Chapter 19

PCP and Hardness of Approximation

> "...most problem reductions do not create or preserve such gaps...To create such a gap in the generic reduction (cf. Cook)...also seems doubtful. The intuitive reason is that computation is an inherently unstable, non-robust mathematical object, in the the sense that it can be turned from non-accepting to accepting by changes that would be insignificant in any reasonable metric."
> Papadimitriou and Yannakakis, $1991[?]$

The PCP Theorem provides an interesting new characterization for NP, as the set of languages that have a "locally testable" membership proof. It is reminiscent of -and was motivated by - results such as IP $=\mathbf{P S P A C E}$. Its essence is the following:

Suppose somebody wants to convince you that a Boolean formula is satisfiable. He could present the usual certificate, namely, a satisfying assignment, which you could then check by substituting back into the formula. However, doing this requires reading the entire certificate. The PCP Theorem shows an interesting alternative: this person can easily rewrite his certificate so you can verify it by probabilistically selecting a constant number of locations - as low as 3 bits- to examine in it. Furthermore, this probabilistic verification has the following properties: (1) A correct certificate will never fail to convince you (that is, no choice of your random coins will make you reject it) and (2) If the formula is unsatisfiable, then you are guaranteed to reject every claimed certificate with high probability.

Web draft 2006-09-28 18:10 405
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are still incomplete.

Of course, since Boolean satisfiability is NP-complete, every other NP language can be deterministically and efficiently reduced to it. Thus the PCP Theorem applies to every NP language. We mention one counterintuitive consequence. Let \mathcal{A} be any one of the usual axiomatic systems of mathematics for which proofs can be verified by a deterministic TM in time that is polynomial in the length of the proof. Recall the following language is in NP:

$$
L=\left\{\left\langle\varphi, 1^{n}\right\rangle: \varphi \text { has a proof in } \mathcal{A} \text { of length } \leq n\right\} .
$$

The PCP Theorem asserts that L has probabilistically checkable certificates. Such certificate can be viewed as an alternative notion of "proof" for mathematical statements that is just as valid as the usual notion. However, unlike standard mathematical proofs, where every line of the proof has to be checked to verify its validity, this new notion guarantees that proofs are probabilistically checkable by examining only a constant number of bits in them ${ }^{1}$.

This new, "robust" notion of certificate/proof has an important consequence: it implies that many optimization problems are NP-hard not only to solve exactly but even to approximate. As mentioned in Chapter 2, the \mathbf{P} versus NP question is practically important -as opposed to "just" philosophically important - because thousands of real-life combinatorial optimization problems are NP-hard. By showing that even computing approximate solutions to many of these problems is NP-hard, the PCP Theorem extends the practical importance of the theory of NP-completeness, as well as its philosophical significance.

This seemingly mysterious connection between the PCP Theorem which concerns probabilistic checking of certificates - and the NP-hardness of computing approximate solutions is actually quite straightforward. All NP-hardness results ultimately derive from the Cook-Levin theorem (Section 2.3.1), which expresses accepting computations of a nondeterministic Turing Machine with satisfying assignments to a Boolean formula. Unfortunately, the standard representations of computation are quite nonrobust, meaning that they can be incorrect if even one bit is incorrect (see the quote at the start of this chapter). The PCP Theorem, by giving a robust representation of the certificate for NP languages, allow new types of reductions; see Section 19.2.3.

Below, we use the term "PCP Theorems" for the body of other results of a similar nature to the PCP Theorem that found numerous applications

[^0]
in complexity theory. Some important ones appear in the next Chapter, including one that improves the PCP Theorem so that verification is possible by reading only 3 bits in the proof!

19.1 PCP and Locally Testable Proofs

According to our usual definition, language L is in NP if there is a polytime Turing machine V ("verifier") that, given input x, checks certificates (or membership proofs) to the effect that $x \in L$. This means,

$$
\begin{aligned}
& x \in L \Rightarrow \exists \pi \text { s.t. } V^{\pi}(x)=1 \\
& x \notin L \Rightarrow \forall \pi \quad V^{\pi}(x)=0,
\end{aligned}
$$

where V^{π} denotes "a verifier with access to certificate π ".
The class PCP (short for "Probabilistically Checkable Proofs") is a generalization of this notion, with the following changes. First, the verifier is probabilistic. Second, the verifier has random access to the proof string Π. This means that each bit of the proof string can be independently queried by the verifier via a special address tape: if the verifier desires say the i th bit in the proof string, it writes i on the address tape and then receives the bit $\pi[i] .^{2}$ (This is reminiscent of oracle TMs introduced in Chapter 4.) The definition of PCP treats queries to the proof as a precious resource, to be used sparingly. Note also that since the address size is logarithmic in the proof size, this model in principle allows a polynomial-time verifier to check membership proofs of exponential size.

Verifiers can be adaptive or nonadaptive. A nonadaptive verifier selects its queries based only on its input and random tape, whereas an adaptive verifier can in addition rely upon bits it has already queried in π to select its next queries. We restrict verifiers to be nonadaptive, since most PCP Theorems can be proved using nonadaptive verifiers. (But Exercise 3 explores the power of adaptive queries.)

Definition 19.1 ((r, q)-verifier)
Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))$ verifier if there's a polynomial-time probabilistic algorithm V satisfying:

Efficiency: On input a string $x \in\{0,1\}^{n}$ and given random access to a string $\pi \in\{0,1\}^{*}$ (which we call the proof), V uses at most $r(n)$

[^1]
proof: π

Verifier
Input: x in $\{0,1\}^{n}$ $r(n)$ coins

Figure 19.1: A PCP verifier for a language L gets an input x and random access to a string π. If $x \in L$ then there exists a string π that makes the verifier accepts, while if $x \notin L$ then the verifier rejects every proof π with probability at least $1 / 2$.
random coins and makes at most $q(n)$ non-adaptive queries to locations of π (see Figure 19.1). Then it outputs " 1 "(for "accept") or "0" (for "reject"). We use the notation $V^{\pi}(x)$ to denote the random variable representing V 's output on input x and with random access to π.

Completeness: If $x \in L$ then there exists a proof $\pi \in\{0,1\}^{*}$ such that $\operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$. We call π the correct proof for x.

Soundness: If $x \notin L$ then for every proof $\pi \in\{0,1\}^{*}, \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq 1 / 2$.
We say that a language L is in $\mathbf{P C P}(r(n), q(n))$ if L has a $(c \cdot r(n), d$. $q(n)$)-verifier for some constants c, d.

Sometimes we consider verifiers for which the probability " $1 / 2$ " is replaced by some other number, called the soundness parameter.

Theorem 19.2 ($\mathbf{P C P}$ Theorem [?, ?])
$\mathbf{N P}=\mathbf{P C P}(\log n, 1)$.

Notes:

1. Without loss of generality, proofs checkable by an (r, q)-verifier contain at most $q 2^{r}$ bits. The verifier looks at only q places of the proof for any particular choice of its random coins, and there are only 2^{r} such choices. Any bit in the proof that is read with 0 probability (i.e., for no choice of the random coins) can just be deleted.
2. The previous remark implies $\mathbf{P C P}(r(n), q(n)) \subseteq \operatorname{NTIME}\left(2^{O(r(n))} q(n)\right)$. The proofs checkable by an $\left(r(n), q(n)\right.$-verifier have size at most $2^{O(r(n))} q(n)$. A nondeterministic machine could guess the proof in $2^{O(r(n))} q(n)$ time,
and verify it deterministically by running the verifier for all $2^{O(r(n))}$ possible choices of its random coin tosses. If the verifier accepts for all these possible coin tosses then the nondeterministic machine accepts.
As a special case, $\mathbf{P C P}(\log n, 1) \subseteq \mathbf{N T I M E}\left(2^{O(\log n)}\right)=\mathbf{N P}$: this is the trivial direction of the PCP Theorem.
3. The constant $1 / 2$ in the soundness requirement of Definition 19.1 is arbitrary, in the sense that changing it to any other positive constant smaller than 1 will not change the class of languages defined. Indeed, a $\mathbf{P C P}$ verifier with soundness $1 / 2$ that uses r coins and makes q queries can be converted into a PCP verifier using $c r$ coins and $c q$ queries with soundness 2^{-c} by just repeating its execution c times (see Exercise 1).

Example 19.3

To get a better sense for what a PCP proof system looks like, we sketch two nontrivial PCP systems:

1. The language GNI of pairs of non-isomorphic graphs is in $\mathbf{P C P}(\operatorname{poly}(n), 1)$. Say the input for GNI is $\left\langle G_{0}, G_{1}\right\rangle$, where G_{0}, G_{1} have both n nodes. The verifier expects π to contain, for each labeled graph H with n nodes, a bit $\pi[H] \in\{0,1\}$ corresponding to whether $H \equiv G_{0}$ or $H \equiv G_{1}$ ($\pi[H]$ can be arbitrary if neither case holds). In other words, π is an (exponentially long) array of bits indexed by the (adjacency matrix representations of) all possible n-vertex graphs.
The verifier picks $b \in\{0,1\}$ at random and a random permutation. She applies the permutation to the vertices of G_{b} to obtain an isomorphic graph, H. She queries the corresponding bit of π and accepts iff the bit is b.

If $G_{0} \not \equiv G_{1}$, then clearly a proof π can be constructed which makes the verifier accept with probability 1 . If $G_{1} \equiv G_{2}$, then the probability that any π makes the verifier accept is at most $1 / 2$.
2. The protocols in Chapter 9 can be used (see Exercise 5) to show that the permanent has PCP proof system with polynomial randomness and queries. Once again, the length of the proof will be exponential.

In fact, both of these results are a special case of the following theorem a "scaled-up" version of the PCP Theorem which we will not prove.

Theorem 19.4 (Scaled-up PCP, [?, ?, ?])
PCP $($ poly, 1$)=$ NEXP

19.2 PCP and Hardness of Approximation

The PCP Theorem implies that for many NP optimization problems, computing near-optimal solutions is no easier than computing exact solutions.

We illustrate the notion of approximation algorithms with an example. MAX 3SAT is the problem of finding, given a 3CNF Boolean formula φ as input, an assignment that maximizes the number of satisfied clauses. This problem is of course NP-hard, because the corresponding decision problem, 3SAT, is NP-complete.
Definition 19.5
For every 3 CNF formula φ, define $\operatorname{val}(\varphi)$ to be the maximum fraction of clauses that can be satisfied by any assignment to φ 's variables. In particular, if φ is satisfiable then $\operatorname{val}(\varphi)=1$.

Let $\rho \leq 1$. An algorithm A is a ρ-approximation algorithm for MAX 3SAT if for every 3CNF formula φ with m clauses, $A(\varphi)$ outputs an assignment satisfying at least $\rho \cdot \operatorname{val}(\varphi) m$ of φ 's clauses.

In many practical settings, obtaining an approximate solution to a problem may be almost as good as solving it exactly. Moreover, for some computational problems, approximation is much easier than an exact solution.

Example 19.6 (1/2-APPROXIMATION FOR MAX 3SAT)
We describe a polynomial-time algorithm that computes a $1 / 2$-approximation for MAX 3SAT. The algorithm assigns values to the variables one by one in a greedy fashion, whereby the i th variable is assigned the value that results in satisfying at least $1 / 2$ the clauses in which it appears. Any clause that gets satisfied is removed and not considered in assigning values to the remaining variables. Clearly, the final assignment will satisfy at least $1 / 2$ of all clauses, which is certainly at least half of the maximum that the optimum assignment could satisfy.

Using semidefinite programming one can also design a polynomial-time (7/8- ϵ)-approximation algorithm for every $\epsilon>0$ (see references). (Obtaining such a ratio is trivial if we restrict ourselves to $3 C N F$ formulae

with three distinct variables in each clause. Then a random assignment has probability $7 / 8$ to satisfy it, and by linearity of expectation, is expected to satisfy a $7 / 8$ fraction of the clauses. This observation can be turned into a simple probabilistic or even deterministic $7 / 8$-approximation algorithm.)

For a few problems, one can even design ($1-\epsilon$)-approximation algorithms for every $\epsilon>0$. Exercise 10 asks you to show this for the NP-complete knapsack problem.

Researchers are extremely interested in finding the best possible approximation algorithms for NP-hard optimization problems. Yet, until the early 1990's most such questions were wide open. In particular, we did not know whether MAX 3SAT has a polynomial-time ρ-approximation algorithm for every $\rho<1$. The PCP Theorem has the following Corollary.
Corollary 19.7
There exists some constant $\rho<1$ such that if there is a polynomial-time ρ-approximation algorithm for MAX 3SAT then $\mathbf{P}=\mathbf{N P}$.

Later, in Chapter 20, we show a stronger PCP Theorem by Håstad which implies that for every $\epsilon>0$, if there is a polynomial-time $(7 / 8+\epsilon)$ approximation algorithm for MAX 3SAT then $\mathbf{P}=\mathbf{N P}$. Hence the approximation algorithm for this problem mentioned in Example 19.6 is very likely optimal. The PCP Theorem (and the other PCP theorems that followed it) imply a host of such hardness of approximation results for many important problems, often showing that known approximation algorithms are optimal.

19.2.1 Gap-producing reductions

To prove Corollary 19.7 for some fixed $\rho<1$, it suffices to give a polynomialtime reduction f that maps $3 C N F$ formulae to $3 C N F$ formulae such that:

$$
\begin{align*}
\varphi \in 3 \text { SAT } & \Rightarrow \operatorname{val}(f(\varphi))=1 \tag{1}\\
\varphi \notin L & \Rightarrow \operatorname{val}(f(\varphi))<\rho \tag{2}
\end{align*}
$$

After all, if a ρ-approximation algorithm were to exist for MAX 3SAT, then we could use it to decide membership of any given formula φ in 3SAT by applying reduction f on φ and then running the approximation algorithm on the resultant $3 C N F$ formula $f(\varphi)$. If $\operatorname{val}(f(\varphi)=1$, then the approximation algorithm would return an assignment that satisfies at least ρ fraction of the clauses, which by property (2) tells us that $\varphi \in 3$ SAT.

