
ar
X

iv
:1

20
4.

41
76

v1
 [

cs
.C

C
]

 1
8

A
pr

 2
01

2

Deterministic Function Computation with Chemical Reaction

Networks∗

Ho-Lin Chen† David Doty‡ David Soloveichik§

Abstract

We study the deterministic computation of functions on tuples of natural numbers by chem-
ical reaction networks (CRNs). CRNs have been shown to be efficiently Turing-universal when
allowing for a small probability of error. CRNs that are guaranteed to converge on a correct
answer, on the other hand, have been shown to decide only the semilinear predicates.

We introduce the notion of function, rather than predicate, computation by representing
the output of a function f : Nk → Nl by a count of some molecular species, i.e., if the CRN
starts with n1, . . . , nk molecules of some “input” species X1, . . . , Xk, the CRN is guaranteed
to converge to having f(n1, . . . , nk) molecules of the “output” species Y1, . . . , Yl. We show
that a function f : Nk → Nl is deterministically computed by a CRN if and only if its graph
{(x,y) ∈ Nk × Nl | f(x) = y} is a semilinear set.

Finally, we show that each semilinear function f can be computed on input x in expected
time O(polylog ‖x‖1).

1 Introduction

The engineering of complex artificial molecular systems will require a sophisticated understanding
of how to program chemistry. A natural language for describing abstract chemical systems in a
well-mixed solution is that of (finite) chemical reaction networks (CRNs), i.e., finite sets of chemical
reactions such as A+B → A+C. When the goal is to model the behavior of individual molecules
in a well-mixed solution, CRNs are assigned semantics through stochastic chemical kinetics [7], in
which reactions occur probabilistically with rate proportional to the product of the molecular count
of their reactants and inversely proportional to the volume of the reaction vessel.

Traditionally CRNs have been used as a descriptive language to analyze naturally occurring
chemical systems. However, recent investigations of CRNs as a programming language for engi-
neering artificial chemical systems have shown CRNs to have surprisingly powerful computational
ability. For example, bounded-space Turing machines can be simulated with an arbitrarily small,
non-zero probability of error by a CRN with only a polynomial slowdown [1], and even Turing
universal computation is possible with an arbitrarily small, non-zero probability of error over all

∗The first author was supported by the Molecular Programming Project under NSF grant 0832824, the second and
third authors were supported by a Computing Innovation Fellowship under NSF grant 1019343. The third author
was supported by NIGMS Systems Biology Center grant P50 GM081879.

†National Taiwan University, Taipei, Taiwan, holinc@gmail.com
‡California Institute of Technology, Pasadena, CA, USA, ddoty@caltech.edu
§University of California, San Francisco, San Francisco, CA, USA, david.soloveichik@ucsf.edu

1

http://arxiv.org/abs/1204.4176v1

time [11]. This is surprising since finite CRNs necessarily must represent binary data strings in a
unary encoding, since they lack positional information to tell the difference between two molecules
of the same species. Other work has investigated the power of CRNs to simulate Boolean cir-
cuits [9], digital signal processing [8], the (un)decidability of whether a CRN will reach a state
where no further reaction is possible [13], and the robustness of CRNs to tolerate multiple copies
of the network running in parallel [6]. Finally, recent work proposes concrete chemical implementa-
tions of arbitrary CRN programs, particularly using nucleic-acid strand-displacement cascades as
the physical reaction primitive [5, 12].

Angluin, Aspnes and Eisenstat [2] investigated the computational power of deterministic CRNs
(under a different name, that of the equivalent distributed computing model known as population
protocols). Some CRNs, when started in an initial configuration assigning nonnegative integer
counts to each of k different input species, are guaranteed to converge on a single “yes” or “no”
answer, in the sense that there are two special “voting” species L1 and L0 so that eventually either
L1 is present and L0 absent to indicate “yes”, or vice versa to indicate “no.” The set of inputs
S ⊆ Nk that cause the system to answer “yes” is then a representation of the decision problem
solved by the CRN. Angluin, Aspnes and Eisenstat showed that the input sets S decidable by some
CRN are precisely the semilinear subsets of Nk (defined formally in Section 2.2).

