
DRAFT

Chapter 21

Quantum Computation

“Turning to quantum mechanics.... secret, secret, close the
doors! we always have had a great deal of difficulty in under-
standing the world view that quantum mechanics represents ...
It has not yet become obvious to me that there’s no real problem.
I cannot define the real problem, therefore I suspect there’s no
real problem, but I’m not sure there’s no real problem. So that’s
why I like to investigate things.”
Richard Feynman 1964

“The only difference between a probabilistic classical world and
the equations of the quantum world is that somehow or other it
appears as if the probabilities would have to go negative..”
Richard Feynman, in “Simulating physics with computers”, 1982

A quantum computer is a computational model that may be physically
realizable and may have an exponential advantage over Turing machines
in solving certain computational problems. In this chapter we survey the
model, its relations to “classical” computational models such as probabilistic
and deterministic Turing machines and the most important algorithms for
quantum computers.

The strong Church-Turing thesis. As complexity theorists, the main
reason to study quantum computers is that they pose a serious challenge
to the strong Church-Turing thesis that stipulates that any physically rea-
sonable computation device can be simulated by a Turing machine with

Web draft 2006-09-28 18:10
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

469

DRAFT

470 21.1. QUANTUM PHYSICS

polynomial overhead. Quantum computers seem to violate no fundamental
laws of physics and yet currently we do not know any such simulation. In
fact, there’s some evidence to the contrary: there’s a polynomial-time algo-
rithm for quantum computers to factor integers, where despite much effort
no such algorithm is known for deterministic or probabilistic Turing ma-
chines. In fact, the conjectured hardness of this problem underlies several
widely used encryption schemes such as the RSA cryptosystem. Thus the
feasibility of quantum computers is very interesting for anyone interested
in the security of these schemes. Physicists are also interested in quantum
computers as studying them may shed light on quantum mechanics, a theory
which, despite its great success in predicting experiments, is still not fully
understood.

21.1 Quantum physics

Quantum phenomena are counterintuitive. To see this, consider the basic
experiment of quantum mechanics that proves the wave nature of electrons:
the 2-slit experiment. (See Figure 21.1.) A source fires electrons one by one
at a wall. The wall contains two tiny slits. On the far side are small detectors
that light up whenever an electron hits them. We measure the number of
times each detector lights up during the hour. The results are as follows.
When we cover one of the slits, we observe the strongest flux of electrons
right behind the open slit, as one would expect. When both slits are open
we would expect that the number of electrons hitting any particular position
would be the sum of number hitting it when the first slit is open and the
number hitting it when the second slit is open. Instead, what happens is
that there’s an “interference” phenomenon of electrons coming through two
slits. In particular, at several detectors the total electron flux is lower when
both slit are open as compared to when a single slit is open. This defies
explanation if electrons behave as particles or “little balls”.

Figure unavailable in pdf file.

Figure 21.1: 2-slit experiment

The only explanation physics has for this experiment is that an electron
does not behave as a ball. It should be thought of as simultaneously going
through both slits at once, kind of like a wave. Rather than thinking of the
electron has having some non-negative probability of reaching a point x via

Web draft 2006-09-28 18:10

DRAFT

21.2. QUANTUM SUPERPOSITIONS 471

slit i, we think of it has having some amplitude αx,i, where this amplitude is
a complex number (in particular, it can be a negative number). The prob-
ability of an electron hitting x when slit i is open is proportional to |αx,i|2
and the probability of hitting x when both slits are open is proportional to
|αx,1 +αx,2|2. In particular, if, say, αx,1 is positive and αx,2 is negative then
the electron may hit x with smaller probability when both slits are open
than when only one of them is open.

“Nonsense!” you might say. “I need proof that the electron actually
went through both slits.” So you propose the following modification to the
experiment. Position two detectors at the slits; these light up whenever an
electron passed through the slit. Now you can test the hypothesis that the
electron went through both slits simultaneously. If you put such detectors
at the slits, you will see that each electron indeed went through only one slit,
but now you’ll also see that the interference phenomenon disappears and the
graph of electron hits on the wall becomes a simple sum! The explanation
is roughly as follows: the quantum nature of particles “collapses” when
they are “observed.” More specifically, a quantum system evolves according
to certain laws, but “observation” from nosy humans and their detectors
“collapses” the quantum state and this is a nonreversible operation. (This
may seem mysterious and it is; see Chapter notes.) One moral to draw
from this is that quantum computers, if they are ever built, will have to
be carefully isolated from external influences and noise, since noise may be
viewed as a “measurement” performed by the environment on the system.
Of course, we can never completely isolate the system, which means we have
to make quantum computation tolerant of a little noise. This seems to be
possible under some noise models (see Chapter notes).

21.2 Quantum superpositions

Now we describe a quantum register, a basic component of the quantum
computer. Recall the classical register, the building block of the memory in
your desktop computer. An n-bit classical register with n bits consists of n
particles. Each of them can be in 2 states: up and down, or 0 and 1. Thus
there are 2n possible configurations, and at any time the register is in one
of these configurations.

The n-bit quantum register is similar, except at any time it can exist in a
superposition of all 2n configurations. (And the “bits” are called “qubits.”)
Each configuration S ∈ {0, 1}n has an associated amplitude αS ∈ C where

Web draft 2006-09-28 18:10

DRAFT

472 21.2. QUANTUM SUPERPOSITIONS

C is the set of complex numbers.

αS = amplitude of being in configuration S

Physicists like to denote this system state succinctly as
∑

S αS |S 〉. This
is their notation for describing a general vector in the vector space C2n

,
expressing the vector as a linear combination of basis vectors. The basis
contains a vector |S 〉 for each configuration S. The choice of the basis used
to represent the configurations is immaterial so long as we fix a basis once
and for all.

