARITY function does not have this property.

Thus the natural property lurking in this proof is the following: Φ(f) = 1
iff for every way of assigning values to at most n−nε input bits the function
does not become a constant function. Clearly, if Φ(f) = 1 then f 6∈ AC0, so
f is useful against AC0. Furthermore, Φ can be computed in 2O(n) time —
just enumerate all possible choices for the subsets of variables and all ways
of setting them to 0/1. This running time is polynomial in the length of
the truth-table, so Φ is P-natural. Finally, requirement (1) is also met since
almost all boolean functions satisfy Φ(f) = 1 (easy to check using a simple
probability calculation; left as exercise).

Thinking further, we see that Φ is a AC0-natural property that is useful
against AC0.

Example 23.6
The lowerbound for ACC0 circuits described in Section ?? is not natural
per se. Razborov and Rudich show how to naturalize the proof, in other
words change it —while retaining its essence—so that it does use a natural
property. Recall that every boolean function on n bits can be represented by
a multilinear polynomial over GF (3). The space of all n-variate multilinear
polynomials forms a vector space, whose dimension is N = 2n. Then all

Web draft 2006-09-28 18:10

DRAFT

23.2. NATURAL PROPERTIES 501

multilinear polynomials in n variables of total degree less than n/2 form
a subspace of dimension N/2 (this assumes n is even), and we denote this
space by L. For a boolean function f let f̂ be a multilinear polynomial over
GF (3) that represents f . Then define Φ(F) = 1 iff the dimension of the
space {

f̂ l1 + l2 : l1, l2 ∈ L
}

is at least 3N/4. It can be checked that Φ is 1 for the parity function, as
well as for most random functions. Furthermore, rank computations can
be done in NC2 so it is NC2-natural. The technique of Section ?? can be
used to show that if Φ(f) = 1 then f 6∈ ACC0[3]; thus Φ is useful against
ACC0[3].

Example 23.7
The lowerbound for monotone circuits in Section ?? does use constructive
methods, but it is challenging to show that it applies to a random function
since a random function is not monotone. Nobody has formulated a good
definition of a random monotone function.

In the definition of natural proofs, requirement (3) is the most contro-
versial in that there is no inherent reason why mathematical proofs should
go hand in hand with efficient algorithms.

Remark 23.8
“Constructive mathematics” was a movement within mathematics that re-
jected any proofs of existence that did not yield an algorithm for construct-
ing the object. Today this viewpoint is considered quaint; nonconstructive
proofs are integral to mathematics.

In our context, “constructive” has a stricter meaning, namely the proof
has to yield a polynomial-time algorithm. Many proofs that would be “con-
structive” for a mathematician would be nonconstructive under our defini-
tion. Surprisingly, even with this stricter definition, proofs in combinatorial
mathematics are usually constructive, and —as Razborov and Rudich are
pointing out —the same is true of current circuit lowerbounds as well.

In a few cases, combinatorial results initially proved “nonconstructively”
later turned out to have constructive proofs: a famous example is the Lovàsz

Web draft 2006-09-28 18:10

DRAFT

502 23.3. LIMITATIONS OF NATURAL PROOFS

Local Lemma (discovered in 1974; algorithmic version is in Beck [?]). The
same is true for several circuit lowerbounds—cf. the “naturalized” version
of the Razborov-Smolensky lowerbound for ACC0[q] mentioned earlier, and
Raz’s proof [?] of the Babai-Nisan-Szegedy [?] lowerbound on multiparty
communication complexity.

23.3 Limitations of Natural Proofs

The following theorem by Razborov and Rudich explains why we have not
been able to use the same techniques to obtain an upper bound on P/poly:
constructing a P-natural property useful against P/poly violates widely be-
lieved cryptographic assumptions.

Theorem 23.9 (Razborov, Rudich [?])
Suppose a P-natural property Φ exists that is useful against P/poly. Then
there are no strong pseudorandom function generators. In particular, FAC-
TORING and DISCRETE LOG can be solved in less than 2nε

time for all
ε > 0.

Pseudorandom function generators were defined in Section ??. The def-
inition used a distinguisher polynomial-time machine that is given oracle
access to either a truly random function or a function from the pseudoran-
dom family. The family is termed pseudorandom if the distinguisher cannot
distinguish between the two oracles. Now we tailor that more general def-
inition for our narrow purposes in this section. We allow the distinguisher
2O(n) time and even allow it to examine the truth table of the function!
This is without loss of generality since in 2O(n) time the distinguisher could
construct the truth table using 2n queries to the oracle.

