Appendix B

On the Quest for Lower
Bounds

Alas, Philosophy, Medicine, Law, and unfortunately also Theol-
ogy, have I studied in detail, and still remained a fool, not a bit
wiser than before. Magister and even Doctor am I called, and
for a decade am I sick and tired of pulling my pupils by the nose
and understanding that we can know nothing.!

J.W. Goethe, Faust, Lines 354-364

Summary: In this appendix we survey some attempts at proving lower
bounds on the complexity of natural computational problems. In the
first part, devoted to Circuit Complexity, we describe lower bounds for
the size of (restricted) circuits that solve natural computational prob-
lems. This can be viewed as a program whose long-term goal is proving
that P # AP. In the second part, devoted to Proof Complexity, we de-
scribe lower bounds on the length of (restricted) propositional proofs of
natural tautologies. This can be viewed as a program whose long-term
goal is proving that NP # coNP.

The current activity in these areas is aimed towards developing proof
techniques that may be applied to the resolution of the “big problems”
(such as P versus NP), but the current achievements (though very im-
pressive) seem far from reaching this goal. Current crown-jewel achieve-
ments in these areas take the form of tight (or strong) lower bounds on
the complexity of computing (resp., proving) “relatively simple” func-
tions (resp., claims) in restricted models of computation (resp., proof
systems).

1This quote reflects a common sentiment, not shared by the author of the current book.

469

470 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

B.1 Preliminaries

Circuit complexity refers to a non-uniform model of computation; specifically the
model of Boolean circuits, focusing on the size of such circuits, while ignoring the
complexity of constructing adequate circuits. Similarly, proof complexity refers
to proofs of tautologies, focusing on the length of such proofs, while ignoring the
complexity of generating such proofs. Both circuits and proofs are finite objects
that are defined on top of the notion of a directed acyclic graph (dag), which we
review next.

A dag G(V, E) consists of a finite set of vertices V, and a set of ordered pairs
called directed edges E CV xV, in which there are no directed cycles. The vertices
with no incoming edges are called the inputs of the dag G, and the vertices with
no outgoing edges are called the outputs. We will restrict ourselves to dags in
which the number of incoming edges to every vertex is at most 2. If the number
of outgoing edges from every node is at most 1, the dag is called a tree. Finally,
we assume that every vertex can be reached from some input via a directed path.
The size of a dag will be its number of edges.

To make a dag into a computational device (or a proof), each non-input vertex
will be marked by a rule, converting values in its predecessors to values at that
vertex. It is easy to see that the vertices of every dag can be linearly ordered, such
that predecessors of every vertex (if any) appear before it in the ordering. Thus, if
the input vertices are labeled with some values, we can label the remaining vertices
(in that order), one at a time, till all vertices (and in particular all outputs) are
labeled.

For computation devices, the non-input vertices will be marked by functions
(called gates), which make the dag a circuit. If we label the input vertices by
specific values from some domain, the outputs will be determined by them, and
the circuit will naturally define a function (from input values to output values).
For more details see Section 1.2.4.

For proofs, the non-input vertices will be marked by sound deduction (or infer-
ence) rules, which make the dag a proof. If we label the inputs by formulae that
are axioms in a given proof system, the output again will be determined by them,
and will yield the tautology proved by this proof.

We note that both settings fit the paradigm of simplicity shared by all com-
putational models discussed in Section 1.2; the rules are simple by definition —
they are applied to at most 2 previous values. The main difference is that this
model is finite — each dag can compute only functions/proofs with a fixed input
length. To allow all input lengths, one must consider infinite sequences of dags,
one for each length, thus obtaining a model of computing devices having infinite
description (when referring to all input lengths). This significantly extends the
power of the computation model beyond that of the notion of algorithm (discussed
in Section 1.2.3). However, as we are interested in lower bounds here, this is legit-
imate, and one can hope that the finiteness of the model will potentially allow for
combinatorial techniques to analyze its power and limitations. Furthermore, these
models allow for the introduction (and study) of meaningful restricted classes of
computations.