At every step, actions of the quantum computer —physically, this may
involve shining light of the appropriate frequency on the quantum register,
etc.— update αS according to some physics laws. Each computation step
is essentially a linear transformation of the system state. Let α denote the
current configuration (i.e., the system is in state

∑
S αS |S 〉) and U be the

linear operator. Then the next system state is β = Uα. Physics laws require
U to be unitary, which means UU † = I. (Here U † is the matrix obtained
by transposing U and taking the complex conjugate of each entry.) Note an
interesting consequence of this fact: the effect of applying U can be reversed
by applying the operator U †: thus quantum systems are reversible. This
imposes strict conditions on which kinds of computations are permissible
and which are not.

As already mentioned, during the computation steps, the quantum reg-
ister is isolated from the outside world. Suppose we open the system at
some time and observe the state of the register. If the register was in state∑

S αS |S 〉 at that moment, then

Pr[we see configuration S] = |αS |2 (1)

In particular, we have
∑

S |αS |2 = 1 at all times. Note that observation
is an irreversible operator. We get to see one configuration according to the
probability distribution described in (1) and and the rest of the configura-
tions are lost forever.

What if we only observe a few bits of the register —a so-called partial
observation? Then the remaining bits still stay in quantum superposition.
We show this by an example.

Example 21.1
Suppose an n-bit quantum register is in the state∑

s∈{0,1}n−1

αs |0〉 |s〉+ βs |1〉 |s〉 (2)

Web draft 2006-09-28 18:10

DRAFT

21.3. CLASSICAL COMPUTATION USING REVERSIBLE GATES 473

(sometimes this is also represented as
∑

s∈{0,1}n−1(αs |0〉 + βs |1〉) |s〉, and
we will use both representations). Now suppose we observe just the first bit
of the register and find it to be 0. Then the new state is ∑

s∈{0,1}n−1

√
|αs|2

−1 ∑
s∈{0,1}n−1

αs |0〉 |s〉 (3)

where the first term is a rescaling term that ensures that probabilities in
future observations sum to 1.

21.3 Classical computation using reversible gates

Motivated by the 2nd Law of Thermodynamics, researchers have tried to de-
sign computers that expend —at least in principle— zero energy. They have
invented reversible gates, which can implement all classical computations in
a reversible fashion. We will study reversible classical gates as a stepping
stone to quantum gates; in fact, they are simple examples of quantum gates.

The Fredkin gate is a popular reversible gate. It has 3 Boolean inputs
and on input (a, b, c) it outputs (a, b, c) if a = 1 and (a, c, b) if a = 0. It is
reversible, in the sense that F (F (a, b, c)) = (a, b, c). Simple induction shows
that if a circuit is made out of Fredkin gates alone and has m inputs then it
must have m outputs as well. Furthermore, we can recover the inputs from
the outputs by just applying the circuit in reverse. Hence a Fredkin gate
circuit is reversible.

Figure unavailable in pdf file.

Figure 21.2: Fredkin gate and how to implement AND with it.

The Fredkin gate is universal, meaning that every circuit of size S that
uses the familiar AND, OR, NOT gates (maximum fanin 2) has an equivalent
Fredkin gate circuit of size O(S). We prove this by showing that we can
implement AND, OR, and NOT using a Fredkin gate some of whose inputs
have been fixed 0 or 1 (these are “control inputs”); see Figure 21.2 for AND
and Figure 21.3 for NOT; we leave OR as exercise. We also need to show
how to copy a value with Fredkin gates, since in a normal circuit, gates can

Web draft 2006-09-28 18:10

DRAFT

474 21.4. QUANTUM GATES

have fanout more than 1. To implement a COPY gate using Fredkin gates
is easy and is the same as for the the NOT gate (see Figure 21.3).

Thus to transform a normal circuit into a reversible circuit, we replace
each gate with its Fredkin implementation, with some additional “control”
inputs arriving at each gate to make it compute as AND/OR/NOT. These
inputs have to be initialized appropriately.

The transformation appears in Figure 21.4, where we see that the output
contains some junk bits. With a little more work (see Exercises) we can do
the transformation in such a way that the output has no junk bits, just the
original control bits. The reversible circuit starts with some input bits that
are initialized to 0 and these are transformed into output bits.

Figure unavailable in pdf file.

Figure 21.3: Implementing NOT and COPY with Fredkin Gate

Figure unavailable in pdf file.

Figure 21.4: Converting a normal circuit C into an equivalent circuit C′ of Fredkin
gates. Note that we need additional control inputs

21.4 Quantum gates

A 1-input quantum gate is represented by a unitary 2 × 2 matrix U =
(U00 U01

U10 U11
). When its input bit is 0 the output is the superposition U00 |0〉+

U01 |1〉 and when the input is 1 the output is the superposition U10 |0〉 +
U11 |1〉. When the input bit is in the superposition α0 |0〉+β0 |1〉 the output
bit is a superposition of the corresponding outputs

(α0U00 + β0U10) |0〉+ (α0U01 + β0U11) |1〉. (4)

More succinctly, if the input state vector is (α0, β0) then the output state
vector is (

α
β

)
= U

(
α0

β0

)
If |α|2 + |β|2 = 1 then unitarity of U implies that |α′|2 + |β′|2 = 1.
Similarly, a 2-input quantum gate is represented by a unitary 4×4 matrix

R. When the input is the superposition α00 |00〉 + α01 |01〉 + α10 |10〉 +

Web draft 2006-09-28 18:10

DRAFT

21.4. QUANTUM GATES 475

α11 |11〉, the output is β00 |00〉+ β01 |01〉+ β10 |10〉+ β11 |11〉 where
β00

β01

β10

β11

 = R

α00

α01

α10

α11

In general, a quantum gate with k inputs is specified by a unitary 2k×2k

matrix.