Later (in Section 19.2) we show that the PCP Theorem is equivalent to the following Theorem:

Theorem 19.8
There exists some $\rho<1$ and a polynomial-time reduction f satisfying (1) and (2).

By the discussion above, Theorem 19.8 implies Corollary 19.7 and so rules out a polynomial-time ρ-approximation algorithm for MAX 3SAT (unless $\mathbf{P}=\mathbf{N P}$).

Why doesn't the Cook-Levin reduction suffice to prove Theorem 19.8? The first thing one would try is the reduction from any NP language to 3SAT in the Cook-Levin Theorem (Theorem 2.11). Unfortunately, it doesn't give such an f because it does not satisfy property (2): we can always satisfy almost all of the clauses in the formulae produced by the reduction (see Exercise 9 and also the "non-robustness" quote at the start of this chapter).

19.2.2 Gap problems

The above discussion motivates the definition of gap problems, a notion implicit in (1) and (2). It is also an important concept in the proof of the PCP Theorem itself.

Definition 19.9 (GAP 3SAT)
Let $\rho \in(0,1)$. The ρ-GAP 3SAT problem is to determine, given a 3CNF formula φ whether:

- φ is satisfiable, in which case we say φ is a YES instance of ρ-GAP 3SAT.
- $\operatorname{val}(\varphi) \leq \rho$, in which case we say φ is a NO instance of ρ-GAP 3SAT.

An algorithm A is said to solve ρ-GAP 3SAT if $A(\varphi)=1$ if φ is a YES instance of ρ-GAP 3SAT and $A(\varphi)=0$ if φ is a NO instance. Note that we do not make any requirement on $A(\varphi)$ if φ is neither a YES nor a NO instance of ρ-GAP q CSP.

Our earlier discussion of the desired reduction f can be formalized as follows.

Definition 19.10

Let $\rho \in(0,1)$. We say that ρ-GAP 3SAT is NP-hard if for every language L there is a polynomial-time computable function f such that

$$
x \in L \Rightarrow f(x) \text { is a YES instance of } \rho \text {-GAP 3SAT }
$$

$$
x \notin L \Rightarrow f(x) \text { is a NO instance of } \rho \text {-GAP 3SAT }
$$

19.2.3 Constraint Satisfaction Problems

Now we generalize the definition of 3SAT to constraint satisfaction problems (CSP), which allow clauses of arbitrary form (instead of just OR of literals) including those depending upon more than 3 variables. Sometimes the variables are allowed to be non-Boolean. CSPs arise in a variety of application domains and play an important role in the proof of the PCP Theorem.
Definition 19.11
Let q, W be natural numbers. A $q \mathrm{CSP}_{W}$ instance φ is a collection of functions $\varphi_{1}, \ldots, \varphi_{m}$ (called constraints) from $\{0 . . W-1\}^{n}$ to $\{0,1\}$ such that each function φ_{i} depends on at most q of its input locations. That is, for every $i \in[m]$ there exist $j_{1}, \ldots, j_{q} \in[n]$ and $f:\{0 . . W-1\}^{q} \rightarrow\{0,1\}$ such that $\varphi_{i}(\mathbf{u})=f\left(u_{j_{1}}, \ldots, u_{j_{q}}\right)$ for every $\mathbf{u} \in\{0 . . W-1\}^{n}$.

We say that an assignment $\mathbf{u} \in\{0 . . W-1\}^{n}$ satisfies constraint φ_{i} if $\varphi_{i}(\mathbf{u})=1$. The fraction of constraints satisfied by \mathbf{u} is $\frac{\sum_{i=1}^{m} \varphi_{i}(\mathbf{u})}{m}$, and we let $\operatorname{val}(\varphi)$ denote the maximum of this value over all $\mathbf{u} \in\{0 . . W-1\}^{n}$. We say that φ is satisfiable if $\operatorname{val}(\varphi)=1$.

We call q the arity of φ and W the alphabet size. If $W=2$ we say that φ uses a binary alphabet and call φ a q CSP-instance (dropping the subscript $2)$.

Example 19.12

3SAT is the subcase of $q \operatorname{CSP}_{W}$ where $q=3, W=2$, and the constraints are OR's of the involved literals.

Similarly, the NP-complete problem 3COL can be viewed as a subcase of $2 \mathrm{CSP}_{3}$ instances where for each edge (i, j), there is a constraint on the variables u_{i}, u_{j} that is satisfied iff $u_{i} \neq u_{j}$. The graph is 3 -colorable iff there is a way to assign a number in $\{0,1,2\}$ to each variable such that all constraints are satisfied.

Notes:

1. We define the size of a $q \operatorname{CSP}_{W}$-instance φ to be the number of constraints m it has. Because variables not used by any constraints are redundant, we always assume $n \leq q m$. Note that a $q \operatorname{CSP}_{W}$ instance over n variables with m constraints can be described using $O\left(m n^{q} W^{q}\right)$ bits. Usually q, W will be constants (independent of n, m).
2. As in the case of 3SAT, we can define maximization and gap problems for CSP instances. In particular, for any $\rho \in(0,1)$, we define ρ-GAP $q \operatorname{CSP}_{W}$ as the problem of distinguishing between a $q \operatorname{CSP}_{W^{-}}$ instance φ that is satisfiable (called a YES instance) and an instance φ with $\operatorname{val}(\varphi) \leq \rho$ (called a NO instance). As before, we will drop the subscript W in the case of a binary alphabet.
3. The simple greedy approximation algorithm for 3SAT can be generalized for the $\operatorname{MAX} q$ CSP problem of maximizing the number of satisfied constraints in a given q CSP instance. That is, for any $q \mathrm{CSP}_{W}$ instance φ with m constraints, the algorithm will output an assignment satisfying $\frac{\operatorname{val}(\varphi)}{W^{q}} m$ constraints. Thus, unless $\mathbf{N P} \subseteq \mathbf{P}$, the problem 2^{-q}-GAP q CSP is not NP hard.

19.2.4 An Alternative Formulation of the PCP Theorem

We now show how the PCP Theorem is equivalent to the NP-hardness of a certain gap version of q CSP. Later, we will refer to this equivalence as the "hardness of approximation viewpoint" of the PCP Theorem.
Theorem 19.13 (PCP Theorem, alternative formulation) There exist constants $q \in \mathbb{N}, \rho \in(0,1)$ such that ρ-GAP q CSP is $\mathbf{N P}$-hard.

We now show Theorem 19.13 is indeed equivalent to the PCP Theorem:

Theorem 19.2 implies Theorem 19.13. Assume that $\mathbf{N P} \subseteq \mathbf{P C P}(\log n, 1)$. We will show that $1 / 2-\mathrm{GAP} q$ CSP is NP-hard for some constant q. It is enough to reduce a single NP-complete language such as 3SAT to $1 / 2$-GAP q CSP for some constant q. Under our assumption, 3SAT has a PCP system in which the verifier V makes a constant number of queries, which we denote by q, and uses $c \log n$ random coins for some constant c. Given every input x and $r \in\{0,1\}^{c \log n}$, define $V_{x, r}$ to be the function that on input a proof π outputs 1 if the verifier will accept the proof π on input x and coins r. Note that $V_{x, r}$ depends on at most q locations. Thus for every $x \in\{0,1\}^{n}$, the collection $\varphi=\left\{V_{x, r}\right\}_{r \in\{0,1\}^{c \log n}}$ is a polynomial-sized q CSP instance. Furthermore, since V runs in polynomial-time, the transformation of x to φ can

also be carried out in polynomial-time. By the completeness and soundness of the PCP system, if $x \in 3$ SAT then φ will satisfy $\operatorname{val}(\varphi)=1$, while if $x \notin 3$ SAT then φ will satisfy $\operatorname{val}(\varphi) \leq 1 / 2$.

Theorem 19.13 implies Theorem 19.2. Suppose that ρ-GAP q CSP is NP-hard for some constants $q, \rho<1$. Then this easily translates into a PCP system with q queries, ρ soundness and logarithmic randomness for any language L : given an input x, the verifier will run the reduction $f(x)$ to obtain a q CSP instance $\varphi=\left\{\varphi_{i}\right\}_{i=1}^{m}$. It will expect the proof π to be an assignment to the variables of φ, which it will verify by choosing a random $i \in[m]$ and checking that φ_{i} is satisfied (by making q queries). Clearly, if $x \in L$ then the verifier will accept with probability 1 , while if $x \notin L$ it will accept with probability at most ρ. The soundness can be boosted to $1 / 2$ at the expense of a constant factor in the randomness and number of queries (see Exercise 1).

Remark 19.14
Since $3 C N F$ formulas are a special case of 3CSP instances, Theorem 19.8 (ρ-GAP 3SAT is NP-hard) implies Theorem 19.13 (ρ-GAP q CSP is NP-hard). Below we show Theorem 19.8 is also implied by Theorem 19.13, concluding that it is also equivalent to the PCP Theorem.

It is worth while to review this very useful equivalence between the "proof view" and the "hardness of approximation view" of the PCP Theorem:

PCP verifier (V)	\longleftrightarrow	CSP instance (φ)
PCP proof (π)	\longleftrightarrow	Assignment to variables (\mathbf{u})
Length of proof	\longleftrightarrow	Number of variables (n)
Number of queries (q)	\longleftrightarrow	Arity of constraints (q)
Number of random bits (r)	\longleftrightarrow	Logarithm of number of constraints ($\log m$)
Soundness parameter	\longleftrightarrow	Maximum of $\operatorname{val}(\varphi)$ for a NO instance
Theorem $19.2(\mathbf{N P} \subseteq \mathbf{P C P}(\log n, 1))$	\longleftrightarrow	Theorem 19.13 (ρ-GAP q CSP is NP-hard)

19.2.5 Hardness of Approximation for 3SAT and INDSET.

The CSP problem allows arbitrary functions to serve as constraints, which may seem somewhat artificial. We now show how Theorem 19.13 implies hardness of approximation results for the more natural problems of MAX 3SAT (determining the maximum number of clauses satisfiable in a 3SAT formula) and MAXINDSET (determining the size of the largest independent set in a given graph).

The following two lemmas use the PCP Theorem to show that unless $\mathbf{P}=\mathbf{N P}$, both MAX 3SAT and MAX INDSET are hard to approximate within a factor that is a constantless than 1 . (Section 19.3 proves an even stronger hardness of approximation result for INDSET.)

Lemma 19.15 (Theorem 19.8, restated)
There exists a constant $0<\rho<1$ such that ρ-GAP 3SAT is NP-hard.
Lemma 19.16
There exist a polynomial-time computable transformation f from 3CNF formulae to graphs such that for every $3 C N F$ formula $\varphi, f(\varphi)$ is an n-vertex graph whose largest independent set has size $\operatorname{val}(\varphi) \frac{n}{7}$.

Proof of Lemma 19.15: Let $\epsilon>0$ and $q \in \mathbb{N}$ be such that by Theorem 19.13, ($1-\epsilon$)-GAP q CSP is NP-hard. We show a reduction from ($1-$ $\epsilon)$-GAP q CSP to $\left(1-\epsilon^{\prime}\right)$-GAP 3SAT where $\epsilon^{\prime}>0$ is some constant depending on ϵ and q. That is, we will show a polynomial-time function mapping YES instances of $(1-\epsilon)$-GAP q CSP to YES instances of $\left(1-\epsilon^{\prime}\right)$-GAP 3SAT and NO instances of $(1-\epsilon)$-GAP q CSP to NO instances of $\left(1-\epsilon^{\prime}\right)$-GAP 3SAT.

Let φ be a q CSP instance over n variables with m constraints. Each constraint φ_{i} of φ can be expressed as an AND of at most 2^{q} clauses, where each clause is the OR of at most q variables or their negations. Let φ^{\prime} denote the collection of at most $m 2^{q}$ clauses corresponding to all the constraints of φ. If φ is a YES instance of ($1-\epsilon$)-GAP q CSP (i.e., it is satisfiable) then there exists an assignment satisfying all the clauses of φ^{\prime}. if φ is a NO instance of $(1-\epsilon)$-GAP q CSP then every assignment violates at least an ϵ fraction of the constraints of φ and hence violates at least an $\frac{\epsilon}{2^{q}}$ fraction of the constraints of φ. We can use the Cook-Levin technique of Chapter 2 (Theorem 2.11), to transform any clause C on q variables on u_{1}, \ldots, u_{q} to a set C_{1}, \ldots, C_{q} of clauses over the variables u_{1}, \ldots, u_{q} and additional auxiliary variables y_{1}, \ldots, y_{q} such that (1) each clause C_{i} is the OR of at most three variables or their negations, (2) if u_{1}, \ldots, u_{q} satisfy C then there is an assignment to y_{1}, \ldots, y_{q} such that $u_{1}, \ldots, u_{q}, y_{1}, \ldots, y_{q}$ simultaneously satisfy C_{1}, \ldots, C_{q} and (3) if u_{1}, \ldots, u_{q} does not satisfy C then for every assignment to y_{1}, \ldots, y_{q}, there is some clause C_{i} that is not satisfies by $u_{1}, \ldots, u_{q}, y_{1}, \ldots, y_{q}$.

Let $\varphi^{\prime \prime}$ denote the collection of at most $q m 2^{q}$ clauses over the $n+q m$ variables obtained in this way from φ^{\prime}. Note that $\varphi^{\prime \prime}$ is a 3SAT formula. Our reduction will map φ to $\varphi^{\prime \prime}$. Completeness holds since if φ was satisfiable then so will be φ^{\prime} and hence $\varphi^{\prime \prime}$. Soundness holds since if every assignment

violates at least an ϵ fraction of the constraints of φ, then every assignment violates at least an $\frac{\epsilon}{2^{q}}$ fraction of the constraints of φ^{\prime}, and so every assignment violates at least an $\frac{\epsilon}{q^{q}}$ fraction of the constraints of $\varphi^{\prime \prime}$.
Proof of Lemma 19.16: Let φ be a 3CNF formula on n variables with m clauses. We define a graph G of $7 m$ vertices as follows: we associate a cluster of 7 vertices in G with each clause of φ. The vertices in cluster associated with a clause C correspond to the 7 possible assignments to the three variables C depends on (we call these partial assignments, since they only give values for some of the variables). For example, if C is $\overline{u_{2}} \vee \overline{u_{5}} \vee \overline{u_{7}}$ then the 7 vertices in the cluster associated with C correspond to all partial assignments of the form $u_{1}=a, u_{2}=b, u_{3}=c$ for a binary vector $\langle a, b, c\rangle \neq$ $\langle 1,1,1\rangle$. (If C depends on less than three variables we treat one of them as repeated and then some of the 7 vertices will correspond to the same assignment.) We put an edge between two vertices of G if they correspond to inconsistent partial assignments. Two partial assignments are consistent if they give the same value to all the variables they share. For example, the assignment $u_{1}=1, u_{2}=0, u_{3}=0$ is inconsistent with the assignment $u_{3}=1, u_{5}=0, u_{7}=1$ because they share a variable (u_{3}) to which they give a different value. In addition, we put edges between every two vertices that are in the same cluster.