B.2. BOOLEAN CIRCUIT COMPLEXITY 471

B.2 Boolean Circuit Complexity

In Boolean circuits all inputs, outputs, and values at intermediate nodes of the
dag are bits. The set of allowed gates is naturally taken to be a complete basis —
one that allows the circuit to compute all Boolean functions. The specific choice
of a complete basis hardly effects the study of circuit complexity. A typical choice
is the set {A,V,—} of (respectively) conjunction, disjunction (each on 2 bits) and
negation (on 1 bit).

For a finite function f, we denote by S(f) the size of the smallest Boolean circuit
computing f. We will be interested in sequences of functions {f,}, where f, is a
function on n input bits, and will study (their size complexity) S(f,) asymptotically

as a function of n. With some abuse of notation, for f(z) = flz|(z), we let S(f)
denote the integer function that assigns to n the value S(f,). Thus, we refer to
the following definition.

Definition B.1 (circuit complexity): Let f : {0,1}* — {0,1}* and {f,} be such
that f(x) = fjz(z) for every x. The complexity of a function f (resp., {fn}),
denoted S(f) (resp., denoted n — S(fn)), is a function of n that represents the
size of the smallest Boolean circuit computing f,.

We note that different circuits (e.g., having a different number of inputs) are
used for each f,. Still there may be a simple description of this sequence of circuits,
say, an algorithm that on input n produces a circuit computing f,. In case such
an algorithm exists and works in time polynomial in the size of its output, we
say that the corresponding sequence of circuits is uniform. Note that if f has a
uniform sequence of polynomial-size circuits then f € P. On the other hand, it
can be shown that any f € P has (a uniform sequence of) polynomial-size circuits.
Consequently, a super-polynomial size lower-bound on any function in AP would
imply that P # NP.

Definition B.1 makes no reference to “uniformity” and indeed the sequence
of smallest circuits computing {f,} may be highly “nonuniform”. Indeed, non-
uniformity makes the circuit model stronger than Turing machines (or, equiva-
lently, than the model of uniform circuits): there exist functions f that cannot
be computed by Turing machines (regardless of their running time), but do have
linear-size circuits. So isn’t proving circuit lower-bounds a much harder task than
we need to resolve the P vs. NP question?

The answer is that there is a strong sentiment that the extra power provided
by non-uniformity is irrelevant to the P vs. NP question; that is, it is conjectured
that NP-complete sets do not have polynomial-size circuits. This conjecture is
supported by the fact that its failure will yield an unexpected collapse in the
complexity world of standard computations (see Section 3.2). Furthermore, the
hope is that abstracting away the (supposedly irrelevant) uniformity condition
will allow for combinatorial techniques to analyze the power and limitations of
polynomial-size circuits (w.r.t NP-sets). This hope has materialized in the study
of restricted classes of circuits (see Sections B.2.2 and B.2.3). Indeed, another
advantage of the circuit model is that it offers a framework for naturally restricted
models of computation.

472 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

We also mention that Boolean circuits are a natural computational model, cor-
responding to “hardware complexity” (which was indeed the original motivation
for their introduction by Shannon [194]), and so their study is of independent in-
terest. Moreover, some of the techniques for analyzing Boolean functions found
applications elsewhere (e.g., in computational learning theory, combinatorics and
game theory).

B.2.1 Basic Results and Questions

We have already mentioned several basic facts about Boolean circuits, in particular
the fact that they can efficiently simulate Turing Machines. Another basic fact is
that most Boolean functions require exponential size circuits, which is due to the
gap between the number of functions and the number of small circuits.

Thus, hard functions (i.e., function that require large circuits and thus have
no efficient algorithms) do exist, to say the least. However, the aforementioned
hardness result is proved via a counting argument, and so provides no way of
pointing to one hard function. Using more conventional language, we cannot prove
analogous hardness results for any ezplicit function f (e.g., for an NP-complete
function like SAT or even for functions in EXP). The situation is even worse:
no nontrivial lower-bound is known for any explicit function. Note that for any
function f on m bits (which depends on all its inputs), we trivially must have
S(f) > n, just to read the inputs. One major open problem of circuit complexity
is beating this trivial bound.