We extend these prior investigations of decision problem or predicate computation to study
deterministic function computation. A function f : Nk → Nl is computed by a CRN C if the
following is true. There are “input” species X1, . . . ,Xk and “output” species Y1, . . . , Yl such that,
if C is initialized with n1, . . . , nk copies of X1, . . . ,Xk, then it is guaranteed to reach a configuration
in which the counts of Y1, . . . , Yl are described by the vector f(n1, . . . , nk), and these counts never
again change. For example, the CRN C with the single reaction X → 2Y computes the function
f(n) = 2n in the sense that, if C starts in an initial configuration with n copies of X and 0 copies
of Y , then C is guaranteed to stabilize to a configuration with 2n copies of Y (and no copies
of X). Similarly, the function f(n) = ⌊n/2⌋ is computed by the single reaction 2X → Y , in
that the final configuration is guaranteed to have exactly ⌊n/2⌋ copies of Y (and 0 or 1 copies
of X, depending on whether n is even or odd). A function is said to be semilinear if its graph
{(x,y) ∈ Nk × Nl | f(x) = y} is a semilinear set (see Fig. 1 for the graphs of the two functions
just mentioned.) We show that the functions deterministically computable by CRNs are precisely
the semilinear functions. This implies, for example, that such functions as f(n1, n2) = n1n2 or
f(n) = n2 are not deterministically computable.

Our result employs the predicate computation characterization of Angluin, Aspnes and Eisen-
stat [2], together with some nontrivial additional technical machinery. In particular, we introduce
the notion of “reducing” the computation of one CRN to that of another, essentially using one
CRN as a black box in constructing another. This is more difficult than in standard programming
languages since there is in general no way of knowing when a CRN is done computing, or whether
it will change its answer in the future.

Having established what functions are deterministically computable by CRNs given unbounded
time, we turn our attention to the time required for CRNs to converge to the answer. We show
that every semilinear function can be deterministically computed on input x in expected time
polylog(‖x‖). This is done by a similar technique used by Angluin, Aspnes, and Eisenstat [2] to
show the equivalent result for predicate computation. They run a slow deterministic computation
in parallel with a fast randomized computation, allowing the deterministic computation to compare
the two answers and update the randomized answer only if it is incorrect, which happens with low

2

probability. However, novel techniques are required since it is not as simple to “nondestructively
compare” two integers (so that the counts are only changed if they are unequal) as to compare two
Boolean values.

2 Preliminaries

Throughout the paper we use both superscripts and subscripts to index variables to make for easier
reading; the superscript never means exponentiation. Apologies in advance.

Given a vector x ∈ Zk, let ‖x‖ = ‖x‖1 =
∑k

i=1 |xi|, where xi denotes the ith coordinate of x. If
f : Zk → Zl is a function, define the graph of f to be the set

{
(x,y) ∈ Zk × Zl

∣∣ f(x) = y
}
. We

say a partial function f : Zk 99K Zl is affine if there exist kl rational numbers a11, . . . , a
l
k ∈ Q∩[0,∞)

and l+ k integers b1, . . . , bl, c1, . . . , ck ∈ Z such that for each 1 ≤ j ≤ l, yj = bj +
∑k

i=1 a
j
i (xi + ci).

In other words, the graph of f , when projected onto the (k + 1)-dimensional space defined by the
k coordinates corresponding to x and the single coordinate corresponding to yj, is a subset of a
k-dimensional hyperplane.