Example 21.2
A Fredkin gate is also a valid 3-input quantum gate. We represent it by an
8× 8 matrix that gives its output on all 23 possible inputs. This matrix is a
permutation matrix (i.e., obtainable from the identity matrix by applying a
permutation on all the rows) since the output F (a, b, c) is just a permutation
of the input (a, b, c). Exercise 3 asks you to verify that this permutation
matrix is unitary.

A quantum circuit on n inputs consists of (a) an n-bit quantum regis-
ter (b) a sequence of gates (gj)j=1,2,.... If gj is a k-input gate, then the circuit
specification has to also give a sequence of bit positions (j, 1), (j, 2), . . . , (j, k) ∈
[1, n] in the quantum register to which this gate is applied. The circuit com-
putes by applying these gate operations to the quantum register one by one
in the specified order. The register holds the state of the computation, and
only one gate is applied at any given time.

Example 21.3
Suppose we have an n-bit quantum register in the state

∑
S∈0,1n αS |S 〉. If

we apply a 1-input quantum gate U to the first wire, the new system state
is computed as follows. First “factor” the initial state by expressing each
n-bit configuration as a concatenation of the first bit with the remaining
n− 1 bits: ∑

S′∈{0,1}n−1

α0,S′
∣∣0S′ 〉+ α1,S′

∣∣1S′ 〉. (5)

(Formally we could express everything we are doing in terms of tensor prod-
uct of vector spaces but we will not do that.)

Web draft 2006-09-28 18:10

DRAFT

476 21.4. QUANTUM GATES

To obtain the final state apply U on the first bit in each configuration
as explained in equation (4). This yields

∑
S′∈{0,1}n−1

(α0,S′U00 + α1,S′U10)
∣∣0S′ 〉+ (α0,S′U01 + α1,S′U11)

∣∣1S′ 〉 (6)

We can similarly analyze the effect of applying a k-input quantum gate
on any given set of k bits of the quantum register, by first “factoring” the
state vector as above.

21.4.1 Universal quantum gates

You may now be a little troubled by the fact that the set of possible 1-input
quantum gates is the set of all unitary 2 × 2 matrices, an uncountable set.
That seems like bad news for the Radio Shacks of the future, who may feel
obliged to keep all possible quantum gates in their inventory, to allow their
customers to build all possible quantum circuits.

Luckily, Radio Shack need not fear. Researchers have shown the exis-
tence of a small set of “universal” 2-input quantum gates such that every
circuit composed of S arbitrary k-input quantum gates can be simulated
using a circuit of size 2poly(k) ·Spoly(log S) composed only of our universal
gates. The simulation is not exact and the distribution on outputs is only
approximately the same as the one of the original circuit. (All of this as-
sumes the absence of any outside noise; simulation in presence of noise is a
topic of research and currently seems possible under some noise models.)

In any case, we will not need any fancy quantum gates below; just the
Fredkin gate and the following 1-input gate called the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)

Web draft 2006-09-28 18:10

DRAFT

21.5. BQP 477

21.5 BQP

Definition 21.4
A language L ⊆ {0, 1}∗, is in BQP iff there is a family of quantum circuits
(Cn) of size nc s.t. ∀x ∈ {0, 1}∗:

x ∈ L ⇒ Pr[C(x)1 = 1] ≥ 2
3

x /∈ L ⇒ Pr[C(x)1 = 1] ≤ 1
3

Here C(x)1 is the first output bit of circuit C, and the probability refers to
the probability of observing that this bit is 1 when we “observe” the outputs
at the end of the computation.

The circuit has to be uniform, that is, a deterministic polynomial time
(classical) Turing machine must be able to write down its description.

At first the uniformity condition seems problematic because a classical
Turing machine cannot write complex numbers needed to describe quantum
gates. However, the machine can just express the circuit approximately
using universal quantum gates, which comprise a finite family. The approx-
imate circuit computes the same language because of the gap between the
probabilities 2/3 and 1/3 used in the above definition.

Theorem 21.5
P ⊆ BQP

Proof: Every language in P has a uniform circuit family of polynomial size.
We transform these circuits into reversible circuits using Fredkin gates, thus
obtaining a quantum circuit family for the language. �

Theorem 21.6
BPP ⊆ BQP

Proof: Every language in BPP has a uniform circuit family (Cn) of poly-
nomial size, where circuit Cn has n normal input bits and an additional
m = poly(n) input wires that have to be initialized with random bits.

We transform the circuit into a reversible circuit C ′
n using Fredkin gates.

To produce “random” bits, we feed m zeros into an array of Hadamard gates
and plug their outputs into C ′

n; see Figure 21.5.
A simple induction shows that for any N if we start with an N -bit

quantum register in the state |0〉 and apply the Hadamard gate one by one

Web draft 2006-09-28 18:10

DRAFT

47821.6. FACTORING INTEGERS USING A QUANTUM COMPUTER

Figure unavailable in pdf file.

Figure 21.5: Turning a BPP circuit into an equivalent quantum circuit. An array of
Hadamard gates turns the all-0 string into a uniform superposition of all m-bit strings.

on all the bits, then we obtain the superposition∑
S∈{0,1}N

1
2N/2

|S 〉 (7)

(Note: the case N = 1 follows from the definition of the Hadamard gate.)
The correctness of the above transformation is now clear since the “ran-

dom” inputs of circuit C ′
n receive the output from the array of Hadamard

gates, in other words, a uniform quantum superposition of all possible m-bit
strings. Thus the output bit of C ′

n is a uniform superposition of the result on
each bit string. If we perform an observation on this output bit at the end,
then the the probability that it is observed to be 1 is exactly the probability
that Cn accepts when the random gates are fed a truly random string. �

21.6 Factoring integers using a quantum computer

This section proves the following famous result.

Theorem 21.7 (Shor [?])
There is a polynomial size quantum circuit that factors integers.

We describe Kitaev’s proof of this result since it uses eigenvalues, a more
familiar and intuitive concept than the Fourier transforms used in Shor’s
algorithm.