Open Problem B.2 Find an explicit Boolean function f (or even a length-preserving
function f) for which S(f) is not O(n).

A particularly basic special case of this problem, is the question whether addi-
tion is easier to perform than multiplication. Let ADD:{0,1}"x{0,1}"—{0,1}"*!
and MULT:{0,1}"x{0,1}" —{0,1}?", denote the addition and multiplication func-
tions, respectively, applied to a pair of integers (presented in binary). For addition
we have an optimal upper bound; that is, S(ADD) = O(n). For multiplication, the
standard (elementary school) quadratic-time algorithm can be greatly improved
(via Discrete Fourier Transforms) to slightly super-linear, yielding S(MULT) =
O(n - (logn)?). Now, the question is whether or not there exist linear-size circuits
for multiplication (i.e., is S(MULT) = O(n))?

Unable to report on any nontrivial lower-bound (for an explicit function), we
turn to restricted models. There has been some remarkable successes in developing
techniques for proving strong lower-bounds for natural restricted classes of circuits.
We describe the most important ones, and refer the reader to [43, 225] for further
detail.

General Boolean circuits, as described above, can compute every function and
can do it at least as efficiently as general (uniform) algorithms. Restricted circuits
may be only able to compute a subclass of all functions (e.g., monotone functions).
The restriction makes sense when the related classes of functions and the com-
putations represented by the restricted circuits are natural (from a conceptual or
practical viewpoint). The models discussed below satisfy this condition.

B.2. BOOLEAN CIRCUIT COMPLEXITY 473

B.2.2 Monotone Circuits

An extremely natural restriction comes by forbidding negation from the set of gates,
namely allowing only {A,V}. The resulting circuits are called monotone circuits
and it is easy to see that they can compute every function f:{0,1}" — {0,1}
that is monotone with respect to the standard partial order on n-bit strings (i.e.,
x < y iff for every bit position ¢ we have z; < y;). A very natural question in
this context is whether or not non-monotone operations (in the circuit) help in
computing monotone functions?

Before turning to this question, we note that it is as easy to see that most
monotone functions require exponential size circuits (let alone monotone ones).?
Still, proving a super-polynomial lower-bound on the monotone circuit complexity
of an explicit monotone function was open for over 40 years, till the invention of
the so-called approzimation method (by Razborov [180]).

Let CLIQUE be the function that, given a graph on n vertices (by its adjacency
matrix), outputs 1 if and only if the graph contains a complete subgraph of size
(say) +/n (i.e.,, all pairs of vertices in some y/n subset are connected by edges).
This function is clearly monotone. Moreover, it is known to be NP-complete.

Theorem B.3 ([180], improved in [7]): There are no polynomial-size monotone
circuits for CLIQUE.

We note that the lower-bounds are sub-exponential in the number of vertices (i.e.,
size exp(Q(n'/®)) for n vertices), and that similar lower-bounds are known for func-
tions in P. Thus, there exists an erxponential separation between monotone circuit
complexity and non-monotone circuit complexity, where this separation refers (of
course) to the computation of monotone functions.

B.2.3 Bounded-Depth Circuits

The next restriction is structural: we allow all gates, but limit the depth of the
circuit. The depth of a dag is simply the length of the longest directed path in
it. So in a sense, depth captures the parallel time to compute the function: if
a circuit has depth d, then the function can be evaluated by enough processors
in d phases (where in each phase many gates are evaluated at once). Indeed,
parallel time is a natural and important computational resource, referring to the
following basic question: can one speed up computation by using several computers
in parallel? Determining which computational tasks can be “parallelized” when
many processors are available and which are “inherently sequential” is clearly a
fundamental question.

We will restrict d to be a constant, which still is interesting not only as a measure
of parallel time but also due to the relation of this model to expressibility in first
order logic as well as to complexity classes above NP called the Polynomial-time

2A key observation is that it suffices to consider the set of n-bit monotone functions that
evaluate to 1 (resp., to 0) on each string = z1---x, satisfying E:;l z; > |[n/2]| (resp.,

n . . . n .
Zi:l z; < [n/2]). Note that each such function is specified by (Ln/zj) bits.