Clearly transforming φ into G can be done in polynomial time. Denote by $\alpha(G)$ to be the size of the largest independent set in G. We claim that $\alpha(G)=\operatorname{val}(\varphi) m$. For starters, note that $\alpha(G) \geq \operatorname{val}(\varphi) m$. Indeed, let \mathbf{u} be the assignment that satisfies $\operatorname{val}(\varphi) m$ clauses. Define a set S as follows: for each clause C satisfied by \mathbf{u}, put in S the vertex in the cluster associated with C that corresponds to the restriction of \mathbf{u} to the variables C depends on. Because we only choose vertices that correspond to restrictions of the assignment \mathbf{u}, no two vertices of S correspond to inconsistent assignments and hence S is an independent set of size $\operatorname{val}(\varphi) m$.

Suppose that G has an independent set S of size k. We will use S to construct an assignment \mathbf{u} satisfying k clauses of φ, thus showing that $\operatorname{val}(\varphi) m \geq \alpha(G)$. We define \mathbf{u} as follows: for every $i \in[n]$, if there is a vertex in S whose partial assignment gives a value a to u_{i}, then set $u_{i}=a$; otherwise set $u_{i}=0$. This is well defined because S is an independent set, and each variable u_{i} can get at most a single value by assignments corresponding to vertices in S. On the other hand, because we put all the edges within each cluster, S can contain at most a single vertex in each cluster, and hence there are k distinct cluster with members in S. By our definition of \mathbf{u} it satisfies all the clauses associated with these clusters.

Remark 19.17
In Chapter 2, we defined L^{\prime} to be NP-hard if every $L \in \mathbf{N P}$ reduces to L^{\prime}. The reduction was a polynomial-time function f such that $x \in L \Leftrightarrow$ $f(x) \in L^{\prime}$. In all cases, we proved that $x \in L \Rightarrow f(x) \in L^{\prime}$ by showing a way to map a certificate to the fact that $x \in L$ to a certificate to the fact that $x^{\prime} \in L^{\prime}$. Although the definition of a Karp reduction does not require that this mapping is efficient, it often turned out that the proof did provide a way to compute this mapping in polynomial time. The way we proved that $f(x) \in L^{\prime} \Rightarrow x \in L$ was by showing a way to map a certificate to the fact that $x^{\prime} \in L^{\prime}$ to a certificate to the fact that $x \in L$. Once again, the proofs typically yield an efficient way to compute this mapping.

A similar thing happens in the gap preserving reductions used in the proofs of Lemmas 19.15 and 19.16 and elsewhere in this chapter. When reducing from, say, ρ-GAP q CSP to ρ^{\prime}-GAP 3SAT we show a function f that maps a CSP instance φ to a 3SAT instance ψ satisfying the following two properties:

Completeness We can map a satisfying assignment of φ to a satisfying assignment to ψ

Soundness Given any assignment that satisfies more than a ρ^{\prime} fraction of ψ 's clauses, we can map it back into an assignment satisfying more than a ρ fraction of φ 's constraints.

$19.3 n^{-\delta}$-approximation of independent set is NPhard.

We now show a much stronger hardness of approximation result for the independent set (INDSET) problem than Lemma 19.16. Namely, we show that there exists a constant $\delta \in(0,1)$ such that unless $\mathbf{P}=\mathbf{N P}$, there is no polynomial-time n^{δ}-approximation algorithm for INDSET. That is, we show that if there is a polynomial-time algorithm A that given an n-vertex graph G outputs an independent set of size at least $\frac{\mathrm{opt}}{n^{\delta}}$ (where opt is the size of the largest independent set in G) then $\mathbf{P}=\mathbf{N P}$. We note that an even stronger result is known: the constant δ can be made arbitrarily close to 1 [?, ?]. This factor is almost optimal since the independent set problem has a trivial n-approximation algorithm: output a single vertex.

Our main tool will be the notion of expander graphs (see Note 19.18 and Chapter 16). Expander graphs will also be used in the proof of PCP Theorem itself. We use here the following property of expanders:

Note 19.18 (Expander graphs)
Expander graphs are described in Chapter 16. We define there a parameter $\lambda(G) \in[0,1]$, for every regular graph G (see Definition 16.3). The main property we need in this chapter is that for every regular graph $G=(V, E)$ and every $S \subseteq V$ with $|S| \leq|V| / 2$,

$$
\begin{equation*}
\operatorname{Pr}_{(u, v) \in E}[u \in S, v \in S] \leq \frac{|S|}{|V|}\left(\frac{1}{2}+\frac{\lambda(G)}{2}\right) \tag{3}
\end{equation*}
$$

Another property we use is that $\lambda\left(G^{\ell}\right)=\lambda(G)^{\ell}$ for every $\ell \in \mathbb{N}$, where G^{ℓ} is obtained by taking the adjacency matrix of G to the $\ell^{t h}$ power (i.e., an edge in G^{ℓ} corresponds to an ($\ell-1$)-step path in G).
For every $c \in(0,1)$, we call a regular graph G satisfying $\lambda(G) \leq c$ a c expander graph. If $c<0.9$, we drop the prefix c and simply call G an expander graph. (The choice of the constant 0.9 is arbitrary.) As shown in Chapter 16, for every constant $c \in(0,1)$ there is a constant d and an algorithm that given input $n \in N$, runs in poly (n) time and outputs the adjacency matrix of an n-vertex d-regular c-expander (see Theorem 16.24).

Lemma 19.19

Let $G=(V, E)$ be a λ-expander graph for some $\lambda \in(0,1)$. Let S be a subset of V with $|S|=\beta|V|$ for some $\beta \in(0,1)$. Let $\left(X_{1}, \ldots, X_{\ell}\right)$ be a tuple of random variables denoting the vertices of a uniformly chosen ($\ell-1$)-step path in G. Then,

$$
(\beta-2 \lambda)^{k} \leq \operatorname{Pr}\left[\forall_{i \in[\ell]} X_{i} \in S\right] \leq(\beta+2 \lambda)^{k}
$$

The upper bound of Lemma 19.19 is implied by Theorem ??; we omit the proof of the lower bound.

The hardness result for independent set follows by combining the following lemma with Lemma 19.16:

Lemma 19.20
For every $\lambda>0$ there is a polynomial-time computable reduction f that maps every n-vertex graph G into an m-vertex graph H such that

$$
(\tilde{\alpha}(G)-2 \lambda)^{\log n} \leq \tilde{\alpha}(H) \leq(\tilde{\alpha}(G)+2 \lambda)^{\log n}
$$

where $\tilde{\alpha}(G)$ is equal to the fractional size of the largest independent set in G.

Recall that Lemma 19.16 shows that there are some constants $\beta, \epsilon \in$ $(0,1)$ such that it is NP-hard to tell whether a given graph G satisfies (1) $\tilde{\alpha}(G) \geq \beta$ or (2) $\tilde{\alpha}(G) \leq(1-\epsilon) \beta$. By applying to G the reduction of Lemma 19.20 with parameter $\lambda=\beta \epsilon / 8$ we get that in case (1), $\tilde{\alpha}(H) \geq$ $(\beta-\beta \epsilon / 4)^{\log n}=(\beta(1-\epsilon / 4))^{\log n}$, and in case (2), $\tilde{\alpha}(H) \leq((1-\epsilon) \beta+$ $\beta \epsilon / 4)^{\log n}=(\beta(1-0.75 \epsilon))^{\log n}$. We get that the gap between the two cases is equal to $c^{\log n}$ for some $c>1$ which is equal to m^{δ} for some $\delta>0$ (where $m=\operatorname{poly}(n)$ is the number of vertices in $H)$.

Proof of Lemma 19.20: Let G, λ be as in the lemma's statement. We let K be an n-vertex λ-expander of degree d (we can obtain such a graph in polynomial-time, see Note 19.18). We will map G into a graph H of $n d^{\log n-1}$ vertices in the following way:

- The vertices of H correspond to all the $(\log n-1)$-step paths in the λ-expander K.
- We put an edge between two vertices u, v of H corresponding to the paths $\left\langle u_{1}, \ldots, u_{\log n}\right\rangle$ and $\left\langle v_{1}, \ldots, v_{\log n}\right\rangle$ if there exists an edge in G between two vertices in the set $\left\{u_{1}, \ldots, u_{\log n}, v_{1}, \ldots, v_{\log n}\right\}$.

A subset T of H 's vertices corresponds to a subset of $\log n$-tuples of numbers in $[n]$, which we can identify as tuples of vertices in G. We let $V(T)$ denote the set of all the vertices appearing in one of the tuples of T. Note that in this notation, T is an independent set in H if and only if $V(T)$ is an independent set of G. Thus for every independent set T in H, we have that $|V(T)| \leq \tilde{\alpha}(G) n$ and hence by the upper bound of Lemma 19.19, T takes up less than an $(\tilde{\alpha}(H)+2 \lambda)^{\log n}$ fraction of H 's vertices. On the other hand, if we let S be the independent set of G of $\operatorname{size} \tilde{\alpha}(G) n$ then by the lower bound of Lemma 19.19, an $(\tilde{\alpha}-2 \lambda)^{\log n}$ fraction of H 's vertices correspond to paths fully contained in S, implying that $\tilde{\alpha}(H) \geq(\tilde{\alpha}(G)-2 \lambda)^{\log n}$.

19.4 $\mathrm{NP} \subseteq \operatorname{PCP}(\operatorname{poly}(n), 1): \mathbf{P C P}$ based upon WalshHadamard code

We now prove a weaker version of the $\mathbf{P C P}$ theorem, showing that every NP statement has an exponentially-long proof that can be locally tested by only looking at a constant number of bits. In addition to giving a taste of how one proves PCP Theorems, this section builds up to a stronger Corollary 19.26, which will be used in the proof of the PCP theorem.

Theorem 19.21
$\mathbf{N P} \subseteq \mathbf{P C P}(\operatorname{poly}(n), 1)$
We prove this theorem by designing an appropriate verifier for an NPcomplete language. The verifier expects the proof to contain an encoded version of the usual certificate. The verifier checks such an encoded certificate by simple probabilistic tests.

19.4.1 Tool: Linearity Testing and the Walsh-Hadamard Code

We use the Walsh-Hadamard code (see Section 18.5, though the treatment here is self-contained). It is a way to encode bit strings of length n by linear functions in n variables over $\mathrm{GF}(2)$; namely, the function WH: $\{0,1\}^{*} \rightarrow$ $\{0,1\}^{*}$ mapping a string $\mathbf{u} \in\{0,1\}^{n}$ to the truth table of the function $\mathbf{x} \mapsto$ $\mathbf{u} \odot \mathbf{x}$, where for $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$ we define $\mathbf{x} \odot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}(\bmod 2)$. Note that this is a very inefficient encoding method: an n-bit string $\mathbf{u} \in\{0,1\}^{n}$ is encoded using $|\mathrm{WH}(\mathbf{u})|=2^{n}$ bits. If $f \in\{0,1\}^{2^{n}}$ is equal to $\mathrm{WH}(\mathbf{u})$ for some \mathbf{u} then we say that f is a Walsh-Hadamard codeword. Such a string $f \in\{0,1\}^{2^{n}}$ can also be viewed as a function from $\{0,1\}^{n}$ to $\{0,1\}$.

The Walsh-Hadamard code is an error correcting code with minimum distance $1 / 2$, by which we mean that for every $\mathbf{u} \neq \mathbf{u}^{\prime} \in\{0,1\}^{n}$, the encodings $\mathrm{WH}(\mathbf{u})$ and $\mathrm{WH}(\mathbf{u})$ differ in half the bits. This follows from the familiar random subsum principle (Claim A.3) since exactly half of the strings $\mathbf{x} \in$ $\{0,1\}^{n}$ satisfy $\mathbf{u} \odot \mathbf{x} \neq \mathbf{u}^{\prime} \odot \mathbf{x}$. Now we talk about local tests for the WalshHadamard code (i.e., tests making only $O(1)$ queries).

Local testing of Walsh-Hadamard code. Suppose we are given access to a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and want to test whether or not f is actually a codeword of Walsh-Hadamard. Since the Walsh-Hadamard codewords are precisely the set of all linear functions from $\{0,1\}^{n}$ to $\{0,1\}$, we can test f by checking that

$$
\begin{equation*}
f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y}) \tag{4}
\end{equation*}
$$

for all the $2^{2 n}$ pairs $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$ (where " + " on the left side of (pcp:eq:lintest) denotes vector addition over $\operatorname{GF}(2)^{n}$ and on the right side denotes addition over GF(2)).

