
Computation with finite stochastic chemical reaction
networks

David Soloveichik Æ Matthew Cook Æ Erik Winfree Æ
Jehoshua Bruck

Published online: 2 February 2008
� Springer Science+Business Media B.V. 2008

Abstract A highly desired part of the synthetic biology toolbox is an embedded chemical

microcontroller, capable of autonomously following a logic program specified by a set of

instructions, and interacting with its cellular environment. Strategies for incorporating

logic in aqueous chemistry have focused primarily on implementing components, such as

logic gates, that are composed into larger circuits, with each logic gate in the circuit

corresponding to one or more molecular species. With this paradigm, designing and pro-

ducing new molecular species is necessary to perform larger computations. An alternative

approach begins by noticing that chemical systems on the small scale are fundamentally

discrete and stochastic. In particular, the exact molecular counts of each molecular species

present, is an intrinsically available form of information. This might appear to be a very

weak form of information, perhaps quite difficult for computations to utilize. Indeed, it has

been shown that error-free Turing universal computation is impossible in this setting.

Nevertheless, we show a design of a chemical computer that achieves fast and reliable

Turing-universal computation using molecular counts. Our scheme uses only a small

number of different molecular species to do computation of arbitrary complexity. The total

probability of error of the computation can be made arbitrarily small (but not zero) by

adjusting the initial molecular counts of certain species. While physical implementations

would be difficult, these results demonstrate that molecular counts can be a useful form of

D. Soloveichik (&) � E. Winfree � J. Bruck
Department of CNS, California Institute of Technology, Pasadena, CA, USA
e-mail: dsolov@caltech.edu

M. Cook
Institute of Neuroinformatics, ETH, Zürich, Switzerland
e-mail: cook@ini.phys.ethz.ch

E. Winfree
Departments of CS, CNS, and Bioengineering, California Institute of Technology, Pasadena, CA, USA
e-mail: winfree@caltech.edu

J. Bruck
Department of CNS and EE, California Institute of Technology, Pasadena, CA, USA
e-mail: bruck@caltech.edu

123

Nat Comput (2008) 7:615–633
DOI 10.1007/s11047-008-9067-y

information for small molecular systems such as those operating within cellular

environments.

Keywords Stochastic chemical kinetics � Molecular counts �
Turing-universal computation � Probabilistic computation

1 Introduction

Many ways to perform computation in a chemical system have been explored in the

literature, both as theoretical proposals and as practical implementations. The most com-

mon and, at present, successful attempts involve simulating Boolean circuits (Stojanovic

2002; de Silva and McClenaghan 2004; Sprinzak and Elowitz 2005; Seelig et al. 2006). In

such cases, information is generally encoded in the high or low concentrations of various

signaling molecules. Since each binary variable used during the computation requires its

own signaling molecule, this makes creating large circuits onerous. Computation has also

been suggested via a Turing machine (TM) simulation on a polymer (Bennett 1982;

Rothemund 1996), via cellular automaton simulation in self-assembly (Rothemund 2004),

or via compartmentalization of molecules into membrane compartments (Berry and

Boudol 1990; Paun and Rozenberg 2002). These approaches rely on the geometrical

arrangement of a fixed set of parts to encode information. This allows unbounded com-

putation to be performed by molecular systems containing only a limited set of types of

enzyme and basic information-carrying molecular components. It had been widely

assumed, but never proven, that these two paradigms encompassed all ways to do com-

putation in chemistry: either the spatial arrangement and geometric structure of molecules

is used, so that an arbitrary amount of information can be stored and manipulated, allowing

Turing-universal computation; or a finite number of molecular species react in a well-

mixed solution, so that each boolean signal is carried by the concentration of a dedicated

species, and only finite circuit computations can be performed.

Here we show that this assumption is incorrect: well-mixed finite stochastic chemical

reaction networks (SCRNs) with a fixed number of species can perform Turing-universal

computation with an arbitrarily low error probability. This result illuminates the compu-

tational power of stochastic chemical kinetics: error-free Turing universal computation is

provably impossible, but once any non-zero probability of error is allowed, no matter how

small, SCRNs become Turing universal. This dichotomy implies that the question of

whether a stochastic chemical system can eventually reach a certain state is always

decidable, the question of whether this is likely to occur is uncomputable in general.

To achieve Turing universality, a system must not require a priori knowledge of how

long the computation will be, or how much information will need to be stored. For

instance, a system that maintains some fixed error probability per computational step

cannot be Turing universal because after sufficiently many steps, the total error probability

will become large enough to invalidate the computation. We avoid this problem by

devising a reaction scheme in which the probability of error, according to stochastic

chemical kinetics, is reduced at each step indefinitely. While the chance of error cannot be

eliminated, it does not grow arbitrarily large with the length of the computation, and can in

fact be made arbitrarily small without modifying any of the reactions but simply by

increasing the initial molecular count of an ‘‘accuracy’’ species.

616 D. Soloveichik et al.

123

We view stochastic chemical kinetics as a model of computation in which information

is stored and processed in the integer counts of molecules in a well-mixed solution, as

discussed in Liekens and Fernando (2006) and (Angluin et al. 2006) (see Sect. 5 for a

comparison with our results). This type of information storage is effectively unary and thus

it may seem inappropriate for fast computation. It is thus surprising that our construction

achieves computation speed only polynomially slower than achievable by physical pro-

cesses making use of spatial and geometrical structure. The total molecular count

necessarily scales exponentially with the memory requirements of the entire computation.

This is unavoidable if the memory requirements are allowed to grow while the number of

species is bounded. However, for many problems of interest memory requirements may be

small. Further, our scheme may be appropriate for certain problems naturally conceived as

manipulation of molecular ‘‘counts’’, and may allow the implementation of such algo-

rithms more directly than previously proposed. Likewise, engineering exquisite sensitivity

of a cell to the environment may effectively require determining the exact intracellular

molecular counts of the detectable species. Finally, it is possible that some natural pro-

cesses can be better understood in terms of manipulating molecular counts as opposed to

the prevailing regulatory circuits view.

The exponential trend in the complexity of engineered biochemical systems suggests

that reaction networks on the scale of our construction may soon become feasible. The

state of the art in synthetic biology progressed from the coupling of 2–3 genes in 2000

(Elowitz and Leibler 2000), to the implementation of over 100 deoxyribonuclease logic

gates in vitro in 2006 (Macdonald et al. 2006). Our construction is sufficiently simple that

significant aspects of it may be implemented with the technology of synthetic biology of

the near future.

2 Stochastic model of chemical kinetics

The SCRN model of chemical kinetics describes interactions involving integer number of

molecules as Markov jump processes (McQuarrie 1967; van Kampen 1997; Érdi and Tóth

1989; Gillespie 1992). It is used in domains where the traditional model of deterministic

continuous mass action kinetics is invalid due to small molecular counts. When all

molecular counts are large the model scales to the mass action law (Kurtz 1972; Ethier and

Kurtz 1986). Small molecular counts are prevalent in biology: for example, over 80% of

the genes in the E. coli chromosome are expressed at fewer than a hundred copies per cell,

with some key control factors present in quantities under a dozen (Guptasarma 1995; Levin

1999). Experimental observations and computer simulations have confirmed that stochastic

effects can be physiologically significant (McAdams and Arkin 1997; Elowitz et al. 2002;

Suel et al. 2006). Consequently, the stochastic model is widely employed for modeling

cellular processes (e.g. Arkin et al. 1998) and is included in numerous software packages

(Stochastic simulation implementations1; Vasudeva and Bhalla 2004; Kierzek 2002;

Adalsteinsson et al. 2004). The algorithms used for modeling stochastic kinetics are

usually based on Gillespie’s algorithm (Gillespie 1977, 2007; Gibson and Bruck 2000).