474 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

Hierarchy (see Section 3.2). In the current setting (of constant-depth circuits), we
allow unbounded fan-in (i.e., A-gates and V-gates taking any number of incoming
edges), as otherwise each output bit can depend only on a constant number of
input bits.

Let PAR (for parity) denote the sum modulo two of the input bits, and MAJ (for
majority) be 1 if and only if there are more 1’s than 0’s among the input bits. The
invention of the random restriction method (by Furst, Saxe, and Sipser [79]) led to
the following basic result.

Theorem B.4 ([79], improved in [229, 111]): For all constant d, the functions PAR
and MAJ have no polynomial size circuit of depth d.

The aforementioned improvement (of Hastad [111], following Yao [111]) gives a
relatively tight lower-bound of exp(€2(n'/(?=1))) on the size of n-input PAR circuits
of depth d.

Interestingly, MAJ remains hard (for constant-depth polynomial-size circuits)
even if the circuits are also allowed (unbounded fan-in) PAR-gates (this result is
based on yet another proof technique: approzimation by polynomials [201, 181]).
However, the “converse” does not hold (i.e., constant-depth polynomial-size cir-
cuits with MAJ-gates can compute PAR), and in general the class of constant-depth
polynomial-size circuits with MAJ-gates (denoted 7C°) seems quite powerful. In
particular, nobody has managed to prove that there are functions in AP that
cannot be computed by such circuits, even if the depth is restricted to 3.

B.2.4 Formula Size

The final restriction is again structural — we require the dag to be a tree. Intuitively,
this forbids the computation from reusing a previously computed partial result (and
if it is needed again, it has to be recomputed). Thus, the resulting Boolean circuits
are simply Boolean formulae. (Indeed, we are back to the basic model allowing
negation (—), and A,V gates of fan-in 2.)

Formulae are natural not only for their prevalent mathematical use, but also
because their size can be related to the depth of general circuits and to the memory
requirements of Turing machines (i.e., their space complexity). One of the oldest
results on Circuit Complexity, is that PAR and MAJ have nontrivial lower-bounds
in this model. The proof follows a simple combinatorial (or information theoretic)
argument.

Theorem B.5 [138]: Boolean formulae for n-bit PAR and MAJ require Q(n?) size.

This should be contrasted with the linear-size circuits that exist for both functions.
We comment that S(PAR) = O(n) is trivial, but S(MAJ) = O(n) is not. Encouraged
by Theorem B.5, one may ask whether we can hope to provide super-polynomial
lower-bounds on the formula size of explicit functions. This is indeed a famous
open problem.

Open Problem B.6 Find an explicit Boolean function f for which S(f) is super-
polynomial.

B.3. ARITHMETIC CIRCUITS 475

One of the cleanest methods suggested is the communication complexity method
(of Karchmer and Wigderson [135]). This method asserts that the depth of a
formula for a Boolean function f equals the communication complexity in the
following two party game, Gy. The first party is given z € f~1(1) n {0,1}", the
second party is given y € f71(0) N {0,1}", and their goal is to find a bit location
on which z and y disagree (i.e., ¢ such that z; # y;, which clearly exists). To that
end, the party exchange messages, according to a predetermined protocol, and the
question is what is the communication complexity (in terms of total number of bits
exchanged on the worst-case input pair) of the best such protocol.

Note that proving a super-logarithmic lower-bound on the communication com-
plexity of the aforementioned game Gy will establish a super-polynomial lower-
bound on the size of formulae computing f (because formula depth can be made
logarithmic in their size). We stress that a lower-bound of purely information the-
oretic nature (no computational restriction were paced on the parties in the game)
implies a computational lower-bound!