Definition 21.8 (Eigenvalue)
λ is an eigenvalue of matrix M if there is a vector e (called the eigenvector)
, s.t.:

M · e = λe

Fact: If M is unitary, then |M · x|2 = 1 for each unit vector, so |λ| = 1.
In other words there is a θ ∈ [0, 1) such that

λ = e2πιθ = cos(2πθ) + ι sin(2πθ).

Web draft 2006-09-28 18:10

DRAFT

21.6. FACTORING INTEGERS USING A QUANTUM COMPUTER479

Here ι =
√
−1.

Fact: If M · e = λe then Mk · e = λke. Hence e is still an eigenvector of
Mk and λk is the corresponding eigenvalue.

Now we are ready to describe Kitaev’s algorithm and prove Theorem 21.7.
Proof: Let N be the number to be factored. As usual, Z∗

N is the set of
numbers mod N that are co-prime to N . Simple number theory shows that
for every a ∈ Z∗

N there is a smallest integer r such that ar ≡ 1 (mod N);
this r is called the order of a. The algorithm will try to find the order of a
random element of Z∗

N . It is well-known if we can do this then we can factor
N with high probability; here’s a sketch. First, note that with probability at
least 1/2, the element a has even order. Now if (ar − 1) ≡ 0 (mod N), then
(a

r
2 −1)(a

r
2 +1) ≡ 0 (mod N). If a is random, with probability ≥ 1

2 , a
r
2 6= 1

(mod N), a
r
2 6= −1 (mod N) (this is a simple exercise using the Chinese

remainder theorem). Thus hence gcd(N, a
r
2 − 1) 6= N, 1. Thus, knowing r

we can compute ar/2 and compute gcd(N, a
r
2 − 1). Thus with probability at

least 1/4 (over the choice of a) we obtain a factor of N .
The factoring algorithm is a mixture of a classical and a quantum al-

gorithm. Using classical random bits it generates a random a ∈ Z∗
N and

then constructs a quantum circuit. Observing the output of this quantum
circuit a few times followed by some more classical computation allows it to
obtain r, the order of a, with reasonable probability. (Of course, we could
in principle describe the entire algorithm as a quantum algorithm instead
of as a mixture of a classical and a quantum algorithm, but our description
isolates exactly where quantum mechanics is crucial.)

Consider a classical reversible circuit of size poly(log N) that acts on
numbers in Z∗

N , and computes U(x) = ax (mod N). Then we can view
this circuit as a quantum circuit operating on a quantum register. If the
quantum register is in the superposition1∑

x∈Z∗
N

αx |x〉,

then applying U gives the superposition∑
x∈Z∗

N

αx | ax (mod N)〉.

1Aside: This isn’t quite correct; the cardinality of Z∗
N is not a power of 2 so it is not

immediately obvious how to construct a quantum register whose only possible configura-
tions correspond to elements of Z∗

N . However, if we use the nearest power of 2, everything
we are about to do will still be approximately correct. There are also other fixes to this
problem.

Web draft 2006-09-28 18:10

DRAFT

48021.6. FACTORING INTEGERS USING A QUANTUM COMPUTER

Figure unavailable in pdf file.

Figure 21.6: Conditional-U circuit

Interpret this quantum circuit as an N ×N matrix —also denoted U—
and consider its eigenvalues. Since U r = I, we can easily check that its
eigenvalues are e2πιθ where θ = j

r for some j = 0, 1, 2, . . . , r − 1. The
algorithm will try to obtain a random eigenvalue. It thus obtains —in binary
expansion— a number of form j

r where j is random. Chances are good that
this j is coprime to r, which means that j

r is an irreducible fraction. Even
knowing only the first 2 log N bits in the binary expansion of j

r , the algorithm
can round off to the nearest fraction whose denominator is at most N (this
can be done; see Section ??) and then it reads off r from the denominator.

Next, we describe how to do this estimation of the eigenvalue. The
discussion assumes we know how to produce a quantum register whose state
corresponds to e, a random quantum vector of U ; see Section 21.6.3 for how
to do this (more precisely, something that is “just as good.”)

21.6.1 Phase estimation: the first few bits

Now we describe the basic primitive promised above. We have a reversible
classical circuit U with n inputs/outputs and poly(n) size (U is also thought
of as a quantum circuit). We have an n-bit quantum register whose (quan-
tum) state is given by e, which happens to be an eigenvector of U cor-
responding to an eigenvalue λ = e2πιθ. We wish to apply some quantum
circuit of size poly(n)—which as it turns out will incorporate many copies
of U—on this register, such that we can compute the first 2n bits of of θ.
In this section we only manage to compute the first O(log n) bits; the next
section shows how to finish the job.

First, we notice that applying U on the state e puts it in the state λe.
Thus the register’s state has undergone a phase shift —i.e., multiplication
by a scalar. The algorithm we describe measures this λ, and is therefore
called phase estimation.

Now define a conditional-U circuit (Figure 21.6), whose input is (b, x)
where b is a bit, and cond-U(b, x) = (b, x) if b = 0 and (b, Ux) if b = 1.
We leave it as an exercise how to implement this using U and some Fredkin
gates.

Using a cond-U circuit and two Hadamard gates, we can build a quantum
circuit —the “basic block”— shown in Figure 21.7. When this is applied

Web draft 2006-09-28 18:10

DRAFT

21.6. FACTORING INTEGERS USING A QUANTUM COMPUTER481

Figure unavailable in pdf file.