But can we test f by querying it in only a constant number of places? Clearly, if f is not linear but very close to being a linear function (e.g., if f is obtained by modifying a linear function on a very small fraction of its inputs) then such a local test will not be able to distinguish f from a linear function. Thus we set our goal on a test that on one hand accepts every linear function, and on the other hand rejects with high probability every function that is far from linear. It turns out that the natural test of choosing \mathbf{x}, \mathbf{y} at random and verifying (4) achieves this goal:
Definition 19.22
Let $\rho \in[0,1]$. We say that $f, g:\{0,1\}^{n} \rightarrow\{0,1\}$ are ρ-close if $\operatorname{Pr}_{\mathbf{x} \in_{R}\{0,1\}^{n}}[f(\mathbf{x})=$ $g(\mathbf{x})] \geq \rho$. We say that f is ρ-close to a linear function if there exists a linear function g such that f and g are ρ-close.
Theorem 19.23 (Linearity Testing [?])
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be such that

$$
\operatorname{Pr}_{\mathbf{x}, \mathbf{y} \in R\{0,1\}^{n}}[f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})] \geq \rho
$$

for some $\rho>1 / 2$. Then f is ρ-close to a linear function.
We defer the proof of Theorem 19.23 to Section 20.3 of the next chapter. For every $\delta \in(0,1 / 2)$, we can obtain a linearity test that rejects with probability at least $1 / 2$ every function that is not $(1-\delta)$-close to a linear function, by testing Condition (4) repeatedly $O(1 / \delta)$ times with independent randomness. We call such a test a $(1-\delta)$-linearity test.

Local decoding of Walsh-Hadamard code. Suppose that for $\delta<\frac{1}{4}$ the function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is (1- δ-close to some linear function \tilde{f}. Because every two linear functions differ on half of their inputs, the function \tilde{f} is uniquely determined by f. Suppose we are given $\mathbf{x} \in\{0,1\}^{n}$ and random access to f. Can we obtain the value $\tilde{f}(\mathbf{x})$ using only a constant number of queries? The naive answer is that since most \mathbf{x} 's satisfy $f(\mathbf{x})=\tilde{f}(\mathbf{x})$, we should be able to learn $\tilde{f}(\mathbf{x})$ with good probability by making only the single query \mathbf{x} to f. The problem is that \mathbf{x} could very well be one of the places where f and \tilde{f} differ. Fortunately, there is still a simple way to learn $\tilde{f}(\mathbf{x})$ while making only two queries to f :

1. Choose $\mathbf{x}^{\prime} \in_{R}\{0,1\}^{n}$.
2. Set $\mathrm{x}^{\prime \prime}=\mathrm{x}+\mathrm{x}^{\prime}$.
3. Let $\mathbf{y}^{\prime}=f\left(\mathbf{x}^{\prime}\right)$ and $\mathbf{y}^{\prime \prime}=f\left(\mathbf{x}^{\prime \prime}\right)$.
4. Output $\mathbf{y}^{\prime}+\mathrm{y}^{\prime \prime}$.

Since both x^{\prime} and $\mathrm{x}^{\prime \prime}$ are individually uniformly distributed (even though they are dependent), by the union bound with probability at least $1-2 \delta$ we have $\mathbf{y}^{\prime}=\tilde{f}\left(\mathbf{x}^{\prime}\right)$ and $\mathbf{y}^{\prime \prime}=\tilde{f}\left(\mathbf{x}^{\prime \prime}\right)$. Yet by the linearity of $\tilde{f}, \tilde{f}(\mathbf{x})=$ $\tilde{f}\left(\mathbf{x}^{\prime}+\mathbf{x}^{\prime \prime}\right)=\tilde{f}\left(\mathbf{x}^{\prime}\right)+\tilde{f}\left(\mathbf{x}^{\prime \prime}\right)$, and hence with at least $1-2 \delta$ probability $\tilde{f}(\mathbf{x})=\mathbf{y}^{\prime}+\mathbf{y}^{\prime \prime} .{ }^{3}$ This technique is called local decoding of the WalshHadamard code since it allows to recover any bit of the correct codeword (the linear function \tilde{f}) from a corrupted version (the function f) while making only a constant number of queries. It is also known as self correction of the Walsh-Hadamard code.

19.4.2 Proof of Theorem 19.21

We will show a ($\operatorname{poly}(n), 1)$-verifier proof system for a particular NP-complete language L. The result that $\mathbf{N P} \subseteq \mathbf{P C P}(\operatorname{poly}(n), 1)$ follows since every NP language is reducible to L. The NP-complete language L we use is QUADEQ, the language of systems of quadratic equations over $\operatorname{GF}(2)=$ $\{0,1\}$ that are satisfiable.

[^2]Example 19.24
The following is an instance of QUADEQ over the variables u_{1}, \ldots, u_{5} :

$$
\begin{aligned}
u_{1} u_{2}+u_{3} u_{4}+u_{1} u_{5} & =1 \\
u_{2} u_{3}+u_{1} u_{4} & =0 \\
u_{1} u_{4}+u_{3} u_{5}+u_{3} u_{4} & =1
\end{aligned}
$$

This instance is satisfiable since the all-1 assignment satisfies all the equations.

More generally, an instance of QUADEQ over the variables u_{1}, \ldots, u_{n} is of the form $A U=b$, where U is the n^{2}-dimensional vector whose $\langle i, j\rangle^{t h}$ entry is $u_{i} u_{j}, A$ is an $m \times n^{2}$ matrix and $\mathbf{b} \in\{0,1\}^{m}$. In other words, U is the tensor product $\mathbf{u} \otimes \mathbf{u}$, where $\mathbf{x} \otimes \mathbf{y}$ for a pair of vectors $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$ denotes the n^{2}-dimensional vector (or $n \times n$ matrix) whose (i, j) entry is $x_{i} y_{j}$. For every $i, j \in[n]$ with $i \leq j$, the entry $A_{k,\langle i, j\rangle}$ is the coefficient of $u_{i} u_{j}$ in the $k^{t h}$ equation (we identify $\left[n^{2}\right]$ with $[n] \times[n]$ in some canonical way). The vector \mathbf{b} consists of the right hand side of the m equations. Since $u_{i}=\left(u_{i}\right)^{2}$ in $\mathrm{GF}(2)$, we can assume the equations do not contain terms of the form u_{i}^{2}.

Thus a satisfying assignment consists of $u_{1}, u_{2}, \ldots, u_{n} \in \mathrm{GF}(2)$ such that its tensor product $U=u \otimes u$ satisfies $A U=b$. We leave it as Exercise 12 to show that QUADEQ, the language of all satisfiable instances, is indeed NP-complete.

Figure 19.2: The $\mathbf{P C P}$ proof that a set of quadratic equations is satisfiable consists of $\mathrm{WH}(u)$ and $\mathrm{WH}(u \otimes u)$ for some vector u. The verifier first checks that the proof is close to having this form, and then uses the local decoder of the Walsh-Hadamard code to ensure that u is a solution for the quadratic equation instance.

We now describe the PCP system for QUADEQ. Let A, \mathbf{b} be an instance of QUADEQ and suppose that A, \mathbf{b} is satisfiable by an assignment $\mathbf{u} \in\{0,1\}^{n}$. The correct PCP proof π for A, b will consist of the WalshHadamard encoding for \mathbf{u} and the Walsh-Hadamard encoding for $\mathbf{u} \otimes \mathbf{u}$, by which we mean that we will design the $\mathbf{P C P}$ verifier in a way ensuring that it
accepts proofs of this form with probability one, satisfying the completeness condition. (Note that π is of length $2^{n}+2^{n^{2}}$.)

Below, we repeatedly use the following fact:
RANDOM SUBSUM PRINCIPLE: If $\mathbf{u} \neq \mathbf{v}$ then for at least $1 / 2$ the choices of \mathbf{x}, $\mathbf{u} \odot \mathbf{x} \neq \mathbf{v} \odot \mathbf{x}$. Realize that \mathbf{x} can be viewed as a random subset of indices in $[1, \ldots, n]$ and the principle says that with probability $1 / 2$ the sum of the u_{i} 's over this index set is different from the corresponding sum of v_{i} 's.

The verifier. The verifier V gets access to a proof $\pi \in\{0,1\}^{2^{n}+2^{n^{2}}}$, which we interpret as a pair of functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n^{2}} \rightarrow$ $\{0,1\}$.

Step 1: Check that f, g are linear functions.

As already noted, this isn't something that the verifier can check per se using local tests. Instead, the verifier performs a 0.99 -linearity test on both f, g, and rejects the proof at once if either test fails.

Thus, if either of f, g is not 0.99 -close to a linear function, then V rejects with high probability. Therefore for the rest of the procedure we can assume that there exist two linear functions $\tilde{f}:\{0,1\}^{n} \rightarrow\{0,1\}$ and $\tilde{g}:\{0,1\}^{n^{2}} \rightarrow$ $\{0,1\}$ such that \tilde{f} is 0.99 -close to f, and \tilde{g} is 0.99 -close to g. (Note: in a correct proof, the tests succeed with probability 1 and $\tilde{f}=f$ and $\tilde{g}=g$.)

In fact, we will assume that for Steps 2 and 3 , the verifier can query \tilde{f}, \tilde{g} at any desired point. The reason is that local decoding allows the verifier to recover any desired value of \tilde{f}, \tilde{g} with good probability, and Steps 2 and 3 will only use a small (less than 15) number of queries to \tilde{f}, \tilde{g}. Thus with high probability (say >0.9) local decoding will succeed on all these queries.
nOtation: To simplify notation in the rest of the procedure we use f, g for \tilde{f}, \tilde{g} respectively. Furthermore, we assume both f and g are linear, and thus they must encode some strings $\mathbf{u} \in\{0,1\}^{n}$ and $\mathbf{w} \in\{0,1\}^{n^{2}}$. In other words, f, g are the functions given by $f(\mathbf{r})=\mathbf{u} \odot \mathbf{r}$ and $g(\mathbf{z})=\mathbf{w} \odot \mathbf{z}$.

Step 2: Verify that g encodes $\mathbf{u} \otimes \mathbf{u}$, where $\mathbf{u} \in\{0,1\}^{n}$ is the string encoded by f.

Verifier V does the following test 3 times: "Choose $\mathbf{r}, \mathbf{r}^{\prime}$ independently at random from $\{0,1\}^{n}$, and if $f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right) \neq g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)$ then halt and reject."

Web draft 2006-09-28 18:10

In a correct proof, $w=\mathbf{u} \otimes \mathbf{u}$, so

$$
\begin{aligned}
& f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right)=\left(\sum_{i \in[n]} u_{i} r_{i}\right)\left(\sum_{j \in[n]} u_{j} r_{j}^{\prime}\right)= \\
& \sum_{i, j \in[n]} u_{i} u_{j} r_{i} r_{j}^{\prime}=(\mathbf{u} \otimes \mathbf{u}) \odot\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right),
\end{aligned}
$$

which in the correct proof is equal to $g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)$. Thus Step 2 never rejects a correct proof.

Suppose now that, unlike the case of the correct proof, $\mathbf{w} \neq \mathbf{u} \otimes \mathbf{u}$. We claim that in each of the three trials V will halt and reject with probability at least $\frac{1}{4}$. (Thus the probability of rejecting in at least one trial is at least $1-(3 / 4)^{3}=37 / 64$.) Indeed, let W be an $n \times n$ matrix with the same entries as \mathbf{w}, let U be the $n \times n$ matrix such that $U_{i, j}=u_{i} u_{j}$ and think of \mathbf{r} as a row vector and \mathbf{r}^{\prime} as a column vector. In this notation,

$$
\begin{aligned}
& g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)=\mathbf{w} \odot\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)=\sum_{i, j \in[n]} w_{i, j} r_{i} r_{j}^{\prime}=\mathbf{r} W \mathbf{r}^{\prime} \\
& f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right)=(\mathbf{u} \odot \mathbf{r})\left(\mathbf{u} \odot \mathbf{r}^{\prime}\right)=\left(\sum_{i=1}^{n} u_{i} r_{i}\right)\left(\sum_{j=1}^{n} u_{j} r_{j}^{\prime}\right)=\sum_{i, j \in[n]} u_{i} u_{j} r_{i} r_{j}=\mathbf{r} U \mathbf{r}^{\prime}
\end{aligned}
$$

And V rejects if $\mathbf{r} W \mathbf{r}^{\prime} \neq \mathbf{r} U \mathbf{r}^{\prime}$. The random subsum principle implies that if $W \neq U$ then at least $1 / 2$ of all \mathbf{r} satisfy $\mathbf{r} W \neq \mathbf{r} U$. Applying the random subsum principle for each such \mathbf{r}, we conclude that at least $1 / 2$ the \mathbf{r}^{\prime} satisfy $\mathbf{r} W \mathbf{r}^{\prime} \neq \mathbf{r} U \mathbf{r}^{\prime}$. We conclude that the test rejects for at least $1 / 4$ of all pairs $\mathbf{r}, \mathbf{r}^{\prime}$.

Step 3: Verify that f encodes a satisfying assignment.

Using all that has been verified about f, g in the previous two steps, it is easy to check that any particular equation, say the k th equation of the input, is satisfied by \mathbf{u}, namely,

$$
\begin{equation*}
\sum_{i, j} A_{k,(i, j)} u_{i} u_{j}=b_{k} . \tag{5}
\end{equation*}
$$

Denoting by z the n^{2} dimensional vector $\left(A_{k,(i, j)}\right)$ (where i, j vary over [1..n]), we see that the left hand side is nothing but $g(\mathbf{z})$. Since the verifier knows $A_{k,(i, j)}$ and b_{k}, it simply queries g at \mathbf{z} and checks that $g(\mathbf{z})=b_{k}$.

The drawback of the above idea is that in order to check that \mathbf{u} satisfies the entire system, the verifier needs to make a query to g for each $k=$
$1,2, \ldots, m$, whereas the number of queries is required to be independent of m. Luckily, we can use the random subsum principle again! The verifier takes a random subset of the equations and computes their sum mod 2. (In other words, for $k=1,2, \ldots, m$ multiply the equation in (5) by a random bit and take the sum.) This sum is a new quadratic equation, and the random subsum principle implies that if \mathbf{u} does not satisfy even one equation in the original system, then with probability at least $1 / 2$ it will not satisfy this new equation. The verifier checks that \mathbf{u} satisfies this new equation.
(Actually, the above test has to be repeated twice to ensure that if \mathbf{u} does not satisfy the system, then Step 3 rejects with probability at least $3 / 4$.)

19.4.3 PCP's of proximity

Theorem 19.21 says that (exponential-sized) certificates for NP languages can be checked by examining only $O(1)$ bits in them. The proof actually yields a somewhat stronger result, which will be used in the proof of the PCP Theorem. This concerns the following scenario: we hold a circuit C in our hands that has n input wires. Somebody holds a satisfying assignment u. He writes down $\mathrm{WH}(u)$ as well as another string π for us. We do a probabilistic test on this by examining $O(1)$ bits in these strings, and at the end we are convinced of this fact.

Concatenation test. First we need to point out a property of WalshHadamard codes and a related concatenation test. In this setting, we are given two linear functions f, g that encode strings of lengths n and $n+m$ respectively. We have to check by examining only $O(1)$ bits in f, g that if \mathbf{u} and \mathbf{v} are the strings encoded by f, g (that is, $f=\mathrm{WH}(\mathbf{u})$ and $h=\mathrm{WH}(\mathbf{v}))$ then \mathbf{u} is the same as the first n bits of \mathbf{v}. By the random subsum principle, the following simple test rejects with probability $1 / 2$ if this is not the case. Pick a random $\mathbf{x} \in\{0,1\}^{n}$, and denote by $\mathbf{X} \in \mathrm{GF}(2)^{m+n}$ the string whose first n bits are \mathbf{x} and the remaining bits are all-0. Verify that $f(X)=g(\mathbf{x})$.

With this test in hand, we can prove the following corollary.
Corollary 19.25 (Exponential-sized PCP of proximity.)
There exists a verifier V that given any circuit C of size m and with n inputs has the following property:

1. If $\mathbf{u} \in\{0,1\}^{n}$ is a satisfying assignment for circuit C, then there is a string π_{2} of size $2^{\text {poly }(m)}$ such that V accepts $\mathrm{WH}(\mathbf{u}) \circ \pi_{2}$ with probability 1. (Here \circ denotes concatenation.)
2. For every strings $\pi_{1}, \pi_{2} \in\{0,1\}^{*}$, where π_{1} has 2^{n} bits, if V accepts $\pi_{1} \circ \pi_{2}$ with probability at least $1 / 2$, then π_{1} is 0.99-close to $\mathrm{WH}(\mathbf{u})$ for some \mathbf{u} that satisfies C.
3. V uses poly (m) random bits and examines only $O(1)$ bits in the provided strings.

Proof: One looks at the proof of NP-completeness of QUADEQ to realize that given circuit C with n input wires and size m, it yields an instance of QUADEQ of size $O(m)$ such that $\mathbf{u} \in\{0,1\}^{n}$ satisfies the circuit iff there is a string \mathbf{v} of size $M=O(m)$ such that $\mathbf{u} \circ \mathbf{v}$ satisfies the instance of QUADEQ. (Note that we are thinking of \mathbf{u} both as a string of bits that is an input to C and as a string over $\operatorname{GF}(2)^{n}$ that is a partial assignment to the variables in the instance of QUADEQ.)

The verifier expects π_{2} to contain whatever our verifier of Theorem 19.21 expects in the proof for this instance of QUADEQ, namely, a linear function f that is $\mathrm{WH}(w)$, and another linear function g that is $\mathrm{WH}(w \otimes w)$ where w satisfies the QUADEQ instance. The verifier checks these functions as described in the proof of Theorem 19.21.

However, in the current setting our verifer is also given a string $\pi_{1} \in$ $\{0,1\}^{2^{n}}$. Think of this as a function $h: \operatorname{GF}(2)^{n} \rightarrow \mathrm{GF}(2)$. The verifier checks that h is 0.99 -close to a linear function, say \tilde{h}. Then to check that \tilde{f} encodes a string whose first n bits are the same as the string encoded by \tilde{h}, the verifier does a concatenation test.

Clearly, the verifier only reads $O(1)$ bits overall.
The following Corollary is also similarly proven and is the one that will actually be used later. It concerns a similar situation as above, except the inputs to the circuit C are thought of as the concatenation of two strings of lengths n_{1}, n_{2} respectively where $n=n_{1}+n_{2}$.
Corollary 19.26 (PCP of proximity when assignment is in two pieces) There exists a verifier V that given any circuit C with n input wires and size m and also two numbers n_{1}, n_{2} such that $n_{1}+n_{2}=n$ has the following property:

1. If $\mathbf{u}_{\mathbf{1}} \in\{0,1\}^{n_{1}}, \mathbf{u}_{\mathbf{2}} \in\{0,1\}^{n_{2}}$ is such that $\mathbf{u}_{\mathbf{1}} \circ \mathbf{u}_{\mathbf{2}}$ is a satisfying assignment for circuit C, then there is a string π_{3} of size $2^{\text {poly(m) }}$ such that V accepts $\mathrm{WH}\left(\mathbf{u}_{1}\right) \circ \mathrm{WH}\left(\mathbf{u}_{2}\right) \circ \pi_{3}$ with probability 1.
2. For every strings $\pi_{1}, \pi_{2}, \pi_{3} \in\{0,1\}^{*}$, where π_{1} and π_{2} have $2^{n_{1}}$ and $2^{n_{2}}$ bits respectively, if V accepts $\pi_{1} \circ \pi_{2} \circ \pi_{3}$ with probability at least $1 / 2$,
then π_{1}, π_{2} are 0.99-close to $\mathrm{WH}\left(\mathbf{u}_{\mathbf{1}}\right), \mathrm{WH}\left(\mathbf{u}_{\mathbf{2}}\right)$ respectively for some $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}$ such that $\mathbf{u}_{\mathbf{1}} \circ \mathbf{u}_{\mathbf{2}}$ is a satisfying assignment for circuit C.
3. V uses poly (m) random bits and examines only $O(1)$ bits in the provided strings.

19.5 Proof of the PCP Theorem.

As we have seen, the PCP Theorem is equivalent to Theorem 19.13, stating that ρ-GAP q CSP is NP-hard for some constants q and $\rho<1$. Consider the case that $\rho=1-\epsilon$ where ϵ is not necessarily a constant but can be a function of m (the number of constraints). Since the number of satisfied constraints is always a whole number, if φ is unsatisfiable then $\operatorname{val}(\varphi) \leq 1-1 / m$. Hence, the gap problem ($1-1 / m$)-GAP 3CSP is a generalization of 3SAT and is NP hard. The idea behind the proof is to start with this observation, and iteratively show that ($1-\epsilon$)-GAP q CSP is NP-hard for larger and larger values of ϵ, until ϵ is as large as some absolute constant independent of m. This is formalized in the following lemma.
Definition 19.27
Let f be a function mapping CSP instances to CSP instances. We say that f is a CL-reduction (short for complete linear-blowup reduction) if it is polynomial-time computable and for every CSP instance φ with m constraints, satisfies:

Completeness: If φ is satisfiable then so is $f(\varphi)$.
Linear blowup: The new q CSP instance $f(\varphi)$ has at most $C m$ constraints and alphabet W, where C and W can depend on the arity and the alphabet size of φ (but not on the number of constraints or variables).
Lemma 19.28 ($\mathbf{P C P}$ Main Lemma)
There exist constants $q_{0} \geq 3, \epsilon_{0}>0$, and a CL-reduction f such that for every q_{0} CSP-instance φ with binary alphabet, and every $\epsilon<\epsilon_{0}$, the instance $\psi=f(\varphi)$ is a q_{0} CSP (over binary alphabet) satisfying

$$
\operatorname{val}(\varphi) \leq 1-\epsilon \Rightarrow \operatorname{val}(\psi) \leq 1-2 \epsilon
$$

Lemma 19.28 can be succinctly described as follows:

	Arity	Alphabet	Constraints	Value
Original	q_{0}	binary	m	$1-\epsilon$
	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Lemma 19.28	q_{0}	binary	$C m$	$1-2 \epsilon$

Web draft 2006-09-28 18:10

This Lemma allows us to easily prove the $\mathbf{P C P}$ Theorem.

Proving Theorem 19.2 from Lemma 19.28. Let $q_{0} \geq 3$ be as stated in Lemma 19.28. As already observed, the decision problem q_{0} CSP is NPhard. To prove the PCP Theorem we give a reduction from this problem to GAP q_{0} CSP. Let φ be a $q_{0} C S P$ instance. Let m be the number of constraints in φ. If φ is satisfiable then $\operatorname{val}(\varphi)=1$ and otherwise $\operatorname{val}(\varphi) \leq 1-1 / m$. We use Lemma 19.28 to amplify this gap. Specifically, apply the function f obtained by Lemma 19.28 to φ a total of $\log m$ times. We get an instance ψ such that if φ is satisfiable then so is ψ, but if φ is not satisfiable (and so $\operatorname{val}(\varphi) \leq 1-1 / m)$ then $\operatorname{val}(\psi) \leq 1-\min \left\{2 \epsilon_{0}, 1-2^{\log m} / m\right\}=1-2 \epsilon_{0}$. Note that the size of ψ is at most $C^{\log m} m$, which is polynomial in m. Thus we have obtained a gap-preserving reduction from L to the $\left(1-2 \epsilon_{0}\right)$-GAP q_{0} CSP problem, and the PCP theorem is proved.

The rest of this section proves Lemma 19.28 by combining two transformations: the first transformation amplifies the gap (i.e., fraction of violated constraints) of a given CSP instance, at the expense of increasing the alphabet size. The second transformation reduces back the alphabet to binary, at the expense of a modest reduction in the gap. The transformations are described in the next two lemmas.
Lemma 19.29 (Gap Amplification [?])
For every $\ell \in \mathbb{N}$, there exists a CL-reduction g_{ℓ} such that for every CSP instance φ with binary alphabet, the instance $\psi=g_{\ell}(\varphi)$ has has arity only 2 (but over a non-binary alphabet) and satisfies:

$$
\operatorname{val}(\varphi) \leq 1-\epsilon \Rightarrow \operatorname{val}(\psi) \leq 1-\ell \epsilon
$$

for every $\epsilon<\epsilon_{0}$ where $\epsilon_{0}>0$ is a number depending only on ℓ and the arity q of the original instance φ.

Lemma 19.30 (Alphabet Reduction)
There exists a constant q_{0} and a CL- reduction h such that for every CSP instance φ, if φ had arity two over a (possibly non-binary) alphabet $\{0 . . W-1\}$ then $\psi=h(\varphi)$ has arity q_{0} over a binary alphabet and satisfies:

$$
\operatorname{val}(\varphi) \leq 1-\epsilon \Rightarrow \operatorname{val}(h(\varphi)) \leq 1-\epsilon / 3
$$

Lemmas 19.29 and 19.30 together imply Lemma 19.28 by setting $f(\varphi)=$ $h\left(g_{6}(\varphi)\right)$. Indeed, if φ was satisfiable then so will $f(\varphi)$. If $\operatorname{val}(\varphi) \leq 1-\epsilon$, for $\epsilon<\epsilon_{0}$ (where ϵ_{0} the value obtained in Lemma 19.29 for $\ell=6, q=q_{0}$) then
$\operatorname{val}\left(g_{6}(\varphi)\right) \leq 1-6 \epsilon$ and hence $\operatorname{val}\left(h\left(g_{6}(\varphi)\right)\right) \leq 1-2 \epsilon$. This composition is described in the following table:

	Arity	Alphabet	Constraints	Value
Original	q_{0}	binary	m	$1-\epsilon$
	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Lemma 19.29	2	W	$C m$	$1-6 \epsilon$
	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Lemma 19.30	q_{0}	binary	$C^{\prime} C m$	$1-2 \epsilon$

19.5.1 Gap Amplification: Proof of Lemma 19.29

To prove Lemma 19.29, we need to exhibit a function g that maps a q CSP instance to a $2 \mathrm{CSP}_{W}$ instance over a larger alphabet $\{0 . . W-1\}$ in a way that increases the fraction of violated constraints.

We will show that we may assume without loss of generality that the instance of q CSP has a specific form. To describe this we need a definition.

We will assume that the instance satisfies the following properties, since we can give a simple CL-reduction from q CSP to this special type of q CSP. (See the "Technical Notes" section at the end of the chapter.) We will call such instances "nice."

Property 1: The arity q is 2 (though the alphabet may be nonbinary).
Property 2: Let the constraint graph of ψ be the graph G with vertex set [n] where for every constraint of φ depending on the variables u_{i}, u_{j}, the graph G has the edge (i, j). We allow G to have parallel edges and self-loops. Then G is d-regular for some constant d (independent of the alphabet size) and at every node, half the edges incident to it are self-loops.

Property 3: The constraint graph is an expander.
The rest of the proof consists of a "powering" operation for nice 2CSP instances. This is described in the following Lemma.

Lemma 19.31 (Powering)
Let ψ be a $2 \mathrm{CSP}_{W}$ instance satisfying Properties 1 through 3. For every number t, there is an instance of 2CSP ψ^{t} such that:

1. ψ^{t} is a $2 \mathrm{CSP}_{W^{\prime}}$-instance with alphabet size $W^{\prime}<W^{d^{5 t}}$, where d denote the degree of ψ 's constraint graph. The instance ψ^{t} has $d^{t+\sqrt{t}} n$ constraints, where n is the number of variables in ψ.
2. If ψ is satisfiable then so is ψ^{t}.
3. For every $\epsilon<\frac{1}{d \sqrt{t}}$, if $\operatorname{val}(\psi) \leq 1-\epsilon$ then $\operatorname{val}\left(\psi^{t}\right) \leq 1-\epsilon^{\prime}$ for $\epsilon^{\prime}=$ $\frac{\sqrt{t}}{10^{5} d W^{4}} \epsilon$.
4. The formula ψ^{t} is computable from ψ in time polynomial in m and $W^{d^{t}}$.

Proof: Let ψ be a $2 \mathrm{CSP}_{W}$-instance with n variables and $m=n d$ constraints, and as before let G denote the constraint graph of ψ.

The formula ψ^{t} will have the same number of variables as ψ. The new variables $\mathbf{y}=y_{1}, \ldots, y_{n}$ take values over an alphabet of size $W^{\prime}=W^{d^{5 t}}$, and thus a value of a new variable y_{i} is a $d^{5 t}$-tuple of values in $\{0 . . W-1\}$. We will think of this tuple as giving a value in $\{0 . . W-1\}$ to every old variable u_{j} where j can be reached from u_{i} using a path of at most $t+\sqrt{t}$ steps in G (see Figure 19.3). In other words, the tuple contains an assignment for every u_{j} such that j is in the ball of radius $t+\sqrt{t}$ and center i in G. For this reason, we will often think of an assignment to y_{i} as "claiming" a certain value for u_{j}. (Of course, another variable y_{k} could claim a different value for u_{j}.) Note that since G has degree d, the size of each such ball is no more than $d^{t+\sqrt{t}+1}$ and hence this information can indeed be encoded using an alphabet of size W^{\prime}.

Figure 19.3: An assignment to the formula ψ^{t} consists of n variables over an alphabet of size less than $W^{d^{5 t}}$, where each variable encodes the restriction of an assignment of ψ to the variables that are in some ball of radius $t+\sqrt{t}$ in ψ 's constraint graph. Note that an assignment y_{1}, \ldots, y_{n} to ψ^{t} may be inconsistent in the sense that if i falls in the intersection of two such balls centered at k and k^{\prime}, then y_{k} may claim a different value for u_{i} than the value claimed by $y_{k^{\prime}}$.

For every $(2 t+1)$-step path $p=\left\langle i_{1}, \ldots, i_{2 t+2}\right\rangle$ in G, we have one corresponding constraint C_{p} in ψ^{t} (see Figure 19.4). The constraint C_{p} depends on the variables $y_{i_{1}}$ and $y_{i_{2 t+1}}$ and outputs False if (and only if) there is some $j \in[2 t+1]$ such that:

1. i_{j} is in the $t+\sqrt{t}$-radius ball around i_{1}.
2. i_{j+1} is in the $t+\sqrt{t}$-radius ball around $i_{2 t+2}$
3. If w denotes the value $y_{i_{1}}$ claims for $u_{i_{j}}$ and w^{\prime} denotes the value $y_{i_{2 t+2}}$ claims for $u_{i_{j+1}}$, then the pair $\left(w, w^{\prime}\right)$ violates the constraint in φ that depends on $u_{i_{j}}$ and $u_{i_{j+1}}$.

Figure 19.4: ψ^{t} has one constraint for every path of length $2 t+1$ in ψ 's constraint graph, checking that the views of the balls centered on the path's two endpoints are consistent with one another and the constraints of ψ.

A few observations are in order. First, the time to produce such an assignment is polynomial in m and $W^{d^{t}}$, so part 4 of Lemma 19.29 is trivial.

Second, for every assignment to $u_{1}, u_{2}, \ldots, u_{n}$ we can "lift" it to a canon$i c a l$ assignment to y_{1}, \ldots, y_{n} by simply assigning to each y_{i} the vector of values assumed by u_{j} 's that lie in a ball of radius $t+\sqrt{t}$ and center i in G. If the assignment to the u_{j} 's was a satisfying assignment for ψ, then this canonical assignment satisfies ψ^{t}, since it will satisfy all constraints encountered in walks of length $2 t+1$ in G. Thus part 2 of Lemma 19.29 is also trivial.

This leaves part 3 of the Lemma, the most difficult part. We have to show that if val $(\psi) \leq 1-\epsilon$ then every assignment to the y_{i} 's satisfies at most $1-\epsilon^{\prime}$ fraction of constraints in ψ^{t}, where $\epsilon<\frac{1}{d \sqrt{t}}$ and $\epsilon^{\prime}=\frac{\sqrt{t}}{10^{5} d W^{4}} \epsilon$. This
is tricky since an assignment to the y_{i} 's does not correspond to any obvious assignment for the u_{i} 's: for each u_{j}, different values could be claimed for it by different y_{i} 's. The intuition will be to show that these inconsistencies among the y_{i} 's can't happen too often (at least if the assignment to the y_{i} 's satisfies $1-\epsilon^{\prime}$ constraints in ψ^{t}).

From now on, let us fix some arbitrary assignment $\mathbf{y}=y_{1}, \ldots, y_{n}$ to ψ^{t} 's variables. The following notion is key.

The plurality assignment: For every variable u_{i} of ψ, we define the random variable Z_{i} over $\{0, \ldots, W-1\}$ to be the result of the following process: starting from the vertex i, take a t step random walk in G to reach a vertex k, and output the value that y_{k} claims for u_{i}. We let z_{i} denote the plurality (i.e., most likely) value of Z_{i}. If more than one value is most likely, we break ties arbitrarily. This assignment is called a plurality assignment (see Figure 19.5). Note that $Z_{i}=z_{i}$ with probability at least $1 / W$.

Figure 19.5: An assignment y for ψ^{t} induces a plurality assignment u for ψ in the following way: u_{i} gets the most likely value that is claimed for it by y_{k}, where k is obtained by taking a t-step random walk from i in the constraint graph of ψ.

Since $\operatorname{val}(\psi) \leq 1-\epsilon$, every assignment for ψ fails to satisfy $1-\epsilon$ fraction of the constraints, and this is therefore also true for the plurality assignment. Hence there exists a set F of $\epsilon m=\epsilon n d$ constraints in ψ that are violated by the assignment $\mathbf{z}=z_{1}, \ldots, z_{n}$. We will use this set F to show that at least an ϵ^{\prime} fraction of ψ^{t} 's constraints are violated by the assignment \mathbf{y}.

Why did we define the plurality assignment \mathbf{z} in this way? The reason is illustrated by the following claim, showing that for every edge $f=\left(i, i^{\prime}\right)$ of G, among all paths that contain the edge f somewhere in their "midsection", most paths are such that the endpoints of the path claim the plurality values for u_{i} and $u_{i^{\prime}}$.

Claim 19.32
For every edge $f=\left(i, i^{\prime}\right)$ in G define the event $B_{j, f}$ over the set of $(2 t+1)$-step paths in G to contain all paths $\left\langle i_{1}, \ldots, i_{2 t+2}\right\rangle$ satisfying:

- f is the $j^{\text {th }}$ edge in the path. That is, $f=\left(i_{j}, i_{j+1}\right)$.
- $y_{i_{1}}$ claims the plurality value for u_{i}.
- $y_{i_{2 t+2}}$ claims the plurality value for $u_{i^{\prime}}$.

Let $\delta=\frac{1}{100 W^{2}}$. Then for every $j \in\{t, \ldots, t+\delta \sqrt{t}\}, \operatorname{Pr}\left[B_{j, f}\right] \geq \frac{1}{n d 2 W^{2}}$.
Proof: First, note that because G is regular, the $j^{\text {th }}$ edge of a random path is a random edge, and hence the probability that f is the $j^{t h}$ edge on the path is equal to $\frac{1}{n d}$. Thus, we need to prove that,
$\operatorname{Pr}\left[\right.$ endpoints claim plurality values for $u_{i}, u_{i^{\prime}}$ (resp.) $\mid f$ is $j^{\text {th }}$ edge $] \geq \frac{1}{2 W^{2}}$
We start with the case $j=t+1$. In this case (6) holds essentially by definition: the left-hand side of (6) is equal to the probability that the event that the endpoints claim the plurality for these variables happens for a path obtained by joining a random t-step path from i to a random t-step path from i^{\prime}. Let k be the endpoint of the first path and k^{\prime} be the endpoint of the second path. Let W_{i} be the distribution of the value that y_{k} claims for u_{i}, where k is chosen as above, and similarly define $W_{i^{\prime}}$ to be the distribution of the value that $y_{k^{\prime}}$ claims for $u_{i^{\prime}}$. Note that since k and k^{\prime} are chosen independently, the random variables W_{i} and $W_{i^{\prime}}$ are independent. Yet by definition the distribution of W_{i} identical to the distribution Z_{i}, while the distribution of $W_{i^{\prime}}$ is identical to $Z_{i^{\prime}}$. Thus,
$\operatorname{Pr}\left[\right.$ endpoints claim plurality values for $u_{i}, u_{i^{\prime}}$ (resp.) $\mid f$ is $j^{\text {th }}$ edge $]=$

$$
\operatorname{Pr}_{k, k^{\prime}}\left[W_{i}=z_{i} \wedge W_{i^{\prime}}=z_{i^{\prime}}\right]=\operatorname{Pr}_{k}\left[W_{i}=z_{i}\right] \operatorname{Pr}_{k^{\prime}}\left[W_{i^{\prime}}=z_{i^{\prime}}\right] \geq \frac{1}{W^{2}}
$$

In the case that $j \neq 2 t+1$ we need to consider the probability of the event that endpoints claim the plurality values happening for a path obtained by joining a random $t-1+j$-step path from i to a random $t+1-j$-step path from i^{\prime} (see Figure 19.6). Again we denote by k the endpoint of the first path, and by k^{\prime} the endpoint of the second path, by W_{i} the value y_{k} claims for u_{i} and by $W_{i^{\prime}}$ the value $y_{k^{\prime}}$ claims for $u_{i^{\prime}}$. As before, W_{i} and $W_{i^{\prime}}$ are independent. However, this time W_{i} and Z_{i} may not be identically distributed.

Fortunately, we can show that they are almost identically distributed, in other words, the distributions are statistically close. Specifically, because half of the constraints involving each variable are self loops, we can think of a t-step random walk from a vertex i as follows: (1) throw t coins and let S_{t} denote the number of the coins that came up "heads" (2) take S_{t} "real" (non self-loop) steps on the graph. Note that the endpoint of a t-step random walk and a t^{\prime}-step random walk will be identically distributed if in Step (1) the variables S_{t} and $S_{t^{\prime}}$ turn out to be the same number. Thus, the statistical distance of the endpoint of a t-step random walk and a t^{\prime}-step random walk is bounded by the statistical distance of S_{t} and $S_{t^{\prime}}$ where S_{ℓ} denotes the binomial distribution of the sum of ℓ balanced independent coins. However, the distributions S_{t} and $S_{t+\delta \sqrt{t}}$ are within statistical distance at most 10δ for every δ, t (see Exercise 15) and hence in our case W_{i} and $W_{i^{\prime}}$ are $\frac{1}{10 W^{-}}$ close to Z_{i} and $Z_{i^{\prime}}$ respectively. Thus $\left|\operatorname{Pr}_{k}\left[W_{i}=z_{i}\right]-\operatorname{Pr}\left[Z_{i}=z_{i}\right]\right|<\frac{1}{10 W}$, $\left|\operatorname{Pr}_{k}\left[W_{i^{\prime}}=z_{i^{\prime}}\right]-\operatorname{Pr}\left[Z_{i^{\prime}}=z_{i^{\prime}}\right]\right|<\frac{1}{10 W}$ which proves (6) also for the case $j \neq 2 t+1$.

Figure 19.6: By definition, if we take two t-step random walks from two neighbors i and i^{\prime}, then the respective endpoints will claim the plurality assignments for u_{i} and u_{j} with probability more than $1 /\left(2 W^{2}\right)$. Because half the edges of every vertex in G have self loops, this happens even if the walks are not of length t but of length in $[t-\epsilon \sqrt{t}, t+\sqrt{t}]$ for sufficiently small ϵ.

Recall that F is the set of constraints of $\psi(=$ edges in $G)$ violated by the plurality assignment \mathbf{z}. Therefore, if $f \in F$ and $j \in\{t, \ldots, t+\delta \sqrt{t}\}$ then all the paths in $B_{j, f}$ correspond to constraints of ψ^{t} that are violated by the assignment \mathbf{y}. Therefore, we might hope that the fraction of violated constraints in ψ^{t} is at least the sum of $\operatorname{Pr}\left[B_{j, f}\right]$ for every $f \in F$ and $j \in\{t, \ldots, t+\delta \sqrt{t}\}$. If this were the case we'd be done since Claim 19.32
implies that this sum is at least $\frac{\delta \sqrt{t} \text { end }}{2 n W^{2}}=\frac{\delta \sqrt{t} \epsilon}{2 W^{2}}>\epsilon^{\prime}$. However, this is inaaccurate since we are overcounting paths that contain more than one such violation (i.e., paths which are in the intersection of $B_{j, f}$ and $B_{j^{\prime}, f^{\prime}}$ for $\left.(j, f) \neq\left(j^{\prime}, f^{\prime}\right)\right)$. To bound the effect of this overcounting we prove the following claim:
Claim 19.33
For every $k \in \mathbb{N}$ and set F of edges with $|F|=\epsilon n d$ for $\epsilon<\frac{1}{k d}$,

$$
\begin{equation*}
\sum_{\substack{j, j^{\prime} \in\{t . t+k\} \\ \text { f,f }, f^{\prime} \in F \\(j, f) \neq\left(j^{\prime}, f^{\prime}\right)}} \operatorname{Pr}\left[B_{j, f} \cap B_{j, f^{\prime}}\right] \leq 30 k d \epsilon \tag{7}
\end{equation*}
$$

Proof: Only one edge can be the $j^{\text {th }}$ edge of a path, and so for every $f \neq f^{\prime}$, $\operatorname{Pr}\left[B_{j, f} \cap B_{j, f^{\prime}}\right]=0$. Thus the left-hand side of (7) simplifies to

$$
\begin{equation*}
\sum_{j \neq j^{\prime} \in\{t . . t+k\}} \sum_{f \neq f^{\prime}} \operatorname{Pr}\left[B_{j, f} \cap B_{j^{\prime}, f^{\prime}}\right] \tag{8}
\end{equation*}
$$

Let A_{j} be the event that the $j^{\text {th }}$ edge is in the set F. We get that (8) is equal to

$$
\begin{equation*}
\sum_{j \neq j^{\prime} \in\{t . . t+k\}} \operatorname{Pr}\left[A_{j} \cap A_{j^{\prime}}\right]=2 \sum_{j<j^{\prime} \in\{t . . t+k\}} \operatorname{Pr}\left[A_{j} \cap A_{j^{\prime}}\right] \tag{9}
\end{equation*}
$$

Let S be the set of at most $d \epsilon n$ vertices that are adjacent to an edge in F. For $j^{\prime}<j, \operatorname{Pr}\left[A_{j} \cap A_{j^{\prime}}\right]$ is bounded by the probability that a random ($j^{\prime}-j$)-step path in G has both endpoints in S, or in other words that a random edge in the graph $G^{j^{\prime}-j}$ has both endpoints in S. Using the fact that $\lambda\left(G^{j^{\prime}-j}\right)=\lambda(G)^{j^{\prime}-j} \leq 0.9^{j^{\prime}-j}$, this probability is bounded by $d \epsilon\left(d \epsilon+0.9^{\left|j-j^{\prime}\right|}\right)$ (see Note 19.18). Plugging this into (9) and using the formula for summation of arithmetic series, we get that:

$$
\begin{aligned}
& 2 \sum_{j<j^{\prime} \in\{t, \ldots, t+k\}} \operatorname{Pr}\left[A_{j} \cap A_{j^{\prime}}\right] \leq \\
& \\
& \quad 2 \sum_{j \in\{t, \ldots, t+k\} i=1} \sum_{t+k-j}^{t+2} d \epsilon\left(d \epsilon+0.9^{i}\right) \leq \\
& 2 k^{2} d^{2} \epsilon^{2}+2 k d \epsilon \sum_{i=1}^{\infty} 0.9^{i} \leq 2 k^{2} d^{2} \epsilon^{2}+20 k d \epsilon \leq 30 k d \epsilon
\end{aligned}
$$

where the last inequality follows from $\epsilon<\frac{1}{k d}$.