2.1 Chemical reaction networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the set of functions
f : Λ → N. Equivalently, we view an element C ∈ NΛ as a vector of |Λ| nonnegative integers, with
each coordinate “labeled” by an element of Λ. Given X ∈ Λ and C ∈ NΛ, we refer to C(X) as the
count of X in C. We write C ≤ C ′ to denote that C(X) ≤ C ′(X) for all X ∈ Λ. Given C,C ′ ∈ NΛ,
we define the vector component-wise operations of addition C +C ′, subtraction C −C ′, and scalar
multiplication nC for n ∈ N. If ∆ ⊂ Λ, we view a vector C ∈ N∆ equivalently as a vector C ∈ NΛ

by assuming C(X) = 0 for all X ∈ Λ \∆.
Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r,p, k〉 ∈ NΛ×NΛ×R+,

specifying the stoichiometry of the reactants and products, respectively, and the rate constant k. If
not specified, assume that k = 1 (this is the case for all reactions in this paper), so that the reaction
α = 〈r,p, 1〉 is also represented by the pair 〈r,p〉 . For instance, given Λ = {A,B,C}, the reaction
A+ 2B → A + 3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN) is a
pair N = (Λ, R), where Λ is a finite set of chemical species, and R is a finite set of reactions over
Λ. A configuration of a CRN N = (Λ, R) is a vector C ∈ NΛ. We also write #CX to denote C(X),
the count of species X in configuration C, or simply #X when C is clear from context.

Given a configuration C and reaction α = 〈r,p〉, we say that α is applicable to C if r ≤ C (i.e.,
C contains enough of each of the reactants for the reaction to occur). If α is applicable to C, then
write α(C) to denote the configuration C+p− r (i.e., the configuration that results from applying
reaction α to C). If C ′ = α(C) for some reaction α ∈ R, we write C →N C ′, or merely C → C ′

when N is clear from context. An execution (a.k.a., execution sequence) E is a finite or infinite
sequence of one or more configurations E = (C0, C1, C2, . . .) such that, for all i ∈ {1, . . . , |E| − 1},
Ci−1 → Ci. If a finite execution sequence starts with C and ends with C ′, we write C →∗

N C ′, or
merely C →∗ C ′ when the CRN N is clear from context. In this case, we say that C ′ is reachable
from C.

Let ∆ ⊆ Λ. We say that P ∈ N∆ is a partial configuration (with respect to ∆). We write
P = C ↾ ∆ for any configuration C such that C(X) = P (X) for all X ∈ ∆, and we say that P is
the restriction of C to ∆. Say that a partial configuration P with respect to ∆ is reachable from

3

configuration C ′ if there is a configuration C reachable from C ′ and P = C ↾ ∆. In this case, we
write C ′ →∗ P . An infinite execution E = (C0, C1, C2, . . .) is fair if, for all partial configurations
P , if P is infinitely often reachable then it is infinitely often reached.1 In other words, no reachable
partial configuration is “starved”. This definition of fairness is stricter than that used by Angluin,
Aspnes, and Eisenstat [2], which used only full configurations rather than partial configurations.
We choose this definition to prevent intuitively unfair executions from vacuously satisfying the
definition of “fair” simply because of some species whose count is monotonically increasing with
time (preventing any configuration from being infinitely often reachable).

Note that the definition given above, applied to finite executions, deems all of them fair vacu-
ously. We wish to distinguish between finite executions that can be extended by applying another
reaction and those that cannot. Say that a configuration is terminal if no reaction is applicable to
it. We say that a finite execution is fair if and only if it ends in a terminal configuration.

2.2 Stable decidability of predicates

We now review the definition of stable decidability of predicates introduced by Angluin, Aspnes, and
Eisenstat [2]. Those authors use the term “stably compute”, but we reserve the term “compute”
to apply to the computation of non-Boolean functions. Intuitively, some species “vote” for a
yes/no answer, and a CRN N is a stable decider if, for all initial configurations, N is guaranteed
(under fair executions) to reach a consensus vote, which is potentially different for different initial
configurations but consistent over all fair executions starting from a fixed initial configuration.

A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ, φ, σ), where (Λ, R) is a CRN,
Σ ⊆ Λ is the set of input species, Υ ⊆ Λ is the set of voters, φ : Υ → {0, 1} is the (Boolean) output
function, and σ ∈ NΛ\Σ is the initial context. Intuitively, the goal is for the CRD to get all voters
to be eventually unanimous and correct (and for at least one to be present). An input to D will
be a vector I0 ∈ NΣ. Thus a CRD together with an input vector defines an initial configuration I
defined by I(X) = I0(X) if X ∈ Σ, and I(X) = σ(X) otherwise. We say that such a configuration
is a valid initial configuration, i.e., I ↾ (Λ \ Σ) = σ. If we are discussing a CRN understood from
context to have a certain initial configuration I, we write #0X to denote I(X).