Figure 21.7: Basic building block consists of a Conditional-U and two Hadamard gates.

to a quantum register whose first bit is 0 and the remaining bits are in the
state e, then we can measure the corresponding eigenvalue λ by repeated
measurement of the first output bit.

|0〉 |e〉 H1−→ 1√
2
|0〉 |e〉+

1√
2
|1〉 |e〉

cond-U−→ 1√
2
|0〉 |e〉+

λ√
2
|1〉 |e〉

H2−→ 1
2
((1 + λ) |0〉 |e〉+ (1− λ) |1〉 |e〉) (8)

Let p(0) denote the probability of observing a 0 in the first bit. Then

p(0) =
∣∣∣∣1 + e2πιθ

2

∣∣∣∣2 =
|1 + cos(2πθ) + ι sin(2πθ)|2

2

=

∣∣1 + 2 cos(2πθ) + cos2(2πθ) + sin2(2πθ)
∣∣

4

=
1 + cos(2πθ)

2
. (9)

(The second line uses the fact that |a + ιb|2 = a2 + b2).
We will refer to this bit as the phase bit, since repeatedly measuring it

allows us to compute better and better estimates to p(0) and hence θ and
hence λ. Actually, instead of measuring repeatedly we can just design a
quantum circuit to do the repetitions by noticing that the output is just a
scalar multiple of e, namely, λe. If we were to repeat the above calculation
with λe instead of e, we find that the probability of measuring 0 in the
first bit is again given by (9). So we can just feed the new state λe into
another basic block with a fresh phase bit initialized to 0, and so on (see
Figure 21.8). We measure phase bits for all the blocks all at once at the
end. Observing the number of phase bits that are 0 gives us an estimate for
λ.

Are we done? Unfortunately, no. Obtaining an estimate to the first
m bits of λ means approximating it within an additive error 2−m, which
involves about 22m trials (in general estimating the bias of an unknown coin
up to error ε with probability 1−δ requires tossing it O(log(1/δ)/ε2) times).

Web draft 2006-09-28 18:10

DRAFT

48221.6. FACTORING INTEGERS USING A QUANTUM COMPUTER

Figure unavailable in pdf file.

Figure 21.8: Repeating the basic experiment to get better estimate of λ.

Thus the iterated construction needs 22m copies of the basic block and the
circuit size is poly(n) only when m = O(log n). Thus simple repetition is a
very inefficient way to obtain accurate information about λ.

21.6.2 Better phase estimation using structure of U

This section gives a more efficient phase estimation technique that works
only for U that have the following property: if U has size poly(n) then
for every k ≥ 1, computing U2k

only requires a circuit of size poly(n + k).
Luckily, the U we are interested in does have this property: U2k

(x) = a2k
x

(mod N), and a2k
is computable by circuits of size poly(log N +log k) using

fast exponentiation.
Using this property of U , we can implement a conditional-U2k

circuit
using a quantum circuit of size poly(log N + k). The eigenvalues of U2k

are λ2k
. If λ = e2πιθ where θ ∈ [0, 1) (see Figure 21.9) then λ2k

= e2πιθ2k
.

Since e2πιθ2k
is the same complex number as e2πια where α = 2kθ (mod 1),

measuring λ2k
actually gives us 2kθ (mod 1). The most significant bit of

2kθ (mod 1) is nothing but the kth bit of θ. Using k = 0, 1, 2, . . . 2 log N we
can obtain2 the first 2 log N bits of θ.

As in Figure 21.8, we can bundle these steps into a single cascading
circuit where the output of the conditional-U2k−1

circuit feeds into the
conditional-U2k

circuit. Each circuit has its own set of O(log N) phase
bits; measuring the phase bits of the kth circuit gives an estimate of the kth
bit of θ that is correct with probability at least 1− 1/N . All phase bits are
measured in a single stroke at the end. The union bound implies that the
probability that all phase bits are correct is at least 1− 2 log N/N .

2There is a slight inaccuracy here, since we are blurring the distinction between mea-
suring λ and θ. For example, when θ is very close to 1/2, then e2πιθ ≈ −1. So the complex
number 1 + λ is close 0 and the phase bit almost always comes up 1. Now we cannot tell
whether the binary expansion of θ is more like 0.1000x or 0.0111x, both of which are
close to 1/2. But then the estimation of the 1st and 2nd bits allows us to infer which of
these two cases occurs, and hence the value of the first bit. Thus the correct estimation
procedure involves looking at estimated values of each pair of successive bits.

Web draft 2006-09-28 18:10

DRAFT

21.6. FACTORING INTEGERS USING A QUANTUM COMPUTER483

Figure unavailable in pdf file.

Figure 21.9: Eigenvalue λ = e2πιθ in the complex plane.

21.6.3 Uniform superpositions of eigenvectors of U

To finish, we need to show how to put a quantum register into a state
corresponding to a random eigenvector. Actually, we only show how to put
the quantum register into a uniform superposition of eigenvectors of U . This
suffices for our cascading circuit, as we will argue shortly.

First we need to understand what the eigenvectors look like. Recall that{
1, a, a2, . . . , ar−1

}
is a subgroup of Z∗

N . Let B be a set of representatives
of all cosets of this subgroup. In other words, for each x ∈ Z∗

N there is a
unique b ∈ B and l ∈ {0, 1, . . . , r − 1} such that x = bal (mod N). It is
easily checked that the following is the complete set of eigenvectors, where

ω = e
2πι
r :

∀j ∈ {0, 1, . . . , r − 1} ,∀b ∈ B ej,b =
r−1∑
l=0

ωjl
∣∣∣ bal (mod N)〉 (10)

The eigenvalue associated with this eigenvector is ω−j = e−
2πιj

r .
Fix b and consider the uniform superposition:

1
r

r−1∑
j=0

ej,b =
1
r

r−1∑
j=0

r−1∑
l=0

ωjl
∣∣∣ bal (mod N)〉 (11)

=
1
r

r−1∑
l=0

r−1∑
j=0

ωjl
∣∣∣ bal (mod N)〉. (12)

Separating out the terms for l = 0 and using the formula for sums of geo-
metric series:

=
1
r
(
r−1∑
j=0

|b〉+
r−1∑
l=1

(ωl)r − 1
ωl

∣∣∣ bal (mod N)〉) (13)

since ωr = 1 we obtain

= |b〉 (14)

Web draft 2006-09-28 18:10

DRAFT

484 21.7. QUANTUM COMPUTING: A TOUR DE HORIZON

�

Thus if we pick an arbitrary b and feed the state |b〉 into the quantum
register, then that can also be viewed as a uniform superposition 1

r

∑
j ej,b.