We mention that the communication complexity method has a monotone ver-
sion in which the depth of monotone circuits is related to the communication
complexity of protocols that are required to find an i such that x; > y; (rather
than any i such that z; # y;).> In fact, the monotone version is better known than
the general one, due to its success in establishing linear lower-bounds on monotone
depth of natural problems such as perfect matching (by Raz and Wigderson [179]).

B.3 Arithmetic Circuits

We now leave the Boolean rind, and discuss circuits over general fields. Fix any
field F. The gates of the dag will now be the standard + and x operations in the
field. This requires two immediate clarifications. First, to allow using constants
of the field, one adds a special input vertex whose value is the constant ‘1’ of the
field. Moreover, multiplication by any field element (e.g., —1) is free. Second, one
may wonder about division. However, we will be mainly interested in computing
polynomials, and for computing polynomials (over infinite fields) division can be
efficiently emulated by the other operations.

Now the inputs of the dag will hold elements of the field F', and hence so will
all computed values at vertices. Thus an arithmetic circuit computes a polyno-
mial map p : F* — F™, and every such polynomial map is computed by some
circuit. We denote by Sp(p) the size of a smallest circuit computing p (when no
subscript is given, F' = Q the field of rational numbers). As usual, we’ll be in-
terested in sequences of polynomials, one for every input size, and will study size
asymptotically.

It is easy to see that over any fized finite field, arithmetic circuits can simulate
Boolean circuits on Boolean inputs with only constant factor loss in size. Thus

3Note that since f is monotone, f(z) = 1 and f(y) = 0 implies the existence of an i such that
z; =1 and y; = 0.

476 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

the study of arithmetic circuits focuses more on infinite fields, where lower bounds
may be easier to obtain.

As in the Boolean case, the existence of hard functions is easy to establish (via
dimension considerations, rather than counting argument), and we will be inter-
ested in explicit (families of) polynomials. However, the notion of explicitness is
more delicate here (e.g., allowing polynomials with algebraically independent coeffi-
cients would yield strong lower-bounds, which are of no interest whatsoever). Very
roughly speaking, polynomials are called explicit if the mapping from monomials
to (a finite description of) their coefficients has an efficient program.

An important parameter, which is absent in the Boolean model, is the degree of
the polynomial(s) computed. It is obvious, for example, that a degree d polynomial
(even in one variable, i.e., n = 1) requires size at least logd. We briefly consider the
univariate case (where d is the only measure of input size), which already contains
striking and important problems. Then we move to the general multivariate case,
in which as usual n, the number of inputs will be the main parameter (where we
shall assume that d < n). We refer the reader to [82, 207] for further detail.

B.3.1 Univariate Polynomials

How tight is the log d lower-bounds for the size of an arithmetic circuit computing
a degree d polynomial? A simple dimension argument shows that for most degree
d polynomials p, it holds that S(p) = Q(d). However, we know of no explicit one:

Open Problem B.7 Find an explicit polynomial p of degree d, such that S(p) is
not O(log d).

To illustrate the question, we consider the following two concrete polynomials
pa(z) = z¢, and q4(z) = (z + 1)(z + 2)---(x + d). Clearly, S(ps) < 2logd (via
repeated squaring), so the trivial lower-bound is essentially tight. On the other
hand, it is a major open problem to determine S(q4), and the conjecture is that
S(gq) is not polynomial in logd. To realize the importance of this question, we
state the following proposition:

Proposition B.8 If S(qs) = poly(logd), then the integer factorization problem
can be solved by polynomial-size circuits.

Recall that it is widely believed that the integer factorization problem is intractable
(and, in particular, does not have polynomial-size circuits). Proposition B.8 follows
by observing that g4(t) = ((t + d)!)/(¢!) (mod N) and that using a circuit for
gqa we can efficiently obtain the value of ((t + d)!)/(¢!) mod N (by emulating the
computation of the former circuit modulo N). Furthermore, the value of (K!) mod
N can be obtained from a product of some of the polynomials ¢,; evaluated at
adequate points. Next, observe that (K!) mod N and N are relatively prime if and
only if all prime factors of N are bigger than K. Thus, given a composite IV, we
can find a factor of N by performing a binary search for a suitable K.