We extend φ to a partial function Φ : NΛ 99K {0, 1} as follows. Φ(C) is undefined if either
C(X) = 0 for all X ∈ Υ, or if there exist X0,X1 ∈ Υ such that C(X0) > 0, C(X1) > 0, φ(X0) = 0
and φ(X1) = 1. Otherwise, there exists b ∈ {0, 1} such that (∀X ∈ Υ)(C(X) > 0 =⇒ φ(X) = b);
in this case, the output Φ(C) of configuration C is b.

A configuration C is output stable if Φ(C) is defined and, for all C ′ such that C →∗ C ′,
Φ(C ′) = Φ(C). We say that a CRD D is stable if, for any valid initial configuration I ∈ NΛ,
there exists b ∈ {0, 1} such that every fair execution E = (I, C1, C2, . . .) contains an output stable
configuration C with Φ(C) = b (i.e., D always converges to a defined output on input I, and this
output is the same for any fair execution starting from I). If D is stable, then some unique subset
S0 ⊆ NΣ of all possible initial configurations always converges to output 0 and stays with that
output, and the remainder S1 = NΣ \ S0 always converges to output 1 and stays with that output.
We say that D stably decides the set S1, or that D stably decides the predicate ψ : NΣ → {0, 1}
defined by ψ(I0) = 1 if I0 ∈ S1 and ψ(I0) = 0 if I0 ∈ S0.

1i.e. (∀∆ ⊆ Λ)(∀P ∈ N∆)[((∃∞i ∈ N) Ci →
∗ P) =⇒ ((∃∞j ∈ N) P = Cj ↾ ∆)].

4

10
0

0
0

2 3 4 5
X

1

2

3

4

5

6

7

8

9

10

Ya) b)

1 2 3 4 5 6 7 8 9 10
X

1

2

3

4

5

Y

0
0

c)

1 2 3 4 5 6 7 8 9 10
X

1

2

3

4

5

Y

Figure 1: Examples of deterministically computable functions. (a) The graph of the function f(x) = 2x is a
semilinear set: { n1 · (1, 2) | n1 ∈ N }. This function is deterministically computed by the CRC (Λ, R,Σ,Γ, σ) where
(Λ, R) is the CRN consisting of a single reaction X → 2Y , Σ = {X}, Γ = {Y }, and σ = {}. (b) The graph of the
function f(x) = ⌊x/2⌋ is a semilinear set: { n1 · (2, 1) | n1 ∈ N } ∪ { (1, 0) + n1 · (2, 1) | n1 ∈ N }. This function
is deterministically computed by the CRC (Λ, R,Σ,Γ, σ) where (Λ, R) is the CRN consisting of a single reaction
2X → Y , Σ = {X}, Γ = {Y }, and σ = {}. (c) The graph of the function f(x) = max(0, ⌊x/2⌋ − 1) is a semilinear
set: { (2, 0) + n1 · (2, 1) | n1 ∈ N } ∪ { (3, 0) + n1 · (2, 1) | n1 ∈ N }. This function is deterministically computed by
the CRC (Λ, R,Σ,Γ, σ) where (Λ, R) is the CRN consisting of reactions {2X → Y, K+Y → ∅}, Σ = {X}, Γ = {Y },
and σ = {1K}.

A set A ⊆ Nk is linear if there exist vectors b,u1, . . . ,up ∈ Nk such that

A =
{

b+ n1u
1 + . . . + npu

p
∣∣ n1, . . . , np ∈ N

}
.

A is semilinear if it is a finite union of linear sets.
The following theorem is due to Angluin, Aspenes, and Eisenstat [2]:

Theorem 2.1 ([2]). A set A ⊆ Nk is stably decidable by a CRD if and only if it is semilinear.