21.6.4 Uniform superposition suffices

Now we argue that in the above phase estimation based algorithm, a uniform
superposition of eigenvectors is just as good as a single eigenvector.

Fixing b, the initial state of the quantum register is

1
r

∑
j

|0〉 |ej,b 〉,

where 0 denotes the vector of phase bits that is initialized to 0. After
applying the quantum circuit, the final state is

1
r

∑
j

|cj 〉 |ej,b 〉,

where |cj 〉 is a state vector for the phase bits that, when observed, gives the
first 2 log N bits of j/r with probability at least 1 − 1/N . Thus observing
the phase bits gives us whp a random eigenvalue.

21.7 Quantum Computing: a Tour de horizon

Will give 1-para intros to quantum information, quantum crypto, the fact
that there is an oracle for which NP is not in BQP, grover’s algorithm,
models of quantum computation, decoherence and error correction,quantum
interactive proofs.

Exercises

§1 Implement an OR gate using the Fredkin gate.

§2 Verify that the Fredkin gate is a valid quantum gate.

§3 Given any classical circuit computing a function f from n bits to n bits,
describe how to compute the same function with a reversible circuit
that is a constant factor bigger and has no “junk” output bits.

Hint:Useourtransformation,thencopytheoutputtoasafe
place,andthenrunthecircuitinreversetoerasethejunkoutputs.

Web draft 2006-09-28 18:10

DRAFT

21.7. QUANTUM COMPUTING: A TOUR DE HORIZON 485

§4 Suppose the description of a quantum circuit U is given to you. De-
scribe an implementation of the Conditional-U circuit.

§5 Let N be composite. For a ∈ Z∗
N let r = ord(a) be the order of a,

i.e. r is the minimal number such that ar = 1 (mod N). Show that
if a ∈ Z∗

N is randomly chosen then with probability at least 1/10 (1)
ord(a) is even and (2) aord(a)/2 6≡ ±1 (mod N).

Hint:usetheChineseremaindertheoremandthefactthatfora
primepthegroupZp∗iscyclic.

§6 Prove Lemma 21.9.

§7 Complete the proof of Lemma 21.10 for the case that r and M are
not coprime. That is, prove that also in this case there exist at least
Ω(r/ log r) values x’s such that 0 ≤ rx (mod M) ≤ r/2 and dM/x e
and r are coprime.

Hint:letd=gcd(r,M),r′=r/dandM′=M/d.Nowusethe
sameargumentasinthecasethatMandrarecoprimetoargue
thatthereexistΩ(

r
dlogr)valuesx∈ZM′satisfyingthiscondition,

andthatifxsatisfiesitthensodoesx+cMforeveryc.

§8 (Uses knowledge of continued fractions) Suppose j, r ≤ N are mutually
coprime and unknown to us. Show that if we know the first 2 log N
bits of j/r then we can recover j, r in polynomial time.

Chapter notes and history

The “meaning” of quantum theory has eluded (or certainly puzzled) most
scientists. (The physicist Penrose [?] has even sought to link human con-
sciousness to the collapse of the quantum wave function, though this is
controversial.) No one doubts that quantum effects exist at microscopic
scales. The problem lies in explaining why they do not manifest themselves
at the macrosopic level (or at least not to human consciousness). A Scientific
American article by Yam [?] describes various explanations that have been
advanced over the years. The leading theory is decoherence, which tries to
use quantum theory to explain the absence of macroscopic quantum effects.
Researchers are not completely comfortable with this explanation.

The issue is undoubtedly important to quantum computing, which re-
quires hundreds of thousands of particles to stay in quantum superposition

Web draft 2006-09-28 18:10

DRAFT

486 21.8. QUANTUM NOTATIONS

for large-ish periods of time. Thus far it is an open question whether this is
practically achievable. One theoretical idea is to treat decoherence as a form
of noise, and to build noise-tolerance into the computation —a nontrivial
process. For details of this and many other topics, see the books by Kitaev,
Shen, and Vyalyi [?].

Feynman [?] was the first to suggest the possibility that quantum me-
chanics might allow Turing Machines more computational power than classi-
cal TMs. In 1985 Deutsch [?] defined a quantum turing machine, though in
retrospect his definition is unsatisfactory. Better definitions then appeared
in Deutsch-Josza [?], Bernstein-Vazirani [?] and Yao [?], at which point
quantum computation was firmly established as a field.

The book by Nielsen and Chuang [?] gives a comprehensive treatment
of quantum computation.

Alternative presentation of Shor’s algorithm.

21.8 Quantum Notations

21.9 Simon’s Algorithm

21.10 Integer factorization using quantum com-
puters.

21.10.1 Reduction to Order Finding

21.10.2 Quantum Fourier Transform over ZM .

The Fourier transform over an Abelian group G is a linear operation that
transforms a |G|-dimensional vector from representation in the standard ba-
sis to a representation in the Fourier basis, which is a different orthonormal
basis. For M = 2m the Fourier over the group ZM (numbers {0, . . . ,M − 1}
with addition modulo M) can be represented as a 2m × 2m unitary matrix.
We’ll now show this matrix can be implemented using O(m2) basic matri-
ces. This means that we can transform a quantum system whose register
is in state f to a system whose register is in the state corresponding to the
Fourier transform f̂ of f . This does not mean that we can compute in O(m2)
the Fourier transform over ZM - indeed this is not sufficient time to even
write the output! Nonetheless, this transformation still turns out to be very
useful, and is crucial to Shor’s factoring algorithm in a way analogous to the

Web draft 2006-09-28 18:10

DRAFT

21.10. INTEGER FACTORIZATION USING QUANTUM
COMPUTERS. 487

use of the Hadamard transformation (which is a Fourier transform over the
group {0, 1}n with the operation ⊕) was crucial to Simon’s algorithm.

Fourier transform over ZM . For M = 2m, let ω be a primitive M th root
of unity (e.g., ω = e2πi/M). A function χ : ZM → C is called a character
of ZM if χ(y + z) = χ(y)χ(z) for every y, z ∈ ZM . ZM has M charac-
ters {χx}x∈ZM

where χx(y) = 1√
M

ωxy (the 1√
M

factor is for normalization).
These characters define an orthonormal basis since (denoting by z the com-
plex conjugate of z)

〈χx, χy〉 = 1
M

M−1∑
z=0

ωxzωyz = 1
M

M−1∑
z=0

ω(x−y)z

which is equal to 1 if x = y and to 1
M

1−ω(x−y)M

1−ωx−y = 0 if x 6= y (the latter
equality follows by the formula for the sum of a geometric series and the
fact that ω`M = 1 for every `). The Fourier transform of f : ZM → C is the
representation of f in this basis. For convenience we’ll let f̂(x) denote the
coefficient of χ−x in this representation. Thus f =

∑M−1
x=0 f̂(x)χ−x and so

f̂(x) = 〈f, χ−x〉 = 1√
M

∑M−1
y=0 ωxyf(x). We let FTM (f) denote the vector

(f̂(0), . . . , f̂(M − 1)).
Note that

f̂(x) = 1√
M

∑
y∈ZM ,yeven

f(y)ω−2x(y/2) + ωx 1√
M

∑
y∈ZM ,yodd

f(y)ω2x(y−1)/2

Since ω2 is an M/2th root of unity and ωM/2 = −1 we get that if W is the
M/2 diagonal matrix with diagonal ω0, . . . , ωM/2−1 then

FTM (f)low = FTM/2(feven) + WFTM/2(fodd) (15)

FTM (f)high = FTM/2(feven)−WFTM/2(fodd) (16)

where for an M -dimensional vector v, we denote by veven (resp. vodd) the
M/2-dimensional vector obtained by restricting v to the coordinates whose
indices have least significant bit equal to 0 (resp. 1) and by vlow (resp.
vhigh) the restriction of v to coordinates with most significant bit 0 (resp.
1).

Equations (15) and (16) are the crux of the well known Fast Fourier
Transform (FFT) algorithm that computes the Fourier transform in O(M log M)
(as opposed to the Naive O(M2)) time. We’ll use them for the quantum
Fourier transform algorithm, obtaining the following lemma:

Web draft 2006-09-28 18:10

DRAFT

488
21.10. INTEGER FACTORIZATION USING QUANTUM

COMPUTERS.

Lemma 21.9
There’s an O(m2)-step quantum algorithm that transforms a state f =∑

x∈Zm
f(x) |x〉 into the state f̂ =

∑
x∈Zm

f̂(x) |x〉, where f̂(x) = 1√
M

∑
y∈Zm

ωxyf(x).

Proof: We’ll use the following algorithm:
Quantum Fourier Transform FTM

Initial state: f =
∑

x∈ZM
f(x) |x〉

Final state: f̂ =
∑

x∈ZM
f̂(x) |x〉.

State Operation
f =

∑
x∈ZM

f(x) |x〉
Recursively run FTM/2 on m−1 most
significant bits

(FTM/2feven) |0〉+ (FTM/2fodd) |1〉
If LSB is 1 then compute W on m− 1
most significant bits (see below).

(FTM/2feven) |0〉+ (WFTM/2fodd) |1〉
Apply Hadmard gate H to least sig-
nificant bit.

(FTM/2feven)(|0〉 + |1〉) +
(WWFTM/2fodd)(|0〉 − |1〉) =
(FTM/2feven + FTM/2fodd) |0〉 +
(FTM/2feven −WFTM/2fodd) |1〉

Move LSB to the most significant po-
sition

|0〉(FTM/2feven + FTM/2fodd) +
|1〉(FTM/2feven −WFTM/2fodd) = f̂

The transformation W on m − 1 bits which is |x〉 7→ ωx = ω
∑m−2

i=0 2ixi

(where xi is the ith bit of x) is the composition of W0, . . . ,Wm−2 where Wi

is a one qubit gate mapping |0〉 to |0〉 and |1〉 to ω2i |1〉.
The final state is equal to f̂ by (15) and (16). (We leave verifying this

and the running time to Exercise 6.)
�

21.10.3 The Order-Finding Algorithm.

We’ll now present a quantum algorithm that on input a number A < N ,
finds the order of A modulo N . That is, we’ll find the smallest r such that
Ar = 1 (mod N). Note that using the repeated squaring algorithm, we

Web draft 2006-09-28 18:10

DRAFT

21.10. INTEGER FACTORIZATION USING QUANTUM
COMPUTERS. 489

can compute the map |x〉 |0n 〉 7→ |Ax (mod N)〉 |0n 〉 for some n polynomial
in log N . We choose M = 2m such that m is polynomial in log N and
M > 100N2.
Order Finding Algorithm:

Registers x is m bit register (which we think as a number in ZM) and y
is an n. Initial state of the registers is |0m 〉 |0n 〉.

Step 1 Apply the Fourier transform to the first register to obtain the state
(ignoring normalization factors)

∑
x∈ZM

|x〉) |0n 〉. That is, we obtain
the uniform state in the first register. (Note that we can get essentially
the same result by applying the Hadamard gate to each bit.)