B.3. ARITHMETIC CIRCUITS 477

B.3.2 Multivariate Polynomials

We are now back to polynomials with n variables. To make n our only input size
parameter, it is convenient to restrict ourselves to polynomials whose total degree
is at most n.

Once again, almost every polynomial p in m variables requires size S(p) >
exp(n/2), and we seek explicit polynomial (families) that are hard. Unlike in the
Boolean world, here there are slightly nontrivial lower-bounds (via elementary tools
from algebraic geometry).

Theorem B.9 [24]: S(z! + 28 +--- +2") = Q(nlogn).

The same techniques extend to prove a similar lower-bound for other natural poly-
nomials such as the symmetric polynomials and the determinant. Establishing a
stronger lower-bound for any explicit polynomial is a major open problem. Another
open problem is obtaining a super-linear lower-bound for a polynomial map of con-
stant (even 1) total degree. Outstanding candidates for the latter open problem
are the linear maps computing the Discrete Fourier Transform over the Complex
numbers, or the Walsh transform over the Rationals (for both O(nlogn) algorithms
are known, but no super-linear lower-bounds are known).

We now focus on specific polynomials of central importance. The most natural
and well studied candidate for the last open problem is the matrix multiplication
function MM: let A, B be two m xm matrices of variables over F', and define MM(A, B)
to be the n = m? entries of the matrix A x B. Thus, MM is a set of n explicit bilinear
forms over the 2n input variables. It is known that Sgp(2)(MM) > 3n (cf., [198]).
On the other hand, the obvious m? = n3/? algorithm can be improved.

Theorem B.10 [59]: For every field F, Sp(MM) = O(n'1?).

So what is the complexity of MM (even if one counts only multiplication gates)? Is
it linear or almost-linear or is it the case that S(MM) > n® for some « > 17 This is
indeed a famous open problem.

We next consider the determinant and permanent polynomials (DET and PER,
resp.) over the n = m? variables representing an m x m matrix. While DET plays
a major role in classical mathematics, PER is somewhat esoteric in that context
(though it appears in Statistical Mechanics and Quantum Mechanics). In the con-
text of complexity theory both polynomials are of great importance, because they
capture natural complexity classes. The function DET has relatively low complexity
(and is closely related to the class of polynomials having polynomial-sized arith-
metic formulae), whereas PER seems to have high complexity (and it is complete
for the counting class #P (see §6.2.1)). Thus, it is conjectured that PER is not
polynomial-time reducible to DET. One restricted type of reduction that makes
sense in this algebraic context is a reduction by projection.

Definition B.11 (projections): Let p, : F* — F* and qn : FN — F* be poly-
nomial maps and xy,...,x, be variables over F. We say that there is a projection
from p to g over F, if there exists a function m : [N] — {x1,...,2,} U F such that

p(x1, ey n) = q(w(1), ..., 7(N)).

478 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

Clearly, if p, x gy then Sp(p,) < Sp(gn). Let DET,, and PER,, denote the
functions DET and PER restricted to m-by-m matrices. It is known that PER,, o
DET3m, but to yield a polynomial-time reduction one would need a projection of

PER,,, t0 DETpo1y(m)- It is conjectured that no such projection exists.

B.4 Proof Complexity

The concept of proof is what distinguishes the study of Mathematics from all other
fields of human inquiry. Mathematicians have gathered millennia of experience to
attribute such adjectives to proofs as “insightful, original, deep” and most notably,
“difficult”. Can one quantify, mathematically, the difficulty of proving various
theorems? This is exactly the task undertaken in Proof Complexity. It seeks to
classify theorems according to the difficulty of proving them, much like Circuit
Complexity seeks to classify functions according to the difficulty of computing
them. In proofs, just like in computation, there will be a number of models, called
proof systems capturing the power of reasoning allowed to the prover.

We will consider only propositional proof systems, and so our theorems will be
tautologies. We will see soon why the complexity of proving tautologies is highly
nontrivial and amply motivated.