Wrapping up. Claims 19.32 and 19.33 together imply that

$$
\begin{equation*}
\sum_{\substack{j \in\{t . . t+\delta \sqrt{t}\} \\ f \in F}} \operatorname{Pr}\left[B_{j, f}\right] \geq \delta \sqrt{t} \epsilon \frac{1}{2 W^{2}} \tag{10}
\end{equation*}
$$

But (10) and (11) together imply that if p is a random constraint of ψ^{t} then

$$
\operatorname{Pr}[p \text { violated by } \mathbf{y}] \geq \operatorname{Pr}\left[\bigcup_{\substack{j \in\{t . . t+\delta \sqrt{t}\} \\ f \in F}} B_{j, f}\right] \geq \frac{\delta \sqrt{t} \epsilon}{240 d W^{2}}
$$

where the last inequality is implied by the following technical claim:
Claim 19.34
Let A_{1}, \ldots, A_{n} be n subsets of some set U satisfying $\sum_{i<j}\left|A_{i} \cap A_{j}\right| \leq$ $C \sum_{i=1}^{n}\left|A_{i}\right|$ for some number $C \in \mathbb{N}$. Then,

$$
\left|\bigcup_{i=1}^{n} A_{i}\right| \geq \frac{\sum_{i=1}^{n}\left|A_{i}\right|}{4 C}
$$

Proof: We make $2 C$ copies of every element $u \in U$ to obtain a set \tilde{U} with $|\tilde{U}|=2 C|U|$. Now for every subset $A_{i} \subseteq U$, we obtain $\tilde{A}_{i} \subseteq \tilde{U}$ as follows: for every $u \in A_{i}$, we choose at random one of the $2 C$ copies to put in \tilde{A}_{i}. Note that $\left|\tilde{A}_{i}\right|=\left|A_{i}\right|$. For every $i, j \in[n], u \in A_{i} \cap A_{j}$, we denote by $I_{i, j, u}$ the indicator random variable that is equal to 1 if we made the same choice for the copy of u in \tilde{A}_{i} and \tilde{A}_{j}, and equal to 0 otherwise. Since $\mathrm{E}\left[I_{i, j, u}\right]=\frac{1}{2 C}$,

$$
\mathrm{E}\left[\left|\tilde{A}_{i} \cap \tilde{A}_{j}\right|\right]=\sum_{u \in A_{i} \cap A_{j}} \mathrm{E}\left[I_{i, j, u}\right]=\frac{\left|A_{i} \cap A_{j}\right|}{2 C}
$$

and

$$
\mathrm{E}\left[\sum_{i<j}\left|\tilde{A}_{i} \cap \tilde{A}_{j}\right|\right]=\frac{\sum_{i<j}\left|A_{i} \cap A_{j}\right|}{2 C}
$$

This means that there exists some choice of $\tilde{A}_{1}, \ldots, \tilde{A}_{j}$ such that

$$
\sum_{i=1}^{n}\left|\tilde{A}_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right| \geq 2 \sum_{i<j}\left|\tilde{A}_{i} \cap \tilde{A}_{j}\right|
$$

which by the inclusion-exclusion principle (see Section ??) means that $\mid \cup_{i}$ $\tilde{A}_{i}\left|\geq 1 / 2 \sum_{i}\right| \tilde{A}_{i} \mid$. But because there is a natural $2 C$-to-one mapping from $\cup_{i} \tilde{A}_{i}$ to $\cup_{i} A_{i}$ we get that

$$
\left|\cup_{i=1}^{n} A_{i}\right| \geq \frac{\left|\cup_{i=1}^{n} \tilde{A}_{i}\right|}{2 C} \geq \frac{\sum_{i=1}^{n}\left|\tilde{A}_{i}\right|}{4 C}=\frac{\sum_{i=1}^{n}\left|A_{i}\right|}{4 C}
$$

Since $\epsilon^{\prime}<\frac{\delta \sqrt{t} \epsilon}{240 d W^{2}}$, this proves the lemma.

19.5.2 Alphabet Reduction: Proof of Lemma 19.30

Lemma 19.30 is actually a simple consequence of Corollary 19.26, once we restate it using our " q CSP view" of $\mathbf{P C P}$ systems.

Corollary 19.35 (q CSP view of PCP of proximity.)
There exists positive integer q_{0} and an exponential-time transformation that given any circuit C of size m and and n inputs and two numbers n_{1}, n_{2} such that $n_{1}+n_{2}=n$ produces an instance ψ_{C} of $q_{0} C S P$ of size $2^{\text {poly }(m)}$ over a binary alphabet such that:

1. The variables can be thought of as being partitioned into three sets $\pi_{1}, \pi_{2}, \pi_{3}$ where π_{1} has $2^{n_{1}}$ variables and π_{2} has $2^{n_{2}}$ variables.
2. If $\mathbf{u}_{\mathbf{1}} \in\{0,1\}^{n_{1}}, \mathbf{u}_{\mathbf{2}} \in\{0,1\}^{n_{2}}$ is such that $\mathbf{u}_{\mathbf{1}} \circ \mathbf{u}_{\mathbf{2}}$ is a satisfying assignment for circuit C, then there is a string π_{3} of size $2^{\text {poly }(m)}$ such that $\mathrm{WH}\left(\mathbf{u}_{\mathbf{1}}\right) \circ \mathrm{WH}\left(\mathbf{u}_{\mathbf{2}}\right) \circ \pi_{3}$ satisfies ψ_{C}.
3. For every strings $\pi_{1}, \pi_{2}, \pi_{3} \in\{0,1\}^{*}$, where π_{1} and π_{2} have $2^{n_{1}}$ and $2^{n_{2}}$ bits respectively, if $\pi_{1} \circ \pi_{2} \circ \pi_{3}$ satisfy at least $1 / 2$ the constraints of ψ_{C}, then π_{1}, π_{2} are 0.99 -close to $\mathrm{WH}\left(\mathbf{u}_{\mathbf{1}}\right), \mathrm{WH}\left(\mathbf{u}_{\mathbf{2}}\right)$ respectively for some $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}$ such that $\mathbf{u}_{1} \circ \mathbf{u}_{\mathbf{2}}$ is a satisfying assignment for circuit C.

Now we are ready to prove Lemma 19.30.
Proof of Lemma 19.30: Suppose the given arity 2 formula φ has n variables $u_{1}, u_{2}, \ldots, u_{n}$, alphabet $\{0 . . W-1\}$ and N constraints $C_{1}, C_{2}, \ldots, C_{N}$.

Think of each variable as taking values that are bit strings in $\{0,1\}^{k}$, where $k=\lceil\log W\rceil$. Then if constraint C_{ℓ} involves variables say u_{i}, u_{j} we may think of it as a circuit applied to the bit strings representing u_{i}, u_{j} where the constraint is said to be satisfied iff this circuit outputs 1 . Say m is an upperbound on the size of this circuit over all constraints. Note that m is at most $2^{2 k}<W^{4}$. We will assume without loss of generality that all circuits have the same size.

If we apply the transformation of Corollary 19.35 to this circuit we obtain an instance of q_{0} CSP, say $\psi_{C_{l}}$. The strings u_{i}, u_{j} get replaced by strings of variables U_{i}, U_{j} of size $2^{2^{k}}<2^{W^{2}}$ that take values over a binary alphabet. We also get a new set of variables that play the role analogous to π_{3} in the statement of Corollary 19.35. We call these new variables Π_{l}.

Our reduction consists of applying the above transformation to each constraint, and taking the union of the $q_{0} \mathrm{CSP}$ instances thus obtained. However, it is important that these new q_{0} CSP instances share variables, in the following way: for each old variable u_{i}, there is a string of new variables U_{i} of size $2^{2^{k}}$ and for each constraint C_{l} that contains u_{i}, the new $q_{0} \mathrm{CSP}$ instance $\psi_{C_{l}}$ uses this string U_{i}. (Note though that the Π_{l} variables are used only in $\psi_{C_{l}}$ and never reused.) This completes the description of the new $q_{0} C S P$ instance ψ (see Figure 19.7). Let us see that it works.

Figure 19.7: The alphabet reduction transformation maps a 2CSP instance φ over alphabet $\{0 . . W-1\}$ into a q CSP instance ψ over the binary alphabet. Each variable of φ is mapped to a block of binary variables that in the correct assignment will contain the Walsh-Hadamard encoding of this variable. Each constraint C_{ℓ} of φ depending on variables u_{i}, u_{j} is mapped to a cluster of constraints corresponding to all the $\mathbf{P C P}$ of proximity constraints for C_{ℓ}. These constraint depend on the encoding of u_{i} and u_{j}, and on additional auxiliary variables that in the correct assignment contain the $\mathbf{P C P}$ of proximity proof that these are indeed encoding of values that make the constraint C_{ℓ} true.

Suppose the original instance φ was satisfiable by an assignment $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}$. Then we can produce a satisfying assignment for ψ by using part 2 of Corollary 19.35 , so that for each constraint C_{l} involving u_{i}, u_{j}, the encodings $\mathrm{WH}\left(\mathbf{u}_{\mathbf{i}}\right), \mathrm{WH}\left(\mathbf{u}_{\mathbf{i}}\right)$ act as π_{1}, π_{2} and then we extend these via a suitable string π_{3} into a satisfying assignment for $\psi_{C_{l}}$.

On the other hand if $\operatorname{val}(\varphi)<1-\epsilon$ then we show that $\operatorname{val}(\psi)<1-\epsilon / 2$. Consider any assignment $\mathbf{U}_{\mathbf{1}}, \mathbf{U}_{\mathbf{2}}, \ldots, \mathbf{U}_{\mathbf{n}}, \boldsymbol{\Pi}_{\mathbf{1}}, \ldots, \boldsymbol{\Pi}_{\mathbf{N}}$ to the variables of ψ. We "decode" it to an assignment for φ as follows. For each $i=1,2, \ldots, n$, if the assignment to U_{i} is 0.99 -close to a linear function, let u_{i} be the string encoded by this linear function, and otherwise let u_{i} be some arbitrary string. Since $\operatorname{val}(\varphi)<1-\epsilon$, this new assignment fails to satisfy at least ϵ fraction of constraints in φ. For each constraint C_{l} of φ that is not satisfied by this assignment, we show that at least $1 / 2$ of the constraints in $\psi_{C_{l}}$ are not satisfied by the original assignment, which leads to the conclusion that $\operatorname{val}(\psi)<1-\epsilon / 2$. Indeed, suppose C_{l} involves u_{i}, u_{j}. Then $u_{i} \circ u_{j}$ is not a satisfying assignment to circuit C_{l}, so part 3 of Corollary 19.35 implies that regardless of the value of variables in Π_{l}, the assignment $\mathbf{U}_{\mathbf{i}} \circ \mathbf{u}_{\mathbf{j}} \circ \Pi_{l}$ must have failed to satisfy at least $1 / 2$ the constraints of $\psi_{C_{l}}$.

19.6 The original proof of the PCP Theorem.

The original proof of the PCP Theorem, which resisted simplification for over a decade, used algebraic encodings and ideas that are complicated versions of our proof of Theorem 19.21. (Indeed, Theorem 19.21 is the only part of the original proof that still survives in our writeup.) Instead of the linear functions used in Welsh-Hadamard code, they use low degree multivariate polynomials. These allow procedures analogous to the linearity test and local decoding, though the proofs of correctness are a fair bit harder. The alphabet reduction is also somewhat more complicated. The crucial part of Dinur's simpler proof, the one given here, is the gap amplification lemma (Lemma 19.29) that allows to iteratively improve the soundness parameter of the PCP from very close to 1 to being bounded away from 1 by some positive constant. This general strategy is somewhat reminiscent of the zig-zag construction of expander graphs and Reingold's deterministic logspace algorithm for undirect connectivity described in Chapter 16.

Chapter notes

Problems

$\S 1$ Prove that for every two functions $r, q: \mathbb{N} \rightarrow \mathbb{N}$ and constant $s<1$, changing the constant in the soundness condition in Definition 19.1 from $1 / 2$ to s will not change the class $\mathbf{P C P}(r, q)$.
$\S 2$ Prove that for every two functions $r, q: \mathbb{N} \rightarrow \mathbb{N}$ and constant $c>1 / 2$, changing the constant in the completeness condition in Definition 19.1 from 1 to c will not change the class $\mathbf{P C P}(r, q)$.
$\S 3$ Prove that any language L that has a PCP-verifier using r coins and q adaptive queries also has a standard (i.e., non-adaptive) verifier using r coins and 2^{q} queries.
$\S 4$ Prove that $\mathbf{P C P}(0, \log n)=\mathbf{P}$. Prove that $\mathbf{P C P}(0, \operatorname{poly}(n))=\mathbf{N P}$.
$\S 5$ Let L be the language of matrices A over GF(2) satisfying perm $(A)=1$ (see Chapters ?? and 9). Prove that L is in $\mathbf{P C P}(\operatorname{poly}(n), \operatorname{poly}(n))$.
$\S 6$ Show that if SAT $\in \mathbf{P C P}(r(n), 1)$ for $r(n)=o(\log n)$ then $\mathbf{P}=\mathbf{N P}$. (Thus the PCP Theorem is probably optimal up to constant factors.)
§7 (A simple PCP Theorem using logspace verifiers) Using the fact that a correct tableau can be verified in logspace, we saw the following exact characterization of NP:
$\mathbf{N P}=\{L:$ there is a logspace machine M s.t $x \in L$ iff $\exists y: M$ accepts $(x, y)\}.$.