The definitions of [2] assume that Υ = Λ (i.e., every species votes). However, it is not hard
to show that we may assume there are only two voting species, L0 and L1, so that #L0 > 0 and
#L1 = 0 means that the CRD is answering “no”, and #L0 = 0 and #L1 > 0 means that the CRD
is answering “yes.” This convention will be more convenient in this paper.

2.3 Stable computation of functions

We now define a notion of stable computation of functions similar to those above for predicates.2

Intuitively, the inputs to the function are the initial counts of inputs species X1, . . . ,Xk, and the
outputs are the counts of “output” species Y1, . . . , Yl, such that the CRN is guaranteed to eventually
reach a configuration in which the counts of the output species have the correct values and never
change from that point on.

We now formally define what it means for a CRN to stably compute a function. Let k, l ∈
Z+. A chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ,Γ, σ), where (Λ, R) is a CRN,
Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is the set of output species, such that Σ ∩ Γ = ∅,
|Σ| = k, |Γ| = l, and σ ∈ NΛ\Σ is the initial context. Write Σ = {X1,X2, . . . ,Xk} and Γ =
{Y1, Y2, . . . , Yl}. We say that a configuration C is output count stable if, for every C ′ such that
C →∗ C ′ and every X ∈ Γ, C(X) = C ′(X) (i.e., the counts of species in Γ will never change if
C is reached). As with CRD’s, we require initial configurations I of D with input I0 ∈ NΣ to

2The extension from Boolean predicates to functions described by Aspnes and Ruppert [4] applies only to finite-
range functions, where one can choose |Λ| ≥ |Y | for output range Y .

5

obey I(X) = I0(X) if X ∈ Σ and I(X) = σ(X) otherwise, calling them valid initial configurations.
We say that N stably computes f : Nk → Nl if, for every valid initial configuration I ∈ NΛ,
every fair execution E = (I, C1, C2, . . .) contains an output count stable configuration C such that
f(I(X1), I(X2), . . . , I(Xk)) = (C(Y1), C(Y2), . . . , C(Yl)). In other words, the counts of species in Γ
are guaranteed to converge to the value of f(n1, n2, . . . , nk) when started in an initial configuration
with ni copies of Xi for each i ∈ {1, . . . , k}. We say that such a CRC is count stable. For any
species A ∈ Λ, we write #∞A to denote the eventual convergent count of A if #A is guaranteed to
stabilize; otherwise, #∞A is undefined.

Fig. 1 shows example CRCs for f(x) = 2x, f(x) = ⌊x/2⌋, and f(x) = max(0, ⌊x/2⌋ − 1). In
sections 3 and 4 we will describe systematic, but much more complex constructions for these and
all functions with semilinear graphs.

2.4 Time complexity model

Since all rate constants in this paper are 1, we define time assuming this to be true. A reaction is
unimolecular if it has one reactant and bimolecular if it has two reactants. We use no higher-order
reactions in this paper.

Given a fixed volume v and current configuration C, the propensity of a unimolecular reaction
α : X → . . . in configuration C is ρ(C,α) = #CX. The propensity of a bimolecular reaction
α : X + Y → . . ., where X 6= Y , is ρ(C,α) = #CX#CY

v
. The propensity of a bimolecular reaction

α : X +X → . . . is ρ(C,α) = 1
2
#CX(#CX−1)

v
. The propensity function determines the kinetics of

the system as follows. The time until the next reaction occurs is an exponential random variable
with rate ρ(C) =

∑
α∈R ρ(C,α) (note that ρ(C) = 0 if no reactions are applicable to C). The

probability that next reaction will be a particular αnext is
ρ(C,αnext)

ρ(C) .
The kinetic model is based on the physical assumption of well-mixedness valid in a dilute so-

lution. Thus, we assume the finite density constraint, which stipulates that a volume required to
execute a CRN must be proportional to the maximum molecular count obtained during execu-
tion [11].

3 Deterministic function computation

In this section we use Theorem 2.1 to show that only “simple” functions can be stably computed
by CRCs. This is done by showing how to reduce the computation of a function by a CRC to the
decidability of its graph by a CRD, and vice versa. In this section we do not concern ourselves with
time complexity, so the volume is left unspecified.

A function is said to be definable in a logical theory if its graph is a set definable in that theory.
In particular, since the semilinear sets are precisely those definable in Presburger arithmetic [10],
a function is definable in Presburger arithmetic if and only if its graph is semilinear. We call such
a function a semilinear function.

The next lemma shows that every function computable by a chemical reaction network is semi-
linear.

Lemma 3.1. Every function stably computable by a CRC is semilinear.

Proof. Let C = (Λ, R,Σ,Γ, σ) be the CRC that stably computes f : Nk → Nl, with input species
Σ = {X1, . . . ,Xk} and output species Γ = {Y1, . . . , Yl}. Modify C to obtain the following CRD

6

D = (Λ′, R′,Σ′,Υ′, φ′, σ′). Let YC = {Y C
1 , . . . , Y

C
l }, where each Y C

i 6∈ Λ are new species. Let
YP = {Y P

1 , . . . , Y
P
l }, where each Y P

i 6∈ Λ are new species. Intuitively, #Y P
i represents the number

of Yi’s produced by C and #Y C
i the number of Yi’s consumed by C. The goal is for C ′ to stably decide

the predicate f(#0X1, . . . ,#0Xk) = (#0Y
C
1 , . . . ,#0Y

C
l). In other words, the initial configuration

of C ′ will be the same as that of C except for some copies of Y C
i , equal to the purported output of

f to be tested by D. Since every predicate stably decidable by a CRD is semilinear (Theorem 2.1),
this will prove the lemma.

Let Λ′ = Λ ∪ YC ∪ YP ∪ {L0, L1}. Let Σ′ = Σ ∪ YC . Let Υ′ = {L0, L1}, with φ(L0) = 0
and φ(L1) = 1. Let σ′(S) = 0 for all S ∈ Λ′ \ Σ′. Modify R by adding reactions to obtain
R′ as follows. For each reaction α that consumes a net number n of Yi molecules, append n
products Y C

i to α. For each reaction α that produces a net number n of Yi molecules, append
n products Y P

i to α. For example, the reaction A + 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 becomes
A+ 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 + 2Y P

1 + Y C
3 . Since C is count-stable, eventually no reactions

producing or consuming net copies of Yi are possible, whence D as defined so far is count-stable
with respect to Y P

i and Y C
i as well.

Then add the following additional reactions to R′, for each i ∈ {1, . . . , l},

Y P
i + Y C

i → L1 (3.1)

Y P
i + L1 → Y P

i + L0 (3.2)

Y C
i + L1 → Y C

i + L0 (3.3)

L0 + L1 → L1 (3.4)

In the following, we use #↑
∞Y P

i to denote the total number of Y P
i ever produced and #↑

∞Y C
i to

denote #0Y
C
i plus the total number of Y C

i ’s ever produced. Note that, if and only if f(#0X1, . . . ,#0Xk) =
(#0Y

C
1 , . . . ,#0Y

C
l), then eventually, for each i, #Y P

i and #Y C
i stabilize to equal values in the ab-

sence of reaction (3.1); in other words, if and only if #↑
∞Y P

i = #↑
∞Y C

i .
Since Y P

i and Y C
i are possibly produced but not consumed by reactions other than (3.1), we

may think of reaction (3.1) as if it does not occur until #Y P
i and #Y C

i have stabilized, even
though reaction (3.1) may consume some copies of Y P

i and Y C
i before all eventual copies have been

produced.
Reactions (3.1)-(3.4) ensure that if #↑

∞Y P
i = #↑

∞Y C
i for all i ∈ {1, . . . , l}, then #∞L

1 > 0

and #∞L
0 = 0, and if #↑

∞Y P
i 6= #↑

∞Y C
i for some i ∈ {1, . . . , l}, then #∞L

1 = 0 and #∞L
0 > 0.

To show that this holds, we have two cases for each i ∈ {1, . . . , l}. In the following, we write
f(#X1, . . . ,#Xk)i to denote the value #Yi if f(#X1, . . . ,#Xk) = (#Y1, . . . ,#Yl).

1. f(#0X1, . . . ,#0Xk)i = #0Y
C
i for all i ∈ {1, . . . , l}: Then #↑

∞Y P
i = #↑

∞Y C
i for all i ∈ {1, . . . , l},

so eventually every Y P
i and Y C

i disappears through reaction (3.1). At this point there are
some number of L0’s and L1’s remaining. The number of L1’s must be positive since the
final execution of reaction (3.1) created a copy of L1. Since none of reactions (3.1)-(3.3) are
possible, #L1 stays positive forever. After this time, reaction (3.4) eventually removes all
copies of L0.

2. f(#0X1, . . . ,#0Xk)i 6= #0Y
C
i for some i ∈ {1, . . . , l}: Then #↑

∞Y P
i 6= #↑

∞Y C
i for some i ∈

{1, . . . , l}, so reaction (3.1) ensures that eventually either 1) #∞Y
C
i = 0 and #∞Y

P
i > 0, or

2) #∞Y
C
i > 0 and #∞Y

P
i = 0. Eventually reaction (3.1) is not possible for any j ∈ {1, . . . , l}

7

because either such that #∞Y
P
j = 0 or #∞Y

C
j = 0, and at that point, no more copies of L1

are produced. From then on, reaction (3.2) (in case (1)) or reaction (3.3) (in case (2)) ensures
that eventually all copies of L1 are converted to L0. Reaction (3.4) may convert some copies
of L0 back to L1 before this happens, but this strictly decreases the quantity (#L1+#L0). If
this quantity reaches 1 then reaction (3.4) is no longer possible. Thus eventually all existing
copies of L1 are converted to L0 and reaction (3.4) is no longer possible.

Thus, if f(#0X1, . . . ,#0Xk) = (#0Y
C
1 , . . . ,#0Y

C
l), then #∞L

1 > 0 and #∞L
0 = 0, and

otherwise, #∞L
1 = 0 and #∞L

0 > 0, showing that D stably decides the graph of f .

The next lemma shows the converse of Lemma 3.1.

Lemma 3.2. Every semilinear function is stably computable by a CRC.

Proof. Let f : Nk → Nl be a semilinear function, and let

F =
{

(x,y) ∈ Nk × Nl
∣∣∣ f(x) = y

}

denote the graph of f . We then consider the set

F̂ =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣∣ f(x) = yP − yC

}
.

Intuitively, F̂ defines the same function as F , but with each output variable expressed as the
difference between two other variables. Note that F̂ is not the graph of a function since for each
y ∈ Nl there are an infinite number of pairs (yP ,yC) such that yP − yC = y. However, we only
care that F̂ is a semilinear set so long as F is a semilinear set.

Then by Theorem 2.1, F̂ is stably decidable by a CRD D = (Λ, R,Σ,Υ, φ, σ), where Σ =
{X1, . . . ,Xk, Y

P
1 , . . . , Y

P
l , Y

C
1 , . . . , Y

C
l }, and we assume that Υ contains only species L1 and L0

such that for any output-stable configuration of D, exactly one of #L1 or #L0 is positive to
indicate a yes or no answer, respectively.

Define the CRC C = (Λ′, R′,Σ′,Γ′, σ′) as follows. Let Σ′ = {X1, . . . ,Xk}. Let Γ
′ = {Y1, . . . , Yl}.

Let Λ′ = Λ ∪ Γ′. Let σ′(S) = 0 for all S ∈ Λ \ (Σ ∪ {L0}), and let σ′(L0) = 1. Intuitively, we
will have L0 change the value of y (by producing either Y P

i or Y C
i molecules), since L0’s presence

indicates that D has not yet decided that the predicate is satisfied. It essentially searches for new
values of y that do satisfy the predicate. This indirect way of representing the value y is useful
because yP and yC can both be increased monotonically to change y in either direction. If we
wanted to test a lower value of yi, then this would require consuming a copy of Yi, but this may
not be possible if D has already consumed all of them.