The formal definition of a proof system spells out what we take for granted: the
efficiency of the verification procedure. In the following definition the efficiency of
the verification procedure refers to its running-time measured in terms of the total
length of the alleged theorem and proof. In contrast, in Chapter 9, we consider the
running-time as a function of the length of the alleged theorem. (Both approaches
were mentioned in Section 2.1, where the two approaches coincide because in Sec-
tion 2.1 we mandated proofs of length polynomial in the alleged theorem.)

Definition B.12 [58]: A (propositional) proof system is a polynomial-time Turing
machine M such that a formula T is a tautology of and only if exists a string =,
called a proof, such that M(w,T) = 1.

In agreement with standard formalisms (see below), the proof is viewed as coming
before the theorem. Note that Definition B.12 guarantees the completeness and
soundness of the proof system, as well as verification efficiency (relative to the total
length of the alleged proof-theorem pair). Definition B.12 judiciously ignores the
length of the proof = (of the tautology T'), viewing the length of the proof as a
measure of the complexity of the tautology 7" with respect to the proof system M.

For each tautology T', let £ (T) denote the length of the shortest proof of T' in
M (i.e., the length of the shortest string 7 such that M accepts (7,7")). That is,
L captures the proof complexity of various tautologies with respect to the proof
system M.

Abusing notation, we let Ly (n) denotes the maximum L/ (T") over all tau-
tologies T' of length n. The following simple theorem provides a basic connection
between proof complexity (with respect to any propositional proof system) and
computational complexity (i.e., the NP-vs-coNP Question).

B.4. PROOF COMPLEXITY 479

Theorem B.13 [58]: There exists a propositional proof system M such that Ly
is polynomial if and only if NP = coN'P.

In particular, a propositional proof system M such that £, is polynomial coincides
with a NP-proof system (as in Definition 2.5) for the set of propositional tautologies,
which is a coNP-complete set.

The long-term goal of Proof Complexity is to establish super-polynomial lower-
bounds on the length of proofs in any propositional proof system (and thus establish
NP £ coN'P). Tt is natural to start this formidable project by considering first sim-
ple (and thus weaker) proof systems, and then move on to more and more complex
ones. Moreover, various natural proof systems, capturing basic (restricted) types
and “primitives” of reasoning as well as natural tautologies, suggest themselves as
objects for this study. In the rest of this section we focus on such restricted proof
systems. Different branches of Mathematics such as logic, algebra and geometry
provide different such systems, often implicitly. A typical system would have a
set of axioms, and a set of deduction rules. A proof would proceed to derive the
desired tautology in a sequence of steps, each producing a formula (often called a
line of the proof), which is either an axiom, or follows from previous formulae via
one of the deduction rules.

Regarding these proof systems, we make two observations. First, proofs in
these systems can be easily verified by an algorithm (and thus they fit the general
framework of Definition B.12). Second, these proof systems perfectly fit our dag
model. The inputs will be labeled by the axioms, the internal vertices by deduction
rules, which in turn “infer” a formula for that vertex from the formulae at the
vertices pointing to it.*

For various proof systems II, we turn to study the proof length L£y(T") of tau-
tologies T in proof system II. The first observation, revealing a major difference
between proof complexity and circuit complexity, is that the trivial counting ar-
gument fails. The reason is that, while the number of functions on n bits is 22",
there are at most 2™ tautologies of this length. Thus, in proof complexity, even the
existence of a hard tautology, not necessarily an explicit one, would be of interest
(and, in particular, if established for all propositional proof systems then it would
yield NP # coN'P). (Note that here we refer to hard instances of of a problem
and not to hard problems.) Anyhow, as we shall see, most known lower-bounds (in
restricted proof systems) apply to very natural (let alone explicit) tautologies.

Conventions: There is an equivalent and somewhat more convenient view of
(simple) proof systems, namely as (simple) refutation systems. First, recalling
that 3SAT is NP-complete, note that every (negation of a) tautology can be written
as a conjunction of clauses, with each clause being a disjunction of only 3 literals
(variables or their negation). Now, if we take these clauses as axioms, and derive
(using the rules of the system) a contradiction (e.g., the negation of an axiom, or
better yet the empty clause), then we have proved the tautology (since we have

4General proof systems as in Definition B.12 can also be adapted to this formalism, by con-
sidering a deduction rule that corresponds to a single step of the machine M. However, the
deduction rules considered below are even simpler, and more importantly they are natural.