1 Stochastic simulation implementations. Systems Biology Workbench: http://sbw.sourceforge.net; Bio-
Spice: http://biospice.lbl.gov; Stochastirator: http://opnsrcbio.molsci.org; STOCKS: http://www.sysbio.pl/
stocks; BioNetS: http://x.amath.unc.edu:16080/BioNetS; SimBiology package for MATLAB: http://
www.mathworks.com/products/simbiology/index.html

Computation with finite stochastic chemical reaction networks 617

123

http://sbw.sourceforge.net
http://biospice.lbl.gov
http://opnsrcbio.molsci.org
http://www.sysbio.pl/stocks
http://www.sysbio.pl/stocks
http://x.amath.unc.edu:16080/BioNetS
http://www.mathworks.com/products/simbiology/index.html
http://www.mathworks.com/products/simbiology/index.html

Consider a solution containing p species. Its state is a vector z 2 N
p (where N ¼

f0; 1; 2; . . .gÞ specifying the integral molecular counts of the species. A reaction a is a tuple

hl; r; ki 2 N
p � N

p � R
þ which specifies the stoichiometry of the reactants and products,

and the rate constant k. We use capital letters to refer to the various species and standard

chemical notation to describe a reaction (e.g. Aþ C�!k Aþ 2BÞ: We write #zX to indi-

cate the number of molecules of species X in state z, omitting the subscript when the state

is obvious. A SCRN C is a finite set of reactions. In state z a reaction a is possible if there

are enough reactant molecules: 8i; zi � li� 0: The result of reaction a occurring in state z is

to move the system into state z� lþ r: Given a fixed volume v and current state z, the

propensity of a unimolecular reaction a : Xi�!
k

. . . is qðz; aÞ ¼ k#zXi: The propensity of a

bimolecular reaction a : Xi þ Xj�!
k

. . . where Xi = Xj is qðz; aÞ ¼ k
#zXi#zXj

v : The pro-

pensity of a bimolecular reaction a : 2Xi�!
k

. . . is qðz; aÞ ¼ k
2

#zXið#zXi�1Þ
v : Sometimes the

model is extended to higher order reactions (van Kampen 1997), but the merit of this is a

matter of some controversy. We follow Gillespie and others and allow unary and bimo-

lecular reactions only. The propensity function determines the kinetics of the system as

follows. If the system is in state z, no further reactions are possible if 8a 2 C; qðz; aÞ ¼ 0:
Otherwise, the time until the next reaction occurs is an exponential random variable with

rate
P

a2C qðz; aÞ: The probability that next reaction will be a particular anext is

qðz; anextÞ=
P

a2C qðz; aÞ:
While the model may be used to describe elementary chemical reactions, it is often used

to specify higher level processes such as phosphorylation cascades, transcription, and

genetic regulatory cascades, where complex multistep processes are approximated as

single-step reactions. Molecules carrying mass and energy are assumed to be in abundant

supply and are not modeled explicitly. This is the sense in which we use the model here

because we allow reactions violating the conservation of energy and mass. While we will

not find ‘‘atomic’’ reactions satisfying our proposed SCRNs, a reasonable approximation

may be attained with complex organic molecules, assuming an implicit source of energy

and raw materials. The existence of a formal SCRN with the given properties strongly

suggests the existence of a real chemical system with the same properties. Thus, in order to

implement various computations in real chemistry, first we should be able to write down a

set of chemical reactions (a SCRN), and then find a set of physical molecular species that

behave accordingly. This approach is compatible with the philosophy of synthetic biology

(Sprinzak and Elowitz 2005; Seelig et al. 2006). Here we focus on the first step, reaction

network design, and explore computation in SCRNs assuming arbitrary reactions can be

used, and that they behave according to the above model of stochastic kinetics.

3 Time/space-bounded algorithms

There is a rich literature on abstract models of computation that make use of integer counts,

primarily because these are among the simplest Turing-universal machines known. Min-

sky’s register machine (RM) (Minsky 1961) is the prototypical example. A RM is a finite

state machine augmented with fixed number of registers that can each hold an arbitrary

non-negative integer. An inc(i, r, j) instruction specifies that when in state i, increment

register r by 1, and move to state j. A dec(i, r, j, k) instruction specifies that when in state i,
decrement register r by 1 if it is nonzero and move to state j; otherwise, move to state k.

There are two special states: start and halt. Computation initiates in the start state with the

input count encoded in an input register, and the computation stops if the halt state is

618 D. Soloveichik et al.

123

reached. The output is then taken to be encoded in the register values (e.g. the final value of

the input register). While it may seem that a RM is a very weak model of computation, it is

known that even two-register RMs are Turing-universal. Given any RM, our task is to

come up with a SCRN that performs the same computation step by step. This SCRN is then

said to simulate the RM.

For a given RM, we may construct a simple SCRN that simulates it with high probability as

follows. We use a set of state species {Si}, one for each state i of the RM, and set of register

species {Mr}, one for each register. At any time there will be exactly one molecule of some

species Si corresponding to the current state i, and none of the other species Sj, for j = i. The

molecular count of Mr represents the value of register r. For every inc(i, r, j) instruction we

add an inc reaction Si ? Sj + Mr. For every dec(i, r, j, k) instruction we add two reactions

dec1: Si + Mr?Sj and dec2: Si ? Sk. We must ensure that a nonzero register decrements with

high probability, which is the only source of error in this simulation. The probability of error

per step is e = k2/(k1/v + k2) in the worst case that the register holds the value 1, where k1 is

the rate constant for dec1 and k2 is the rate constant for dec2. To decrease the error, we can

increase k1, decrease k2, or decrease the volume v.

Decreasing the volume or changing the rate constants to modify the error rate is

problematic. Changing the volume may be impossible (e.g. the volume is that of a cell).

Further, a major assumption essential to maintain well-mixedness and justify the given

kinetics is that the solution is dilute. The finite density constraint implies that the solution

volume cannot be arbitrarily small and in fact must be at least proportional to the maxi-

mum molecular count attained during computation. Further, since developing new

chemistry to perform larger computation is undesirable, improving the error rate of the

chemical implementation of an RM without adjusting rate constants is essential.

In every construction to follow, the error probability is determined not by the volume or

rate constants, but by the initial molecular count of an ‘‘accuracy species’’ which is easily

changed. In fact, we use exclusively bimolecular reactions2 and all rate constants fixed at

some arbitrary value k. Using exclusively bimolecular reactions simplifies the analysis of

how the speed of the simulation scales with the volume and ensures that the error prob-

ability is independent of the volume. Further, working with the added restriction that all

rate constants are equal forces us to design robust behavior that does not depend on the

precise value of the rate constants.

We modify our first attempt at simulating an RM to allow the arbitrary decrease of error

rates by increasing the initial molecular count of the accuracy species A. In the new

construction, dec2 is modified to take a molecule of a new species C1 as reactant (see

Fig. 1a), so that decreasing the effective molecular count of C1 is essentially equivalent to

decreasing the rate constant of the original reaction. While we cannot arbitrarily decrease

#C1 (at the bottom it is either 1 or 0), we can decrease the ‘‘average value’’ of #C1.

Figure 1b shows a ‘‘clock module’’ that maintains the average value of #C1 at approxi-

mately (1/#A)l - 1, where l is the length of the random walk in the clock module (see

Lemma 8 in the Appendix). Thus, to obtain error probability per step e we use #A ¼
Hð1=e1=ðl�1ÞÞ while keeping all rate constants fixed.3

2 All unimolecular reactions can be turned into bimolecular reactions by adding a dummy catalyst.
3 The asymptotic notation we use throughout this paper can be understood as follows. We write f(x,
y,…) = O(g(x, y,…)) if 9c [0 such that f ðx; y; . . .Þ� c � gðx; y; . . .Þ for all allowed values of x, y, …. The
allowed range of the parameters will be given either explicitly, or implicitly (e.g. probabilities must be in the
range [0,1]). Similarly, we write f ðx; y; . . .Þ ¼ Xðgðx; y; . . .ÞÞ if 9c [0 such that f ðx; y; . . .Þ� c � gðx; y; . . .Þ
for all allowed values of x, y, …. We say f ðx; y; . . .Þ ¼ Hðgðx; y; . . .ÞÞ if both f(x, y,…) = O(g(x, y,…)) and
f ðx; y; . . .Þ ¼ Xðgðx; y; . . .ÞÞ:

Computation with finite stochastic chemical reaction networks 619

123

How do we measure the speed of our simulation? We can make the simulation faster by

decreasing the volume, finding a physical implementation with larger rate constants, or by

increasing the error rate. Of course, there are limits to each of these: the volume may be set

(i.e. operating in a cell), the chemistry is what’s available, and, of course, the error cannot

be increased too much or else computation is unreliable. As a function of the relevant

parameters, the speed of the RM simulation is as given by the following theorem, whose

proof is given in Sect. A.2.

Theorem 1 (Bounded computation: RM simulation) For any RM, there is an SCRN such
that for any non-zero error probability d, any input, and any bound on the number of RM
steps t, there is an initial amount of the accuracy species A that allows simulation of the
RM with cumulative error probability at most d in expected time Oðvt2

kdÞ; where v is the
volume, and k is the rate constant.

The major effort of the rest of this section is in speeding up the computation. The first

problem is that while we are simulating an RM without much of a slowdown, the RM

computation itself is very slow, at least when compared to a Turing machine (TM). For

most algorithms t steps of a TM correspond to Xð2tÞ steps of a RM (Minsky 1961).4 Thus,

the first question is whether we can simulate a TM instead of the much slower RM? We

achieve this in our next construction where we simulate an abstract machine called a

clockwise TM (CTM) (Neary and Woods 2005) which is only quadratically slower than a

regular TM (Lemma 13).

Our second question is whether it is possible to speed up computation by increasing the

molecular counts of some species. After all, in bulk chemistry reactions can be sped up

equivalently by decreasing the volume or increasing the amount of reactants. However,

Rxn Catalysts
Rxn Logical function

A

... ...

(inc)

(dec1)

(dec2)

B

Fig. 1 (a) Bounded RM simulation. Species C (#C = 1) acts a dummy catalyst to ensure that all reactions
are bimolecular, simplifying the analysis of how the simulation scales with the volume. Initial molecular
counts are: if î is the start state then #Sî ¼ 1; #Sj ¼ 0 for j 6¼ î; and #Mr is the initial value of register r. (b)
Clock module for the RM and CTM simulations. Intuitively, the clock module maintains the average
concentration of C1 at approximately (#A*)l/(#A)l - 1. Initial molecular counts are: #Cl = 1, #C1 = ��� =
#Cl - 1 = 0. For the RM simulation #A* = 1, and #A ¼ Hð1=e1=ðl�1ÞÞ: In the RM simulation, A* acts as a

dummy catalyst to ensure that all reactions in the clock module are bimolecular and thus scale equivalently
with the volume. This ensures that the error probability is independent of the volume. For the bounded CTM
simulation, we use #A� ¼ Hðð3sct

sct
Þ1=lÞ; and #A ¼ Hðð 1

e3=2Þ1=ðl�1ÞÞ (see Sect. A.3). Because constructions of
Sect. 4 will require differing random walk lengths, we allow different values of l

4 By the (extended) Church–Turing thesis, a TM, unlike a RM, is the best we can do, if we care only about
super-polynomial distinctions in computing speed.

620 D. Soloveichik et al.

123

storing information in the exact molecular counts imposes a constraint since increasing the

molecular counts to speed up the simulation would affect the information content. This

issue is especially important if the volume is outside of our control (e.g. the volume is that

of a cell).

A more essential reason for desiring a speedup with increasing molecular counts is the

previously stated finite density constraint that the solution volume should be at least

proportional to the maximum molecular count attained in the computation. Since infor-

mation stored in molecular counts is unary, we require molecular counts exponential in the

number of bits stored. Can we ensure that the speed increases with molecular counts

enough to compensate for the volume that necessarily must increase as more information is

stored?

We will show that the CTM can be simulated in such a manner that increasing the

molecular counts of some species does not interfere with the logic of computation and yet

yields a speedup. To get a sense of the speed-up possible, consider the reaction X +

Y?Y + ��� (i.e. Y is acting catalytically with products that do not concern us here) with

both reactants initially having molecular counts m. This reaction completes (i.e. every

molecule of X is used up) in expected time that scales with m as Oðlogm
m Þ (Lemma 9);

intuitively, even though more X must be converted for larger m, this is an exponential

decay process of X occurring at rate O(#Y) = O(m). Thus by increasing m we can speed it

up almost linearly. By ensuring that all reactions in a step of the simulation are of this

form, or complete just as quickly, we guarantee that by increasing m we can make the

computation proceed faster. The almost linear speedup also adequately compensates for the

volume increasing due to the finite density constraint.

For the purposes of this paper, a TM is a finite state machine augmented with a two-way

infinite tape, with a single head pointing at the current bit on the tape. A TM instruction

combines reading, writing, changing the state, and moving the head. Specifically, the

instruction op(i, j, k, zj, zk, D) specifies that if starting in state i, first read the current bit and

change to either state j if it is 0 or state k if it is 1, overwrite the current bit with zj or zk,

respectively, and finally move the head left or right along the tape as indicated by the

direction D. It is well known that a TM can be simulated by an ‘‘enhanced’’ RM in linear

time if the operations of multiplication by a constant and division by a constant with

remainder can also be done as one step operations. To do this, the content of the TM tape is

represented in the binary expansion of two register values (one for the bits to the left of the

head and one for the bits to the right, with low order bits representing tape symbols near the

TM head, and high order bits representing symbols far from the head). Simulating the

motion of the head involves division and multiplication by the number base (2 for a binary

TM) of the respective registers because these operations correspond to shifting the bits

right or left. In a SCRN, multiplication by 2 can be done by a reaction akin to M ? 2M0

catalyzed by a species of comparable number of molecules, which has the fast kinetics of

the X + Y ?Y + ��� reaction above. However, performing division quickly enough seems

difficult in a SCRN.5 To avoid division, we use a variant of a TM defined as follows. A

CTM is a TM-like automaton with a finite circular tape and instructions of the form op(i, j,
k, zj, zk). The instruction specifies behavior like a TM, except that the head always moves

clockwise along the tape. Any TM with a two-way infinite tape using at most stm space and

5 For example, the naive approach of dividing #M by 2 by doing M + M?M0 takes Hð1Þ time (independent
of #M) as a function of the initial amount of #M. Note that the expected time for the last two remaining M’s
to react is a constant. Thus, if this were a step of our TM simulation we would not attain the desired speed up
with increasing molecular count.

Computation with finite stochastic chemical reaction networks 621

123

ttm time can easily be converted to a clockwise TM using no more than sct = 2 stm space

and tct = O(ttm stm) time (Lemma 13). The instruction op(i, j, k, zj, zk) corresponds to: if

starting in state i, first read the most significant digit and change to either state j if it is 0 or

state k if it is 1, erase the most significant digit, shift all digits left via multiplying by the

number base, and finally write a new least significant digit with the value zj if the most

significant digit was 0 or zk if it was 1. Thus, instead of dividing to shift bits right, the

circular tape allows arbitrary head movement using only the left bit shift operation (which

corresponds to multiplication).

The reactions simulating a CTM are shown in Fig. 2. Tape contents are encoded in

the base-3 digit expansion of #M using digit 1 to represent binary 0 and digit 2 to

represent binary 1. This base-3 encoding ensures that reading the most significant bit is

fast enough (see below). To read the most significant digit of #M, it is compared with a

known threshold quantity #T by the reaction M + T? ��� (such that either T or M will

be in sufficient excess, see below). We subdivide the CTM steps into microsteps for the

purposes of our construction; there are four microsteps for a CTM step. The current

state and microstate is indicated by which of the state species {Si,z} is present, with i
indicating the state CTM finite control and z [{1, 2, 3, 4} indicating which of the four

corresponding microstates we are in. The division into microsteps is necessary to pre-

vent potentially conflicting reactions from occurring simultaneously as they are

catalyzed by different state species and thus can occur only in different microsteps.

Conflicting reactions are separated by at least two microsteps since during the transition

between two microsteps there is a time when both state species are present. A self-

catalysis chain reaction is used to move from one microstep to the next. The transition

is initiated by a reaction of a state species with a clock molecule C1 to form the state

species corresponding to the next microstep.

Now with m ¼ 3sct�1; Lemmas 9–11 guarantee that all reactions in a microstep

(excluding state transition initiation reactions) complete in expected time Oðv log m
km Þ ¼

Oð vsct

k3sct Þ: Specifically, Lemma 9 ensures that the memory operation reactions having a state

species as a catalyst complete in the required time. Lemma 11 does the same for the self-

catalytic state transition reactions. Finally, ensuring that either M or T is in excess of the

other by HðmÞ allows us to use Lemma 10 to prove that the reading of the most significant

bit occurs quickly enough. The separation of #M or #T is established by using values of #M
expressed in base-3 using just the digits 1 and 2. Then the threshold value #T as shown in

Fig. 2 is Hð3sctÞ larger than the largest possible sct-digit value of #M starting with 1 (base-3)

and Hð3sctÞ smaller than the smallest possible sct-digit value of #M starting with 2 (base-3),

implying that either T or M will be in sufficient excess.

The only source of error is if not all reactions in a microstep finish before a state

transition initiation reaction occurs. This error is controlled in an analogous manner to the

RM simulation: state transition initiation reactions work on the same principle as the

delayed dec2 reaction of the RM simulation. We adjust #A so that all reactions in a

microstep have a chance to finish before the system transitions to the next microstep (see

Sect. A.3).

Since as a function of sct, the reactions constituting a microstep the CTM simulation

finish in expected time Oð vsct

k3sctÞ; by increasing sct via padding of the CTM tape with extra

bits we can decrease exponentially the amount of time we need to allocate for each

microstep. This exponential speedup is only slightly dampened by the increase in the

number of CTM steps corresponding to a single step of the TM (making the worst case

assumption that the padded bits must be traversed on every step of the TM, Lemma 13).

622 D. Soloveichik et al.

123

In total, we obtain the following result (see Sect. A.3). It shows that we can simulate a

TM with only a polynomial slowdown, and that computation can be sped up by increasing

the molecular count of some species through a ‘‘padding parameter’’ D:

Base 3 representationInitial molecular counts

Rxn Catalysts Logical function

S
ta

te
 tr

an
si

tio
ns

M
em

or
y

op
er

at
io

ns

B

A

Fig. 2 Bounded CTM simulation: reactions and initial molecular counts. (a) Reactions for op(i, j, k, zj, zk).
The clock module is the same as for the RM simulation (Fig. 1b). Here ; indicates ‘‘nothing’’. (b) Letting
s = sct, initial molecular counts for binary input b1b2 …bs. Input is padded with zeros to be exactly s bits
long. Here î is the start state of the CTM. All species not shown start at 0

Computation with finite stochastic chemical reaction networks 623

123

Theorem 2 (Bounded computation: TM simulation) For any TM, there is an SCRN such
that for any non-zero error probability d, any amount of padding D; any input, any bound
on the number of TM steps ttm, and any bound on TM space usage stm, there is an initial
amount of the accuracy species A that allows simulation of the TM with cumulative error

probability at most d in expected time O
vðstmþDÞ7=2t

5=2
tm

k3ð2stmþDÞd3=2

� �
; where v is the volume, and k is the

rate constant.

Under realistic conditions relating v, stm, and ttm, this theorem implies that the SCRN

simulates the TM in polynomial time, specifically Oðt6
tmÞ: The finite density constraint

introduced earlier requires that the solution volume be proportional to the maximum

molecular count attained in the course of the computation. This constraint limits the speed

of the simulation: there is a minimum volume to implement a particular computation, and

if the volume is larger than necessary, the finite density constraint bounds D: In most cases,

the total molecular count will be dominated by 32stmþD (see Sect. A.3). Thus the maximum

allowed padding satisfies 32stmþD ¼ HðvÞ; yielding total expected computation time

O ðlog vÞ7=2ttm
5=2

kd3=2

� �
: This implies that although D cannot be used to speed up computation

arbitrarily, it can be used to minimize the effect of having a volume much larger than

necessary since increasing the volume decreases the speed of computation poly-logarith-

mically only. Alternatively, if we can decrease the volume as long as the maximum density

is bounded by some constant, then the best speed is obtained with zero padding and the

smallest v possible: v ¼ Hð32stmÞ: Then the total computation time is O
s

7=2
tm t

5=2
tm

kd3=2

� �
: Since we

can always ensure stm B ttm, we experience at most a polynomial (6th order) slowdown

overall compared with a regular error-free TM.

4 Unbounded algorithms

The above simulations are not Turing-universal because they incur a fixed probability of

error per step of the computation. Since the probability of correct computation decreases

exponentially with the number of steps, only finite computation may be performed reliably.

Additionally the TM simulation has the property that the tape size must be specified

a priori. We now prove that a fixed SCRN can be Turing-universal with an arbitrarily small

probability of error over an unlimited number of steps. In the course of a computation that

is not a priori bounded, in addition to stirring faster and injecting energy and raw materials,

the volume needs to grow at least linearly with the total molecular count to maintain finite

density. Therefore, in this section our model is that the volume dynamically changes

linearly with the total molecular count as the system evolves over time. We desire that the

total error probability over arbitrarily long computation does not exceed d and can be set

by increasing the initial molecular counts of the accuracy species A.

We now sketch how to modify our constructions to allow Turing-universal computation.

Consider the RM simulation first. We can achieve a bounded total probability of error over

an unbounded number of steps by sufficiently decreasing the probability of error in each

subsequent error-prone step. Only dec steps when the register is non-zero are error-prone.

Further, if dec2 occurs then either the register value was zero and no error was possible, or

an error has just occurred and there is no need decreasing the error further. Therefore it is

sufficient to decrease the probability of error after each dec1 step by producing A as a

product of dec1. If the clock Markov chain length is l = 3, then adding a single molecule of

A as a product of every dec1 reaction is enough: the total probability of error obtained via

624 D. Soloveichik et al.

123

Lemma 8 is Oð
P1

#A¼i0
1=#A2Þ; since this sum converges, the error probability over all

time can be bounded by any desired d[0 by making the initial number of A’s, i0,

sufficiently large. Using l = 3 is best because l [3 unnecessarily slows down the simu-

lation. The total expected computation time is then Oðtð1=dþ tÞ2ð1=dþ t þ s0Þ=kÞ; where

s0 is the sum of the initial register counts (see Sect. A.4).