Definition 23.10
A pseudorandom function generator is a function f(k, x) computable in poly-
nomial time where the input x has n bits and the “key” k has nc bits, where
c > 2 is a fixed constant. Denoting by Fn the function obtained by uniformly
selecting k ∈ {0, 1}nc

and setting Fn to f(k, ·), we have the property that
the function ensemble F = {Fn}∞n=1 is “pseudorandom,” namely, for each
Turing machine M running in time 2O(n), and for all sufficiently large n,

|Pr[M(Fn) = 1]− Pr[M(Hn) = 1]| < 1
2n2 ,

where Hn is a random function on {0, 1}n.
We will denote f(k, ·) by fk.

Web draft 2006-09-28 18:10

DRAFT

23.3. LIMITATIONS OF NATURAL PROOFS 503

Figure unavailable in pdf file.

Figure 23.2: Constructing a pseudorandom function generator from a pseudorandom
generator.

Intuitively, the above definition says that if f is a pseudorandom function
generator, then for a random k, the probability is high that fk “looks like a
random function” to all Turing machines running in time 2O(n). Note that
fk cannot look random to machines that run in 2O(nc) time since they can
just guess the key k. Thus restricting the running time to 2O(n) (or to some
other fixed exponential function such as 2O(n2)) is crucial.

Recall that Section ?? described the Goldreich-Goldwasser-Micali con-
struction of pseudorandom function generators f(k, x) using a pseudoran-
dom generator g that stretches nc random bits to 2nc pseudorandom (also
see Figure 23.2): Let g0(k) and g1(k) denote, respectively, the first and last
nc bits of g(k). Then the following function is a pseudorandom function
generator, where MSB(x) refers to the first bit of a string x:

f(k, x) = MSB(gxn ◦ gxn−1 ◦ · · · ◦ gx2 ◦ gx1(k)).

The exercises in Chapter 10 explored the security of this construction as
a function of the security parameter of g; basically, the two are essentially
the same. By the Goldreich-Levin theorem of Section ??, a pseudorandom
generator with such a high security parameter exists if a oneway permutation
exists and some ε > 0, such that every 2nε

time algorithm has inversion prob-
ability less than 2−nε

. The DISCRETE LOG function —a permutation— is
conjectured to satisfy this property. As mentioned in Chapter 10, researchers
believe that there is a small ε > 0 such that the worst-case complexity of
DISCRETE LOG is 2nε

, which by random self-reducibility also implies the
hardness of the average case. (One can also obtain pseudorandom generators
using FACTORING, versions of which are also believed to be just as hard
as DISCRETE LOG.) If this belief is correct, then pseudorandom function
generators exist as outlined above. (Exercise.)

Now we can prove the above theorem.

Theorem 23.9: Suppose the property Φ exists, and f is a pseudorandom
function generator. We show that a Turing machine can use Φ to distinguish
fk from a random function. First note that fk ∈ P/poly for every k (just
hardwire k into the circuit for fk) so the contrapositive of property (2)
implies that Φ(fk) = 0. In addition, property (1) implies that PrHn [Φ(Hn) =

Web draft 2006-09-28 18:10

DRAFT

504 23.4. MY PERSONAL VIEW

1] ≥ 1/2n. Hence,

Pr
Hn

[Φ(Hn)]− Pr
k∈{0,1}nc

[Φ(fk)] ≥ 1/2n,

and thus Φ is a distinguisher against f . �

23.4 My personal view

Discouraged by the Razborov-Rudich result, researchers (myself included)
hardly ever work on circuit lowerbounds. Lately, I have begun to think
this reaction was extreme. I still agree that a circuit lowerbound for say
CLIQUE, if and when we prove it, will very likely apply to random functions
as well. Thus the way to get around the Razborov-Rudich observation is to
define properties that are not P-natural; in other words, are nonconstructive.
I feel that this need not be such an insurmountable barrier since a host of
mathematical results are nonconstructive.