480 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

proved that its negation yields a contradiction). Proof complexity often takes the
refutation viewpoint, and often exchanges “tautology” with its negation (“contra-
diction”).

The rest of this section is divided to three parts, referring to logical, algebraic
and geometric proof systems. We will briefly describe important representative
and basic results in each of these domains, and refer the reader to [25] for further
detail (and, in particular, to adequate references).

B.4.1 Logical Proof Systems

The proof systems in this section will all have lines that are Boolean formulae, and
the differences will be in the structural limits imposed on these formulae.

The most basic proof system, called Frege system, puts no restriction on the
formulae manipulated by the proof. It has one derivation rule, called the cut rule:
AV C,BV -C F AV B (adding any other sound rule, like modus ponens, has
little effect on the length of proofs in this system). Frege systems are basic in the
sense that they (in several variants) are the most common in Logic, and in that
polynomial length proofs in these systems naturally corresponds to “polynomial-
time reasoning” about feasible objects.

The major open problem in proof complexity is to find any tautology (as usual,
we mean a family of tautologies) that has no polynomial-long proof in the Frege
system.

Since lower-bounds for Frege are hard, we turn to subsystems of Frege which
are interesting and natural. The most widely studied system is Resolution, whose
importance stems from its use by most propositional (as well as first order) auto-
mated theorem provers. The formulae allowed in Resolution refutations are simply
clauses (disjunctions), and so the derivation cut rule simplifies to the “resolution
rule”: Avz,BV -z F AV B, for clauses A, B and variable x.

An example of a tautology that is easy for Frege and hard for Resolution, is the
pigeonhole principle, PHP" | expressing the fact that there is no one-to-one mapping
of m pigeons to n < m holes.

Theorem B.14 L cqe(PHPIT!) = nPM put LResolution (PHPT L) = 28(n)

B.4.2 Algebraic Proof Systems

Just as a natural contradiction in the Boolean setting is an unsatisfiable collection
of clauses, a natural contradiction in the algebraic setting is a system of polyno-
mials without a common root. Moreover, CNF formulae can be easily converted
to a system of polynomials, one per clause, over any field. One often adds the
polynomials z? — z; which ensure Boolean values.

A natural proof system (related to Hilbert’s Nullstellensatz, and to compu-
tations of Grobner bases in symbolic algebra programs) is Polynomial Calculus,
abbreviated PC. The lines in this system are polynomials (represented explicitly
by all coefficients), and it has two deduction rules: For any two polynomials g, h,
the rule g, h + g+ h, and for any polynomial g and variable z;, the rule g, z; F x;g.

B.4. PROOF COMPLEXITY 481

Strong length lower-bounds (obtained from degree lower-bounds) are known for
this system. For example, encoding the pigeonhole principle as a contradicting set
of constant degree polynomials, we have

Theorem B.15 For every n and every m > n, Lpc(PHP) > 2712 pver every
field.

B.4.3 Geometric Proof Systems

Yet another natural way to represent contradictions is by a set of regions in space
that have empty intersection. Again, we care mainly about discrete (say, Boolean)
domains, and a wide source of interesting contradictions are Integer Programs from
Combinatorial Optimization. Here, the constraints are (affine) linear inequalities
with integer coefficients (so the regions are subsets of the Boolean cube carved out
by half-spaces). The most basic system is called Cutting Planes (CP). Its lines are
linear inequalities with integer coefficients. Its deduction rules are (the obvious)
addition of inequalities, and the (less obvious) division of the coefficients by a
constant (and rounding, taking advantage of the integrality of the solution space).

While PHP]? is easy in this system, exponential lower-bounds are known for
other tautologies. We mention that they are obtained from the monotone circuit
lower bounds of Section B.2.2.

482 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS

