Chapter 2

Complexity Measures

Having established in Chapter 1 how and what a Turing machine computes, we now turn to the
definition of how efficiently it computes.

2.1. Definitions

The first two definitions establish the amount of time and space used by a particular Turing machine
on a particular input.

Definition 2.1: An alternating Turing machine M on input z runs in time at most t if and
only if there is an accepting subtree of M on z whose height is at most ¢.

Definition 2.2: An alternating Turing machine M on input z runs in space at most t if and
only if there is an accepting subtree of M on x each of whose nodes is labeled by a configuration
of length at most ¢.

The next definition specifies the amount of time or space used by a particular Turing machine
on its worst case inputs.

Definition 2.3: An alternating Turing machine M runs in time (space) T'(n) if and only if,
for every z € L(M), M on input z runs in time (respectively, space) at most T'(|z|).

Notice that this definition puts no bound on the time or space used by M on any z not accepted
by M.

Definition 2.4: DTIME(T(n)) = {L | there is a multitape deterministic Turing machine that
accepts L and runs in time 7'(n)}.

Definition 2.5: DSPACE(T'(n)) = {L | there is a multitape deterministic Turing machine that
accepts L and runs in space T'(n)}.

Definition 2.6: NTIME(T(n)) = {L | there is a multitape nondeterministic Turing machine
that accepts L and runs in time 7'(n)}.

Definition 2.7: NSPACE(T'(n)) = {L | there is a multitape nondeterministic Turing machine
that accepts L and runs in space T'(n)}.

Definition 2.8: ATIME(T(n)) = {L | there is a multitape alternating Turing machine that
accepts L and runs in time 7'(n)}.

Definition 2.9: ASPACE(T(n)) = {L | there is a multitape alternating Turing machine that
accepts L and runs in space T'(n)}.

Convention 2.10: Throughout this text, n will refer to the length of the input string.

2.2. Review of Order Notation

Let R be the set of real numbers, and f,g : R — R be two functions. The following definitions
provide a convenient notation for comparing the rates of growth of f and g. (See Knuth [25] for
more discussion.)

e f(n) = O(g(n)) if and only if (3c)(3no)(Vn = no) |f(n)| < cg(n).
e f(n)=Q(g(n)) if and only if (3c)(Ing)(Vn > ng) f(n) > cg(n).
e f(n) =0O(g(n)) if and only if (Fc)(3c')(Ing)(Vn > ng) cg(n) < f(n) < dg(n).
On:onianoniimM:
) = olg(m) it and only it iy 7 .
° n:wnianoniimM:oo
Fn) = wlglo) if and only i Jim %)

2.3. Sublinear Space Bounds

The problem with the definition of space as given in Definition 2.2 is that there are no machines
with sublinear (i.e., o(n)) space bounds: the entire input, whose length is n, is included in the initial
configuration, and hence in the space bound. In order to extend these definitions to sublinear space
bounds, we will assume the following modifications from now on, unless specified otherwise:

Convention 2.11:

1. There will be a separate input tape of length n plus two endmarkers. This tape is read-only.

2. Configurations contain the position A of the input tape head in binary, but not the contents of
the input tape. Therefore, a configuration of a machine with an input tape and k additional
worktapes looks like (h, u1qui, uaqua, ..., upqug).

3. Since the input z is no longer part of the configuration, the notation P I—MQ will be replaced

by P, Q

4. The definition of space will not include the length of the input tape, nor the length of the
input head position h.

Example 2.12: L = {ww | w € {0,1}*} can be accepted by a deterministic Turing machine
in space O(logn). This can be accomplished as follows. First M uses a counter to calculate the
length n of the input. This takes O(logn) space on a worktape. If n is odd, M rejects the input.
If n is even, M starts at the first input symbol, storing it in the finite control, and uses a second
counter to move the input head n/2 cells to the right. M rejects if this is not the same symbol as
in the finite control. Otherwise M moves the input head left n/2 — 1 cells and repeats this check
for the second input symbol. M performs this check for each symbol until the input head moves
off the right end of the input, at which point M accepts. Each counter contains an index between
1 and n, so M uses space O(logn).

2.4. Sublinear Time Bounds

The extension to sublinear space bounds suggests doing the same for time bounds. One might argue
that any interesting Turing machine cannot have a sublinear time bound, as it takes at least n steps
just to read the input. However, this argument fails for nondeterministic or alternating Turing
machines, provided they are given random access to the input tape rather than sequential access.
Consider, for instance, the language that consists of all strings that contain a 1. A nondeterministic
machine could guess and record the position of the 1 in time O(logn), and use its supposed random
access to the input to verify that there is a 1 in that position. This idea of random access or indexing
is formalized in the following definition.

Definition 2.13: An indexing Turing machine has an input tape with no head, and a special
“index tape” in addition to its other worktapes. The next move depends on the ¢th input symbol
if the nonblank portion of the index tape to the left of the head is the binary encoding of i for
1 <% < n, and depends on the endmarker symbol otherwise. The length of the nonblank portion
of the index tape is included in the machine’s space bound.

Convention 2.14: Unless explicitly stated otherwise, we will assume from now on that all
deterministic and nondeterministic Turing machines are not indexing machines, but that all other
alternating Turing machines are.

Example 2.15: An indexing nondeterministic Turing machine can calculate the length n of
the input as follows. On the index tape guess n one bit at a time, verify that the nth input symbol
is in the input alphabet, and verify that the (n + 1)st symbol is an endmarker, rejecting if either
of these is not the case. It takes time O(logn) to do this.

Example 2.16: The complement of the language L = {ww | w € {0,1}*} from Example 2.12
can be accepted by an indexing nondeterministic Turing machine in time O(logn). Compute the
length n of the input as in Example 2.15. If n is odd, accept. Otherwise, guess ¢ satisfying
1 <i<n/2, and accept if and only if z; # ;1 9, where 1z ...z, is the input. The sum i +n/2
and the other computations necessary can be calculated in time O(logn).

10

Any nondeterministic Turing machine requires time at least n to accept the language L from
Example 2.16, but it only takes an alternating Turing machine time O(logn) to do the same. These
are both left as simple exercises. Here is an example of a slightly more interesting language that
can be accepted by an alternating Turing machine in O(logn) time:

Example 2.17: Let L be the set of strings A# B that are encodings of two equal sets (which
we will also refer to as A and B). More specifically, A = Ao$4:$...$4, and B = By$B1$... 8By,
where for simplicity A;, Bj € {0,1}" for some m = 2P — 1.

The alternating Turing machine first determines n, m, a, b, and A where h is the index of the
marker #, in a manner similar to that of Example 2.15. The goal is to accept if and only if A C B
and B C A, that is,

(Vi)(34)Ai = Bj and (V)(3i)B; = A

The machine will universally check each of these two conjuncts. Here is how it checks the first, the
second being done in an analogous manner:

1. Universally choose and record i, with 0 <7 < a.
2. Existentially choose and record j, with 0 < 5 <b.
3. Universally choose and record k, with 1 < k < m.

4. Accept if and only if A;; = Bj, where these are the kth bits of A; and Bj, respectively.

The machine requires time O(log a) to universally choose i, time O(logb) to existentially choose j,
and time O(logm) to universally choose k; furthermore, a, b, and m are each at most n. To find
Bj\ in step 4, the alternating Turing machine needs to calculate h + j2P + k on its index tape,
which can be done in O(logn) time.

Alternating Turing machines, and particularly indexing alternating Turing machines, may seem
unmotivated at first, but there is a direct correspondence to Boolean circuits (Ruzzo [39]) that
makes them an excellent model of parallel computations; this will be explored further in Section 7.5.
Furthermore, they will turn out to be extremely helpful in understanding the complexity of natural Add other

problems, much as nondeterministic Turing machines have proven to be. forward
pointers.

11

2.5.

Exercises

. Let I be the set of invertible /n X y/n matrices over Z; (the integers modulo 2). Show that

I € NTIME(O(n?/2)) N NSPACE(O(y/n)).

Prove that an indexing deterministic Turing machine can compute the length n of its input
in time O(logn).

. Show that the language L from Example 2.16 cannot be recognized by an indexing nondeter-

ministic Turing machine in time less than n.

. Prove that Set Equality (from Example 2.17) can be solved by an alternating Turing machine

in time O(logn) for arbitrary subsets of {0,1}*.

. Show that every regular language is in DTIME(O(n)) N DSPACE(O(1)).

. Show that every regular language is in ATIME(O(logn)).

12