Concretely, consider the question of separating NEXP from ACC0, one
of the (admittedly not very ambitious) frontiers of circuit complexity out-
lined in Chapter 13. As observed there, NEXP 6= ACC0 will follow if we
can improve the Babai-Nisan-Szegedy lowerbound of Ω(n/2k) for k-party
communication complexity to Ω(n/poly(k)) for some function in NEXP.
One line of attack is to lowerbound the discrepancy of all large cylinder
intersections in the truth table, as we saw in Raz’s proof of the BNS lower-
bound1. (In other words, the “unnatural” property we are defining is Φ
where Φ(f) = 1 iff f has high discrepancy and thus high multiparty com-
munication complexity.) For a long time, I found this question intimidating
because the problem of computing the discrepancy given the truth table
of the function is coNP-hard (even for k = 2). This seemed to suggest
that a proof that the discrepancy is high for an explicit function (which
presumably will also show that it is high for random functions) must have
a nonconstructive nature, and hence will be very difficult. Lately, I have
begun to suspect this intuition.

A relevant example is Lovàsz’s lowerbound of the chromatic number
of the Kneser graph [?]. Lowerbounding the chromatic number is coNP-
complete in general. Lovàsz gives a topological proof (using the famous
Borsuk-Ulam fixed point theorem) that determines the chromatic number

1Interestingly, Raz discovered this naturalization of the BNS proof after being briefly
hopeful that the original BNS proof—which is not natural— may allow a way around the
Razborov-Rudich result.

Web draft 2006-09-28 18:10

DRAFT

23.4. MY PERSONAL VIEW 505

of the Kneser graph exactly. From his proof one can indeed obtain an
algorithm for solving chromatic number on all graphs([?]) —but it runs
in PSPACE for general graphs! So if this were a circuit lowerbound we
could call it PSPACE-natural, and thus “nonconstructive.” Nevertheless,
Lovàsz’s reasoning for the particular case of the Kneser graph is not overly
complicated because the graph is highly symmetrical. This suggests we
should not blindly trust the intuition that “nonconstructive ≡ difficult.”

I fervently hope that the next generation of researchers will view the
Razborov-Rudich theorem as a guide rather than as a big obstacle!

Exercises

§1 Prove Theorem 23.3.

§2 Prove that a random function satisfies Φ(f) = 1 with high probability,
where Φ is the property defined in Example 23.5.

§3 Show that if the hardness assumption for discrete log is true, then
pseudorandom function generators as defined in this chapter exist.

§4 Prove Wigderson’s observation: P-natural properties cannot prove
that DISCRETE LOG requires circuits of 2nε

size.

Hint:IfDISCRETELOGishardonworst-caseinputsthenitis
hardonmostinputs,andthenitcanbeusedtoconstructpseudo-
randomfunctions.

§5 (Razborov [?]) A submodular complexity measure is a complexity mea-
sure that satisfies µ(f ∨ g) + µ(f ∧ g) ≤ µ(f) + µ(g) for all functions
f, g. Show that for every n-bit function fn, such a measure satisfies
µ(fn) = O(n).

Hint:Itsufficestoprovethiswhenfnisarandomfunction.Use
inductiononthenumberofvariables,andthefactthatbothfn

andfnarerandomfunctions.

Chapter notes and history

The observation that circuit lowerbounds may unwittingly end up reasoning
about random functions first appears in Razborov [?]’s result about the
limitations of the method of approximation.

Web draft 2006-09-28 18:10

DRAFT

506 23.4. MY PERSONAL VIEW

We did not cover the full spectrum of ideas in the Razborov-Rudich
paper [?], where it is observed that candidate pseudorandom function gen-
erators exist even in the class TC0, which lies between ACC0 and NC1.
Thus natural proofs will probably not allow us to separate even TC0 from
P.

Razborov’s observation about submodular measures in Problem 5 is im-
portant because many existing approaches for formula complexity use sub-
modular measures; thus they will fail to even prove superlinear lowerbounds.

In contrast with my limited optimism, Razborov himself expresses (in
the introduction to [?]) a view that the obstacle posed by the natural proofs
observation is very serious. He observes that existing lowerbound approaches
use weak theories of arithmetic such as Bounded Arithmetic. He conjectures
that any circuit lowerbound attempt in such a logical system must be natural
(and hence unlikely to work). But as I mentioned, several theorems even in
discrete mathematics use reasoning (e.g., fixed point theorems like Borsuk-
Ulam) that does not seem to be formalizable in Bounded Arithmetic. Thus
is my reason for optimism.

However, somen other researchers are far more pessimistic: they fear that
P versus NP may be independent of mathematics (say, of Zermelo-Fraenkel
set theory). Razborov says that he has no intuition about this.

Web draft 2006-09-28 18:10

	Why are circuit lowerbounds so difficult?
	Formal Complexity Measures
	Natural Properties
	Limitations of Natural Proofs
	My personal view
	Exercises
	Chapter notes and history