Note that M has two-way access to y.
Let L- $\operatorname{PCP}(r(n))$ be the class of languages whose membership proofs can be probabilistically checked by a logspace machine that uses $O(r(n))$ random bits but makes only one pass over the proof. (To use the terminology from above, it has 2 -way access to x but 1 -way access to y.) As in the PCP setting, "probabilistic checking of membership proofs" means that for $x \in L$ there is a proof y that the machine accepts with probability 1 and if not, the machine rejects with probability at least $1 / 2$. Show that NP $=\mathrm{L}-\mathrm{PCP}(\log n)$. Don't assume the PCP Theorem!

(This simple PCP Theorem is implicit in Lipton [?]. The suggested proof is due to van Melkebeek.)
§8 Suppose we define $J-P C P(r(n))$ similarly to $L-P C P(r(n))$, except the verifier is only allowed to read $O(r(n))$ successive bits in the membership proof. (It can decide which bits to read.) Then show that $J-P C P(\log n) \subseteq \mathbf{L}$.
§9 Prove that there is an NP-language L and $x \notin L$ such that $f(x)$ is a 3SAT formula with m constraints having an assignment satisfying more than $m-m^{0.9}$ of them, where f is the reduction from f to 3SAT obtained by the proof of the Cook-Levin theorem (Section 2.3.1).

$\S 10$ Show a $\operatorname{poly}(n, 1 / \epsilon)$-time $1+\epsilon$-approximation algorithm for the knapsack problem. That is, show an algorithm that given $n+1$ numbers $a_{1}, \ldots, a_{n} \in \mathbb{N}$ (each represented by at most n bits) and $k \in[n]$, finds a set $S \subseteq[n]$ with $|S| \leq k$ such that $\sum_{i \in S} a_{i} \geq \frac{\text { opt }}{1+\epsilon}$ where

$$
\text { opt }=\max _{S \subseteq[n],|S| \leq k} \sum_{i \in S} a_{i}
$$

-.дəqumu Кләлә јо sұ!̣
ұш®วч!!

§11 Show a polynomial-time algorithm that given a satisfiable 2CSP-instance φ (over binary alphabet) finds a satisfying assignment for φ.
§12 Prove that QUADEQ is NP-complete.
-suǫ̣̣enbə э!̣ре.рpenb

$\S 13$ Prove that if Z, U are two $n \times n$ matrices over GF(2) such that $Z \neq U$ then

$$
\operatorname{Pr}_{\mathbf{r}, \mathbf{r}^{\prime} \in R\{0,1\}^{n}}\left[\mathbf{r} Z \mathbf{r}^{\prime} \neq \mathbf{r} U \mathbf{r}^{\prime}\right] \geq \frac{1}{4}
$$

-əd!̣u!ud unsqns

§14 Show a deterministic poly $\left(n, 2^{q}\right)$-time algorithm that given a q CSPinstance φ (over binary alphabet) with m clauses outputs an assignment satisfying $m / 2^{q}$ of these assignment.
$\S 15$ Let S_{t} be the binomial distribution over t balanced coins. That is, $\operatorname{Pr}\left[S_{t}=k\right]=\binom{t}{k} 2^{-t}$. Prove that for every $\delta<1$, the statistical distance of S_{t} and $S_{t+\delta \sqrt{t}}$ is at most 10ϵ.

$\S 16$ The long-code for a set $\{0, \ldots, W-1\}$ is the function LC : $\{0, \ldots, W-$ $1\} \rightarrow\{0,1\}^{2^{W}}$ such that for every $i \in\{0 . . W-1\}$ and a function $f:$ $\{0 . . W-1\} \rightarrow\{0,1\}$, (where we identify f with an index in $\left[2^{w}\right]$) the $f^{t h}$ position of $\mathrm{LC}(i)$, denoted by $\mathrm{LC}(i)_{f}$, is $f(i)$. We say that a function $L:\{0,1\}^{2^{W}} \rightarrow\{0,1\}$ is a long-code codeword if $L=\operatorname{LC}(i)$ for some $i \in\{0 . . W-1\}$.
(a) Prove that LC is an error-correcting code with distance half. That is, for every $i \neq j \in\{0 . . W-1\}$, the fractional Hamming distance of $\operatorname{LC}(i)$ and $\mathrm{LC}(j)$ is half.
(b) Prove that LC is locally-decodable. That is, show an algorithm that given random access to a function $L: 2^{\{0,1\}^{W}} \rightarrow\{0,1\}$ that is ($1-\epsilon$)-close to $\mathrm{LC}(i)$ and $f:\{0 . . W-1\} \rightarrow\{0,1\}$ outputs $\mathrm{LC}(i)_{f}$ with probability at least 0.9 while making at most 2 queries to L.
(c) Let $L=\mathrm{LC}(i)$ for some $i \in\{0 . . W-1\}$. Prove the for every $f:\{0 . . W-1\} \rightarrow\{0,1\}, L(f)=1-L(\bar{f})$, where \bar{f} is the negation of f (i.e., $\bar{f}(i)=1-f(i)$ for every $i \in\{0 . . W-1\}$).
(d) Let T be an algorithm that given random access to a function $L: 2^{\{0,1\}^{W}} \rightarrow\{0,1\}$, does the following:
i. Choose f to be a random function from $\{0 . . W-1\} \rightarrow\{0,1\}$.
ii. If $L(f)=1$ then output True.
iii. Otherwise, choose $g:\{0 . . W-1\} \rightarrow\{0,1\}$ as follows: for every $i \in\{0 . . W-1\}$, if $f(i)=0$ then set $g(i)=0$ and otherwise set $g(i)$ to be a random value in $\{0,1\}$.
iv. If $L(g)=0$ then output True; otherwise output False.

Prove that if L is a long-code codeword (i.e., $L=\mathrm{LC}(i)$ for some $i)$ then T outputs True with probability one.
Prove that if L is a linear function that is non-zero and not a longcode codeword then T outputs True with probability at most 0.9.
(e) Prove that LC is locally testable. That is, show an algorithm that given random access to a function $L:\{0,1\}^{W} \rightarrow\{0,1\}$ outputs True with probability one if L is a long-code codeword and outputs False with probability at least $1 / 2$ if L is not $0.9-$ close to a long-code codeword, while making at most a constant number of queries to L.

(f) Using the test above, give an alternative proof for the Alphabet Reduction Lemma (Lemma 19.30).

Omitted proofs

The preprocessing step transforms a q CSP-instance φ into a "nice" 2CSPinstance ψ through the following three claims:

Claim 19.36
There is a CL- reduction mapping any q CSP instance φ into a $2 \mathrm{CSP}_{2^{q}}$ instance ψ such that

$$
\operatorname{val}(\varphi) \leq 1-\epsilon \Rightarrow \operatorname{val}(\psi) \leq 1-\epsilon / q
$$

Proof: Given a q CSP-instance φ over n variables u_{1}, \ldots, u_{n} with m constraints, we construct the following $2 \mathrm{CSP}_{2^{q}}$ formula ψ over the variables $u_{1}, \ldots, u_{n}, y_{1}, \ldots, y_{m}$. Intuitively, the y_{i} variables will hold the restriction of the assignment to the q variables used by the $i^{\text {th }}$ constraint, and we will add constraints to check consistency: that is to make sure that if the $i^{\text {th }}$ constraint depends on the variable u_{j} then u_{j} is indeed given a value consistent with y_{i}. Specifically, for every φ_{i} of φ that depends on the variables u_{1}, \ldots, u_{q}, we add q constraints $\left\{\psi_{i, j}\right\}_{j \in[q]}$ where $\psi_{i, j}\left(y_{i}, u_{j}\right)$ is true iff y_{i} encodes an assignment to u_{1}, \ldots, u_{q} satisfying φ_{i} and u_{j} is in $\{0,1\}$ and agrees with the assignment y_{i}. Note that the number of constraints in ψ is $q m$.

Clearly, if φ is satisfiable then so is ψ. Suppose that $\operatorname{val}(\varphi) \leq 1-\epsilon$ and let $u_{1}, \ldots, u_{k}, y_{1}, \ldots, y_{m}$ be any assignment to the variables of ψ. There exists a set $S \subseteq[m]$ of size at least ϵm such that the constraint φ_{i} is violated by the assignment u_{1}, \ldots, u_{k}. For any $i \in S$ there must be at least one $j \in[q]$ such that the constraint $\psi_{i, j}$ is violated.

Claim 19.37
There is an absolute constant d and a CL- reduction mapping any $2 \mathrm{CSP}_{W}$ instance φ into a $2 \mathrm{CSP}_{W}$ instance ψ such that

$$
\operatorname{val}(\varphi) \leq 1-\epsilon \Rightarrow \operatorname{val}(\psi) \leq 1-\epsilon /(100 W d)
$$

and the constraint graph of ψ is d-regular. That is, every variable in ψ appears in exactly d constraints.

Proof: Let φ be a $2 \operatorname{CSP}_{W}$ instance, and let $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ be an explicit family of d-regular expanders. Our goal is to ensure that each variable appears in φ at most $d+1$ times (if a variable appears less than that, we can always add artificial constraints that touch only this variable). Suppose that u_{i} is a variable that appears in k constraints for some $n>1$. We will change
u_{i} into k variables $y_{i}^{1}, \ldots, y_{i}^{k}$, and use a different variable of the form y_{i}^{j} in the place of u_{i} in each constraint u_{i} originally appeared in. We will also add a constraint requiring that y_{i}^{j} is equal to $y_{i}^{j^{\prime}}$ for every edge $\left(j, j^{\prime}\right)$ in the graph G_{k}. We do this process for every variable in the original instance, until each variable appears in at most d equality constraints and one original constraint. We call the resulting 2CSP-instance ψ. Note that if φ has m constraints then ψ will have at most $m+d m$ constraints.

Clearly, if φ is satisfiable then so is ψ. Suppose that $\operatorname{val}(\varphi) \leq 1-\epsilon$ and let \mathbf{y} be any assignment to the variables of ψ. We need to show that \mathbf{y} violates at least $\frac{\epsilon m}{100 W}$ of the constraints of ψ. Recall that for each variable u_{i} that appears k times in φ, the assignment \mathbf{y} has k variables $y_{i}^{1}, \ldots, y_{i}^{k}$. We compute an assignment \mathbf{u} to φ 's variables as follows: u_{i} is assigned the plurality value of $y_{i}^{1}, \ldots, y_{i}^{k}$. We define t_{i} to be the number of y_{i}^{j} 's that disagree with this plurality value. Note that $0 \leq t_{i} \leq k(1-1 / W)$ (where W is the alphabet size). If $\sum_{i=1}^{n} t_{i} \geq \frac{\epsilon}{4} m$ then we are done. Indeed, by (3) (see Note 19.18), in this case we will have at least $\sum_{i=1}^{n} \frac{t_{i}}{10 W} \geq \frac{\epsilon}{40 W} m$ equality constraints that are violated.

Suppose now that $\sum_{i=1}^{n} t_{i}<\frac{\epsilon}{4} m$. Since $\operatorname{val}(\varphi) \leq 1-\epsilon$, there is a set S of at least ϵm constraints violated in φ by the plurality assignment \mathbf{u}. All of these constraints are also present in ψ and since we assume $\sum_{i=1}^{n} t_{i}<\frac{\epsilon}{4} m$, at most half of them are given a different value by the assignment \mathbf{y} than the value given by \mathbf{u}. Thus the assignment \mathbf{y} violates at least $\frac{\epsilon}{2} m$ constraints in ψ.

Claim 19.38
There is an absolute constant d and a CL-reduction mapping any $2 \mathrm{CSP}_{W}$ instance φ with d^{\prime}-regular constraint graph for $d \geq d^{\prime}$ into a 2 CSP $_{W}$ instance ψ such that

$$
\operatorname{val}(\varphi) \leq 1-\epsilon \Rightarrow \operatorname{val}(\psi) \leq 1-\epsilon /(10 d)
$$

and the constraint graph of ψ is a $4 d$-regular expander, with half the edges coming out of each vertex being self-loops.

Proof: There is a constant d and an explicit family $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ of graphs such that for every n, G_{n} is a d-regular n-vertex 0.1 -expander graph (See Note 19.18).

Let φ be a 2CSP-instance as in the claim's statement. By adding self loops, we can assume that the constraint graph has degree d (this can at worst decrease the gap by factor of d). We now add "null" constraints (constraints that always accept) for every edge in the graph G_{n}. In addition, we add $2 d$ null constraints forming self-loops for each vertex. We denote by
ψ the resulting instance. Adding these null constraints reduces the fraction of violated constraints by a factor at most four. Moreover, because any regular graph H satisfies $\lambda(H) \leq 1$ and because of λ 's subadditivity (see Exercise 2, Chapter 16), $\lambda(\psi) \leq \frac{3}{4}+\frac{1}{4} \lambda\left(G_{n}\right) \leq 0.9$ where by $\lambda(\psi)$ we denote the parameter λ of ψ 's constraint graph.

[^0]: ${ }^{1}$ One newspaper article about the discovery of the PCP Theorem carried the headline "New shortcut found for long math proofs!"

[^1]: ${ }^{2}$ Though widely used, the term "random access" is misleading since it doesn't involve any notion of randomness per se. "Indexed access" would be more accurate.

[^2]: ${ }^{3}$ We use here the fact that over $\mathrm{GF}(2), a+b=a-b$.