A similar approach can be taken with respect to the TM simulation. The added difficulty

is that the tape size must no longer be fixed, but must grow as needed. This can be achieved

if the SCRN triples the molecular count of the state species, M, T, D, and P whenever the

tape needs to increase by an extra bit. However, simply increasing #A by 1 per microstep

without changing #A* as in the RM construction does not work since the volume may triple

in a CTM step. Then the clock would experience an exponentially increasing expected

time. To solve this problem, in Sect. 1 we show that if the SCRN triples the amount of A
and A* whenever extending the tape and increases #A by an appropriate amount, Hð3sct Þ;
on every step then it achieves a bounded error probability over all time and yields the

running time claimed in Theorem 3 below. The clock Markov chain of length l = 5 is

used. All the extra operations can be implemented by reactions similar to the types of

reactions already implementing the CTM simulation (Fig. 2). For example, tripling A can

be done by reactions akin to A! Ay and Ay ! 3A catalyzed by different state species in

two non-consequitive microsteps.6

Theorem 3 (Turing-universal computation) For any TM, there is an SCRN such that for
any non-zero error probability d, and any bound stm0 on the size of the input, there is an
initial amount of the accuracy species A that allows simulation of the TM on inputs of size
at most stm0 with cumulative error probability at most d over an unbounded number of
steps and allowing unbounded space usage. Moreover, in the model where the volume
grows dynamically in proportion with the total molecular count, ttm steps of the TM
complete in expected time (conditional on the computation being correct) of Oðð1=dþ
stm0 þ ttmstmÞ5ttmstm=kÞ where stm is the space used by the TM, and k is the rate constant.

For stm & ttm this gives a polynomial time (12th order) simulation of TMs. This slowdown

relative to Theorem 2 is due to our method of slowing down the clock to reduce errors.

Can SCRNs achieve Turing-universal computation without error? Can we ask for a

guarantee that the system will eventually output a correct answer with probability 1?7

Some simple computations are indeed possible with this strong guarantee, but it turns out

that for general computations this is impossible. Intuitively, when storing information in

molecular counts, the system can never be sure it has detected all the molecules present,

and thus must decide to produce an output at some point without being certain. Formally, a

theorem due to Karp and Miller (1969) when adapted to the SCRN context (see Sect. A.6)

rules out the possibility of error-free Turing universal computation altogether if the state of

the TM head can be determined by the presence or absence (or threshold quantities) of

certain species (i.e. state species in our constructions). Here recall that in computer science

a question is called decidable if there is an algorithm (equivalently TM) that solves it in all

cases. (Recall a state of a SCRN is a vector of molecular counts of each of the species.

Below operator C indicates element-wise comparison.)

6 A slight modification of the clock module is necessary to maintain the desired behavior. Because of the
need of intermediate species (e.g. AyÞ for tripling #A and #A*, the clock reactions need to be catalyzed by the
appropriate intermediate species in addition to A and A*.
7 Since in a reaction might simply not be chosen for an arbitrarily long time (although the odds of this
happening decrease exponentially), we can’t insist on a zero probability of error at any fixed time.

Computation with finite stochastic chemical reaction networks 625

123

Theorem 4 For any SCRN, given two states x and y; the question of whether any state
y0 � y is reachable from x is decidable.

How does this theorem imply that error-free Turing universal computation is impos-

sible? Since all the constructions in this paper rely on probabilities we need to rule out

more clever constructions. First recall that a question is undecidable if one can prove that

there can be no algorithm that solves it correctly in all cases; the classic undecidable

problem is the halting problem: determine whether or not a given TM will eventually halt

(Sipser 1997). Now suppose by way of contradiction that someone claims to have an

errorless way of simulating any TM in a SCRN. Say it is claimed that if the TM halts then

the state species corresponding to the halt state is produced with non-zero probability (this

is weaker than requiring probability 1), while if the TM never halts then the halt state

species cannot be produced. Now note that by asking whether a state with a molecule of the

halting species is reachable from the initial state, we can determine whether the TM halts:

if such a state is reachable then there must be a finite sequence of reactions leading to it,

implying that the probability of producing a halt state species is greater than 0; otherwise,

if such a state is not reachable, the halt state species can never be produced. This is

equivalent to asking whether we can reach any y0 � y from the initial state of the SCRN,

where y is the all zero vector with a one in the position of the halting species—a question

that we know is always computable, thanks to Karp and Miller. Thus if an errorless way of

simulating TMs existed, we would violate the undecidability of the halting problem.

Finally note that our Turing-universality results imply that the their long-term behavior

of SCRNs is unknowable in a probabilistic sense. Specifically, our results imply that the

question of whether a given SCRN, starting with a given initial state x, produces a mol-

ecule of a given species with high or low probability is in general undecidable. This can be

shown using a similar argument: if the question were decidable the halting problem could

be solved by encoding a TM using our construction, and asking whether the SCRN

eventually produces a molecule of the halting state species.

5 Discussion

We show that computation on molecular counts in the SCRN model of stochastic chemical

kinetics can be fast, in the sense of being only polynomially slower than a TM, and

accurate, in the sense that the cumulative error probability can be made arbitrarily small.

Since the simulated TM can be universal (Sipser 1997), a single set of species and

chemical reactions can perform any computation that can be performed on any computer.

The error probability can be manipulated by changing the molecular count of an accuracy

species, rather than changing the underlying chemistry. Further, we show that computation

that is not a priori bounded in terms of time and space usage can be performed assuming

that the volume of the solution expands to accommodate the increase in the total molecular

count. In other words SCRNs are Turing universal.

The Turing-universality of SCRNs implies that the question of whether given a start

state the system is likely to produce a molecule of a given species is in general undecidable.

This is contrasted with questions of possibility rather than probability: whether a certain

molecule could be produced is always decidable.

Our results may imply certain bounds on the speed of stochastic simulation algorithms

(such as variants of s-leaping (Gillespie 2007)), suggesting an area of further study. The

intuition is as follows: it is well known by the time hierarchy theorem (Sipser 1997) that

626 D. Soloveichik et al.

123

certain TMs cannot be effectively sped up (it is impossible to build a TM that has the same

input/output relationship but computes much faster). This is believed to be true even

allowing some probability of error (Barak 2002). Since a TM can be encoded in an SCRN,

if the behavior of the SCRN could be simulated very quickly, then the behavior of the TM

would also be determined quickly, which would raise a contradiction.

Our results were optimized for clarity rather than performance. In certain cases our

running time bounds can probably be significantly improved (e.g. in a number of places we

bound additive terms O(x + y), where x C 1 and y C 1, by multiplicative terms O(xy)).

Also the roles of a number of species can be performed by a single species (e.g. A* and C
in the RM simulation).

A number of previous works have attempted to achieve Turing universality with

chemical kinetics. However, most proposed schemes require increasing the variety of

molecular species (rather than only increasing molecular counts) to perform larger com-

putation (e.g. Magnasco 1997 which shows finite circuit computation and not Turing

universal computation despite its title). Liekens and Fernando (2006) have considered

computation in stochastic chemistry in which computation is performed on molecular

counts. Specifically, they discuss how SCRNs can simulate RMs. However, they rely on

the manipulation of rate constants to attain the desired error probability per step. Further,

they do not achieve Turing-universal computation, as the prior knowledge of the length of

the computation is required to set the rate constants appropriately to obtained a desired

total error probability. While writing this manuscript, the work of Angluin et al. (2006) in

distributed computing and multi-agent systems came to our attention. Based on the formal

relation between their field and our field, one concludes that their results imply that SCRNs

can simulate a TM with a polynomial slowdown (a result akin to our Theorem 2). Com-

pared to our result, their method allows to attain a better polynomial (lower degree), and

much better dependence on the allowed error probability (e.g. to decrease the error by a

factor of 10, we have to slow down the system by a factor of 103/2, while an implemen-

tation based on their results only has to slow down by a factor polynomial in log10).

However, because we focus on molecular interactions rather than the theory of distributed

computing, and measure physical time for reaction kinetics rather than just the number of

interactions, our results take into account the solution volume and the consequences of the

finite density constraint (Sect. 3). Further, while they consider only finite algorithms, we

demonstrate Turing universality by discussing a way of simulating algorithms unbounded

in time and space use (Sect. 4). Finally, our construction is simpler in the sense that it

requires far fewer reactions. The relative simplicity of our system makes implementing

Turing-universal chemical reactions a plausible and important goal for synthetic biology.

Acknowledgments We thank G. Zavattaro for pointing out an error in an earlier version of this manu-
script. This work is supported in part by the ‘‘Alpha Project’’ at the Center for Genomic Experimentation and
Computation, an NIH Center of Excellence (Grant No. P50 HG02370), as well as NSF Grant No. 0523761
and NIMH Training Grant MH19138-15.

A. Proof details

A.1 Clock analysis

The following three lemmas refer to the Markov chain in Fig. 3. We use pi(t) to indicate

the probability of being in state i at time t. CDF stands for cumulative distribution function.

Computation with finite stochastic chemical reaction networks 627

123

Lemma 5 Suppose the process starts in state l. Then 8t; p1ðtÞ� ð1� p0ðtÞÞl where
l ¼ 1=ð1þ r

f þ ðrfÞ
2 þ � � � þ ðrfÞ

l�1Þ:

Proof Consider the Markov chain restricted to states 1,…,l. We can prove that the

invariance pi+1(t)/pi(t) C r/f (for i = 1,…,l-1) is maintained at all times through the

following argument. Letting /i(t) = pi+1(t)/pi(t), we can show d/i(t)/dt C 0 when

/i(t) = r/f and 8i0;/i0 ðtÞ� r=f ; which implies that for no i can /i(t) fall below r/f if it starts

above. This is done by showing that dpi(t)/dt = pi+1(t) f + pi - 1(t) r-(r + f) pi(t) B 0

since /i(t) = r/f and /i - 1(t) C r/f, and dpi+1(t)/dt = pi+2(t) f + pi(t) r-(r + f) pi+1(t) C 0

since /i(t) = r/f and /i+1(t) C r/f (the pi - 1 or the pi+2 terms are zero for the boundary

cases).

Now pi(t) = /i - 1(t) /i - 2(t) …/1(t) p1(t). Thus
P

i piðtÞ ¼ 1 implies p1ðtÞ ¼ 1=ð1þ
/1 þ /2/1 þ � � � þ /l�1/l�2 � � �/1Þ� 1=ð1þ r

f þ ðrfÞ
2 þ � � � þ ðrfÞ

l�1Þ: This is a bound on

the probability of being in state 1 given that we haven’t reached state 0 in the full chain of

Fig. 3. Thus multiplying by 1-p0(t) gives us the desired result. (

Lemma 6 Suppose for some l we have 8t; p1ðtÞ� ð1� p0ðtÞÞl: Let T be a random
variable describing the time until absorption at state 0. Then Pr½T\t� � 1� e�kt for
k = f l (i.e. our CDF is bounded by the CDF for an exponential random variable with rate
k = f l).

Proof The result follows from the fact that dp0(t)/dt = p1(t) f B (1-p0(t)) l f. (

Lemma 7 Starting at state l, the expected time to absorb at state 0 is OððrfÞ
l�1=f Þ

assuming sufficiently large r/f.

Proof The expected number of transitions to reach state 0 starting in state i is di ¼
2pq q=pð Þl� q=pð Þl�ið Þ

ð1�2pÞ2 � i
q�p ; where p ¼ f

fþr is the probability of transitioning to a state to the left

and q = 1-p is the probability of transitioning to the state to the right. This expression is

obtained by solving the recurrence relation di = pdi - 1 + qdi+1 + 1 (0 [i [l) with

boundary conditions d0 = 0, dl = dl - 1 + 1. Thus dl\
2pq q=pð Þl

ð1�2pÞ2 ¼
2ðr=f Þlþ1

ðr=f�1Þ2 : This implies

that for r/f larger than some constant, dl ¼ OððrfÞ
l�1Þ: Since the expected duration of any

transition is no more than 1/f, the desired bound is obtained.

By the above lemmas, the time for the clock to ‘‘tick’’ can be effectively thought of as

an exponential random variable with rate k ¼ f=ð1þ r
f þ ðrfÞ

2 þ � � � þ ðrfÞ
l�1Þ ¼ Hð f

ðr=f Þl�1Þ:
Lemma 6 shows that the CDF of the tick is bounded by the CDF of this exponential

random variable. Further, Lemma 7 shows that the expected time for the tick is bounded by

(the order of) expected time of this exponential random variable. Note that Lemma 6 is true

no matter how long the clock has already been running (a ‘‘memoryless’’ property). For our

Fig. 3 Continuous-time Markov chain for Lemmas 5–7. States i = 1,…,l indicate the identity of the
currently present clock species C1,…,Cl. Transition to state 0 represents reaction dec2 for the RM simulation
or the state transition initiation reaction of the CTM simulation

628 D. Soloveichik et al.

123

clock construction (Fig. 1b), we set k by changing #A and #A* which define the forward

and reverse rates f and r. Specifically, we have k ¼ H k#A� l

v#Al�1

� �
:

A.2 Time/space-bounded RM simulation

Lemma 8 For the finite RM simulation, the probability of error per step is O((1/#A)l - 1).

Further, the expected time per step is bounded by O((#A)l - 1v/k).

Proof Consider the point in time when the RM simulation enters a state in which it

should decrement a non-empty register. If the time until dec2 occurs were an exponential

random variable with rate k then the probability of error per step would be bounded by k/

(k/v + k). (We are making the worst case assumption that there is exactly one register

molecule; otherwise, the error is even smaller.) The time until dec2 is not exponentially

distributed, but by Sect. A.1, it can be bounded by an exponential random variable with

rate k ¼ Oð k
v#Al�1Þ (#A* = 1 for the RM construction). Note that the clock may have been

running for a while since the last dec operation (while the RM performs inc operations for

example); however, this amount of time is irrelevant by the memoryless property estab-

lished in Sect. A.1. Thus the probability of error per step is bounded by k/(k/

v + k) = O((1/#A)l - 1). The expected time per RM step is bounded by the expected time

for dec2 which is O((#A)l - 1v/k) by Sect. A.1. (

The above lemma implies that we can use #A ¼ Hððt=dÞ1=ðl�1ÞÞ resulting in the

expected time for the whole computation of Oðvt2

kdÞ and the total probability of error being

bounded by d.

A.3 Time/space-bounded CTM simulation

In the following lemmas, we say a reaction completely finishes when it happens enough

times that one of the reactants is used up.

Lemma 9 Starting with HðmÞ molecules of X and HðmÞ molecules of Y, the expected
time for the reaction X + Y ?Y to completely finish is Oð v

km log mÞ: The variance of the
completion time is Oðð v

kmÞ
2Þ:

Proof When there are q molecules of X remaining, the waiting time until next reaction is

an exponential random variable with rate Hðkqm=vÞ and therefore mean Oð v
kqmÞ: Each

waiting time is independent. Thus the total expected time is
PHðmÞ

q¼1 Oð v
kqmÞ ¼ Oð v

km log mÞ:8
The variance of each waiting time is Oðð v

kqmÞ
2Þ: Thus the total variance isPHðmÞ

q¼1 Oðð v
kqmÞ

2Þ ¼ Oðð v
kmÞ

2Þ: (

Lemma 10 Starting with HðmÞ molecules of X and HðmÞ molecules of Y such that
D ¼ #Y �#X ¼ XðmÞ the expected time for the reaction X þ Y ! ; to completely finish
is Oð v

km log mÞ: The variance of the completion time is Oðð v
kmÞ

2Þ:

Proof This case can be proven by reducing to Lemma 9 with initial amounts #Y 0 ¼ D
and #X0 = #X. (

8 As m!1; the difference between
Pm

q¼1ð1=qÞ and log m approaches the Euler-Mascheroni constant.

Computation with finite stochastic chemical reaction networks 629

123

Lemma 11 Starting with HðmÞ molecules of X and 1 molecule of Y, the expected time for
the reaction X + Y ?2Y to completely finish is Oð v

km log mÞ: The variance of the com-
pletion time is Oðð v

kmÞ
2Þ:

Proof Consider splitting the process into two halves, with the first part bringing the

amount of X to half its initial value and the second part using up the remainder. The

time-reverse of the first part, as well as the second part, can both be bounded by

processes covered by Lemma 9. (Assume that #X is fixed at its minimal value for part

one, and assume #Y is fixed at its minimal value for part two. The variance can only

decrease.) (

Lemma 12 Some k ¼ Hðke3=23sct

vsct
Þ attains error at most e per microstep of the CTM

simulation.

Proof Using the above lemmas with m ¼ 3sct�1; by Chebyshev’s inequality,9 with

probability at least 1-e/2 all reactions finish before some time tf ¼ Hð v
km ðlogðmÞ þ

1=
ffiffi
e
p
ÞÞ ¼ O v log m

kme1=2

� �
: Now we set k such that the probability that the clock ticks before

time tf is smaller than e/2 (for a total probability of error e). Since the time until the clock

ticks is bounded by the CDF of an exponential random variable with rate k (Sect. A.1), it is

enough that k\ e
2tf

and so we can choose some k ¼ H e3=2km
v log m

� �
:

Lemma 13 Any TM with a two-way infinite tape using at most stm space and ttm time can
be converted to a CTM using sct = 2stm space and tct = O(ttm stm) time. If D extra bits of
padding on the CTM tape is used, then tct ¼ Oðttmðstm þ DÞÞ time is required.

Proof (sketch, see Neary and Woods 2005) Two bits of the CTM are used to represent a

bit of the TM tape. The extra bit is used to store a TM head position marker. To move in

the direction corresponding to moving the CTM head clockwise (the easy direction) is

trivial. To move in the opposite direction, we use the temporary marker to record the

current head position and then move each tape symbol clockwise by one position. Thus, a

single TM operation in the worst case corresponds to O(s) CTM operations. (

In order to simulate ttm steps of a TM that uses stm bits of space on a CTM using D bits

of padding requires tct ¼ Oðttmðstm þ DÞÞ CTM steps and a circular tape of size sct ¼
2stm þ D (Lemma 13). Recall that in our CTM simulation, there are four microsteps

corresponding to a single CTM operation, which is asymptotically still O(tct). Thus, in

order for the total error to be at most d, we need the error per CTM microstep to be

e ¼ Oð d
ttmðstmþDÞÞ: Setting the parameters of the clock module (#A, #A*) to attain the largest

k satisfying Lemma 12, the expected time per microstep is O vsct

k3sct e3=2Þ ¼ OðvðstmþDÞ5=2t
3=2
tm

k32stmþDd3=2

� �
:

This can be done, for example, by setting #A�l ¼ H 3sct

sct

� �
and #Al�1 ¼ H 1

e3=2

� �
: Since

there are total Oðttmðstm þ DÞÞ CTM microsteps, the total expected time is O
vðstmþDÞ7=2t

5=2
tm

k3ð2stmþDÞd3=2

� �
:

How large is the total molecular count? If we keep d constant while increasing the

complexity of the computation being performed, and setting #A* and #A as suggested

above, we have that the total molecular count is Hðmþ#AÞ where m ¼ 32stmþD: Now m
increases at least exponentially with stm þ D; while #A increases at most polynomially.

9 Chebyshev’s inequality states that for a random variable X with expected value l and finite variance r2,
for any d [0, Pr½ X � lj j � dr� � 1=d2:

630 D. Soloveichik et al.

123

Further, m increases at least quadratically with ttm (for any reasonable algorithm 2stm � ttm)

while #A increases at most as a polynomial of degree ð3=2Þ 1
l�1

\2: Thus m will dominate.

A.4 Unbounded RM simulation

After i dec2 steps, we have #A = i0 + i where i0 is the initial number of A’s. The error

probability for the next step is O(1/#A2) = O(1/(i0 + i)2) by Lemma 8 when l = 3. The

total probability of error over an unbounded number of steps is Oð
P1

i¼0 1=ði0 þ iÞ2Þ: To

make sure this is smaller than d we start out with i0 ¼ Hð1=dÞ molecules of A.10

Now what is the total expected time for t steps? By Lemma 8 the expected time for the

next step after i dec2 steps is Oð#A2v=kÞ ¼ Oðði0 þ iÞ2v=kÞ: Since each step at most

increases the total molecular count by 1, after t total steps v is not larger than O(i0 +

t + s0), where s0 is the sum of the initial values of all the registers. Thus the expected time

for the tth step is bounded by Oðði0 þ iÞ2ði0 þ t þ s0Þ=kÞ ¼ Oðð1=dþ tÞ2ð1=dþ t þ s0Þ=kÞ
and so the expected total time for t steps is Oðtð1=dþtÞ2ð1=dþ t þ s0Þ=kÞ:

A.5 Unbounded CTM simulation

We want to follow a similar strategy as in the RM simulation (Sect. A.4) and want the error

probability on the ith CTM step to be bounded by e ¼ 1=ðHð1=dÞ þ iÞ2 such that the total

error probability after arbitrarily many steps is bounded by d. By Lemma 12, we can attain

per step error probability (taking the union bound over the 4 microsteps in a step) bounded

by this e when we choose a small enough k ¼ Hðke3=23sct

vsct
Þ ¼ Hð k3sct

vð1=dþiÞ3sct
Þ; where sct is the

current CTM tape size. Recall that k is set by #A and #A* such that k ¼ Hð k#A� l

v#Al�1Þ (Sect.

A.1). It is not hard to see that we can achieve the desired k using clock Markov chain

length l = 5, and appropriate #A ¼ Hðði0 þ iÞ3sctÞ and #A� ¼ Hð3sctÞ; for appropriate

i0 ¼ Hð1=dþ sct0Þ; where sct0 is the initial size of the tape. These values of #A and #A*

can be attained if the SCRN triples the amount of A and A* whenever extending the tape

and increases #A by an appropriate amount Hð3sctÞ on every step.

How fast is the simulation with these parameters? From Sect. A.1 we know that the

expected time per microstep is Oð1=kÞ ¼ Oðvð1=dþsct0þiÞ4
k3sct Þ: Since the total molecular count

is asymptotically Oð#AÞ ¼ Oðð1=dþ sct0 þ iÞ3sctÞ; this expected time is Oðð1=dþ sct0 þ
iÞ5=kÞ: However, unlike in the bounded time/space simulations and the unbounded RM

simulation, this expected time is conditional on all the previous microsteps being correct

because if a microstep is incorrect, A and A* may increase by an incorrect amount (for

example reactions tripling #A akin to A! Ay and Ay ! 3A can drive A arbitrarily high if

the catalyst state species for both reactions are erroneously present simultaneously).

Nonetheless, the expected duration of a microstep conditional on the entire simulation

being correct is at most a factor of 1/(1-d) larger than this.11 Since we can assume d will

always be bounded above by a constant less than one, the expected duration of a microstep

conditional on the entire simulation being correct is still Oðð1=dþ sct0 þ iÞ5=kÞ: By

Lemma 13, this yields total expected time to simulate ttm steps of a TM using at most stm

10 If i0 [1/d + 1, then d [
R1

i0�1
1
x2 dx [

P1
x¼i0

1
x2 :

11 This follows from the fact that E½XjA� � ð1=Pr½A�ÞE½X� for random variable X and event A, and that the
expected microstep duration conditional on the previous and current microsteps being correct is the same as
the expected microstep duraction conditional on the entire simulation being correct.

Computation with finite stochastic chemical reaction networks 631

123

space and with initial input of size stm0 is Oðð1=dþ stm0 þ ttmstmÞ5ttmstm=kÞ assuming the

entire simulation is correct.

A.6 Decidability of reachability

We reduce the reachability question in SCRNs to the reachability question in Vector

Addition Systems (VAS), a model of asynchronous parallel processes developed by Karp

and Miller (1969). In the VAS model, we consider walks through a p dimensional integer

lattice, where each step must be one of a finite set of vectors in N
p; and each point in the

walk must have no negative coordinates. It is known that the following reachability

question is decidable: given points x and y, is there a walk that reaches some point y0 � y
from x (Karp and Miller 1969). The correspondence between VASs and SCRNs is

straightforward (Cook 2005). First consider chemical reactions in which no species occurs

both as a reactant and as a product (i.e. reactions that have no catalysts). When such a

reaction a ¼ hl; r; ki occurs, the state of the SCRN changes by addition of the vector

�lþ r: Thus the trajectory of states is a walk through N
p wherein each step is any of a

finite number of reactions, subject to the constraint requiring that the number of molecules

of each species remain non-negative. Karp and Miller’s decidability results for VASs then

directly imply that our reachability question of whether we ever enter a state greater than or

equal to some target state is decidable for catalyst-free SCRNs. The restriction to catalyst-

free reactions is easily lifted: each catalytic reaction can be replaced by two new reactions

involving a new molecular species after which all reachability questions (not involving the

new species) are identical for the catalyst-free and the catalyst-containing networks.

References

Adalsteinsson D, McMillen D, Elston TC (2004) Biochemical network stochastic simulator (BioNetS):
software for stochastic modeling of biochemical networks. BMC Bioinformatics 5:24

Angluin D, Aspnes J, Eisenstat D (2006) Fast computation by population protocols with a leader. Technical
Report YALEU/DCS/TR-1358, Yale University Department of Computer Science, 2006. Extended
abstract to appear, DISC

Arkin AP, Ross J, McAdams HH (1998) Stochastic kinetic analysis of a developmental pathway bifurcation
in phage-l Escherichia coli. Genetics 149:1633–1648

Barak B (2002) A probabilistic-time hierarchy theorem for ‘slightly non-uniform’ algorithms. In Pro-
ceedings of RANDOM

Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21(12):905–939
Berry G, Boudol G (1990) The chemical abstract machine. In: Proceedings of the 17th ACM SIGPLAN-

SIGACT annual symposium on principles of programming languages, pp 81–94
Cook M (2005) Networks of relations. PhD thesis, California Institute of Technology
Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–

338
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science

297:1183–1185
Érdi P, Tóth J (1989) Mathematical models of chemical reactions: theory and applications of deterministic

and stochastic models. Manchester University Press
Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley
Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and

many channels. J Phys Chem A 104:1876–1889
Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361
Gillespie DT (1992) A rigorous derivation of the chemical master equation. Physica A 188:404–425
Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

632 D. Soloveichik et al.

123

Guptasarma P (1995) Does replication-induced transcription regulate synthesis of the myriad low copy
number proteins of Escherichia coli? Bioessays 17:987–997

Karp RM, Miller RE (1969) Parallel program schemata. J Comput Syst Sci 3(4):147–195
Kierzek AM (2002) STOCKS: STOChastic kinetic simulations of biochemical systems with Gillespie

algorithm. Bioinformatics 18:470–481
Kurtz TG (1972) The relationship between stochastic and deterministic models for chemical reactions. J

Chem Phys 57:2976–2978
Liekens AML, Fernando CT (2006) Turing complete catalytic particle computers. In: Proceedings of

Unconventional Computing Conference, York
Levin B (1999) Genes VII. Oxford University Press
Macdonald J, Li Y, Sutovic M, Lederman H, Pendri K, Lu W, Andrews BL, Stefanovic D, Stojanovic MN

(2006) Medium scale integration of molecular logic gates in an automaton. Nano Lett 6:2598–2603
Magnasco MO (1997) Chemical kinetics is Turing universal. Phys Rev Lett 78:1190–1193
McAdams HH, Arkin AP (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci 94:814–819
McQuarrie DA (1967) Stochastic approach to chemical kinetics. J Appl Probab 4:413–478
Minsky ML (1961) Recursive unsolvability of Post’s Problem of ‘tag’ and other topics in theory of Turing

machines. Annals of Math 74:437–455
Neary T, Woods D (2005) A small fast universal Turing machine. Technical Report NUIM-CS-2005-TR-12,

Dept. of Computer Science, NUI Maynooth
Paun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287:73–100
Rothemund PWK (1996) A DNA and restriction enzyme implementation of Turing machines. In: Pro-

ceedings DNA Computers, pp 75–120
Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles.

PLoS Biol 2:e424
Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science

314:1585–1588
de Silva AP, McClenaghan ND (2004) Molecular-scale logic gates. Chem – Euro J 10(3):574–586
Sipser M (1997) Introduction to the theory of computation. PWS Publishing
Sprinzak D, Elowitz MB (2005) Reconstruction of genetic circuits. Nature 438:443–448
Stojanovic MN, Mitchell TE, Stefanovic D (2002) Deoxyribozyme-based logic gates. J Am Chem Soc

124:3555–3561
Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces

transient cellular differentiation. Nature 440:545–550
van Kampen NG (1997) Stochastic processes in Physics and Chemistry, revised edition. Elsevier
Vasudeva K, Bhalla US (2004) Adaptive stochastic-deterministic chemical kinetic simulations. Bioinfor-

matics 20:78–84

Computation with finite stochastic chemical reaction networks 633

123

	Computation with finite stochastic chemical reaction networks
	Abstract
	Introduction
	Stochastic model of chemical kinetics
	Time/space-bounded algorithms
	Unbounded algorithms
	Discussion
	Acknowledgments
	A. Proof details
	A.1 Clock analysis
	A.2 Time/space-bounded RM simulation
	A.3 Time/space-bounded CTM simulation
	A.4 Unbounded RM simulation
	A.5 Unbounded CTM simulation
	A.6 Decidability of reachability

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