Step 2 Compute the transformation |x〉 |y 〉 7→ |x〉 |y ⊕ (Ax (mod N))〉.
The state will now be

∑
x∈ZM

|x〉 |Ax (mod N)〉.

Step 3 Measure the second register to get a value y0. Let x0 be the smallest
number such that Ax0 = y0 (mod N). Then the state will now be∑dM/r e−1

`=0 |x0 + `r 〉 |y0 〉, where r denotes the order of A.

Step 4 Apply the Fourier transform to the first register. The state will be ∑
x∈Zn

dM/r e−1∑
`=0

ω(x0+`r)x |x〉

 |y0 〉

Step 5 Measure the first register to obtain a number x ∈ ZM .

Step 6 Find the best rational approximation a/b with a, b coprime to the
fraction x

M such that b < 2M . Check that Ab = A - if so then output b.
(We sketch the classical algorithm to find such approximation below.)

Analysis: the case that r|M

We start by analyzing this algorithm in the (rather unrealistic) case that
M = rc for some integer c. In this case we claim that the value x obtained
in Step 5 will be equal to c′c for random c′ ∈ 0, . . . , r. In particular it will
satisfy xr = 0 (mod M). Since with non-negligible probability c′ and r will
be coprime and hence the reduced version of x/M would be c′/r. Indeed, if
x = c′c then (up to some normalization factor) the absolute value for |x〉’s
coefficient after Step 4 is∣∣∣∣∣

c−1∑
`=0

ω(x0+`r)x

∣∣∣∣∣ =
∣∣∣ωx0c′c

∣∣∣ ∣∣∣∣∣
c∑

`=0

ω(rc)c′`

∣∣∣∣∣ = 1` (17)

Web draft 2006-09-28 18:10

DRAFT

490
21.10. INTEGER FACTORIZATION USING QUANTUM

COMPUTERS.

since ωrc = ωM = 1. However, if x 6= 0 (mod c) then since ωr is a cth root
of unity we get that

∑c
`=0]w

r`x = 0 by the formula for sums of geometric
progressions. Thus, such x would be obtained in step 5 with zero probability.

The case that r 6 |M

We’ll now not be able to show that the value x obtained in Step 5 satisfies
xr = 0 (mod M). Indeed, there might not exist such a number. However,
we will show that with Ω(1/ log r) probability, this value will satisfy (1)
0 ≤ xr (mod M) < r/10 and (2) dxr/M e is coprime to r. Thus, we’ll have
that for some c |xr − cM | < r/10, which dividing by rM gives∣∣∣ x

M
− c

r

∣∣∣ < 1
10M

. Since it’s easy to see that for every 0 < α < 1 there’s only one fraction a/b
with a, b coprime and b < N such that |α − a/b| < 1

N2 we’ll get in Step 6
the fraction c/r. We do this by proving the following lemma:

Lemma 21.10
There exist Ω(r/ log r) values x such that:

1. 0 ≤ xr (mod M) < r/10

2. dxr/M e and r are coprime

3. The coefficient of |x〉 in the state of Step 4 is at least Ω(1√
r
).

Proof: The intuition behind the proof is that we expect xr (mod M) to be
distributed roughly uniformly, and that if xr (mod M) is very small, then
as in (17) the coefficient of |x〉 will be relatively large.

For starters, assume that r is coprime to M . Then, the map x 7→ rx
(mod M) is a permutation of Z∗

M and we have a set of at least r/(20 log r)
x’s such that xr (mod M) is a number p between 0 and r/10 that is coprime
to r. For every such x we have that xr + d r/M eM = p which means that
d r/M e can’t have a nontrivial shared factor with r, as otherwise this factor
would be shared with p as well. The case that gcd(r, M) = d for d > 1 is
handled similarly (Exercise 7).

We now prove that if 0 ≤ xr (mod M) < r/10 then the coefficient of |x〉
in the state of Step 4 is at least Ω(1√

r
). For any such x, the absolute value

of |x〉’s coefficient is up to the normalization equal to:∣∣∣∣∣∣
dM/r e−1∑

`=0

ω`rx

∣∣∣∣∣∣
Web draft 2006-09-28 18:10

DRAFT

21.10. INTEGER FACTORIZATION USING QUANTUM
COMPUTERS. 491

Let β = ωrx. If β = 1 then this sum is equal to dM/r e and otherwise
it’s equal to

∣∣∣1−βdM/r e

1−β

∣∣∣. This is equal to sin(dM/r eθ)
sin θ , where θ = rx (mod M)

M

is the angle such that β = eiθ (see Figure ??). Since 0 < θ < r
10M ,

we get that dM/r eθ ≤ 1/9 and in this range up to a constant we have
that this proportion is again equal to dM/r e. Since the measurement of
Step 3 restricted the space an almost uniform distribution over about M/x
of the x’s and the Fourier transform adds another 1√

M
normalization factor,

it can be shown that the normalization coefficient at this step is at least
1
2

√
r
M

1√
M

=
√

rM and so we’re done. �

Web draft 2006-09-28 18:10

DRAFT

492
21.10. INTEGER FACTORIZATION USING QUANTUM

COMPUTERS.

Web draft 2006-09-28 18:10

	Quantum Computation
	Quantum physics
	Quantum superpositions
	Classical computation using reversible gates
	Quantum gates
	Universal quantum gates

	BQP
	Factoring integers using a quantum computer
	Phase estimation: the first few bits
	Better phase estimation using structure of U
	Uniform superpositions of eigenvectors of U
	Uniform superposition suffices

	Quantum Computing: a Tour de horizon
	Exercises
	Chapter notes and history
	Quantum Notations
	Simon's Algorithm
	Integer factorization using quantum computers.
	Reduction to Order Finding
	Quantum Fourier Transform over ZM.
	The Order-Finding Algorithm.
	Analysis: the case that r|M
	The case that r|M