Let R′ be R plus the following reactions for each 1 ≤ i ≤ l:

L0 → L0 + Y P
i + Yi (3.5)

L0 + Yi → L0 + Y C
i (3.6)

It is clear that reactions (3.5) and (3.6) enforce that at any time, #Yi is equal to the total
number of Y P

i ’s produced by reaction (3.5) minus the total number of Y C
i ’s produced by reaction

(3.6) (although some of each of Y P
i or Y C

i may have been produced or consumed by other reactions
in R).

8

Suppose that f(x) 6= (#Y1, . . . ,#Yl). Then if there are no L0 molecules present, the counts of
Y P
i and Y C

i are not changed by reactions (3.5) and (3.6). Therefore only reactions in R proceed, and
by the correctness of D, eventually an L0 molecule is produced (since eventually D must reach an
output-stable configuration answering “no”, although L0 may appear before D reaches an output-
stable configuration, if some L1 are still present). Once L0 is present, by the fairness condition
(choosing ∆ = {Y1,Yl}), eventually the value of (#Y1, . . . ,#Yl) will change by reaction (3.5)
or (3.6). In fact, every value of (#Y1, . . . ,#Yl) is possible to explore by the fairness condition.

Suppose then that f(x) = (#Y1, . . . ,#Yl). Perhaps L
0 is present because the reactions in R have

not yet reached an output-stable “yes” configuration. Then perhaps the value of (#Y1, . . . ,#Yl)
will change so that f(x) 6= (#Y1, . . . ,#Yl). But by the fairness condition, a correct value of
(#Y1, . . . ,#Yl) must be present infinitely many times, so again by the fairness condition, since
from such a configuration it is possible to eliminate all L0 molecules before producing Y P

i or
Y C
i molecules, this must eventually happen. When all L0 molecules are gone while f(x) =

(#Y1, . . . ,#Yl), it is no longer possible to change the value of (#Y1, . . . ,#Yl), whence C has reached
a count-stable configuration with the correct answer. Therefore C stably computes f .

Lemmas 3.1 and 3.2 immediately imply the following theorem.

Theorem 3.3. A function f : Nk → Nl is stably computable by a CRC if and only if it is semilinear.

One unsatisfactory aspect of Lemma 3.2 is that we “peek inside the black box” of D by using
the fact that we know it is deciding a semilinear predicate. Lemma 3.1, on the other hand, uses only
the fact that C is computing some function. Although we know that C, being a chemical reaction
computer, is only capable of computing semilinear functions, if we imagine that some external
powerful “oracle” controlled the reactions of C to allow it to stably compute a non-semilinear
function, then D would decide that function’s graph. Thus Lemma 3.1 is more like the black-box
oracle Turing machine reductions employed in computability and complexity theory, which work
no matter what mythical device is hypothesized to be responsible for answering the oracle queries.

4 Speed of deterministic function computation

Theorem 3.3 shows that precisely the semilinear functions can be computed without error by a
CRC. However, like the predicate-deciding CRDs of Angluin, Aspnes, and Eisenstat [2], the speed
is slow, linear-time (in the number of molecules) in the case of one direction and exponential-time
in the other direction. Soloveichik, Cook, Winfree, and Bruck [11], and independently, Angluin,
Aspnes, and Eisenstat [1] (for bounded-space computation) showed that if a small probability of
error is allowed, then arbitrary Turing machines can be simulated with only a polynomial slowdown.
The latter authors combined the results of [1] and [2] to show that semilinear functions can be
computed without error in expected polylogarithmic time. In this section we show that a similar
technique implies that semilinear functions can be computed by CRNs without error in expected
polylogarithmic time.

Throughout this section, we use the technique of “running multiple CRNs in parallel” on the
same input. To accomplish this it is necessary to split the inputsX1, . . . ,Xk into separate molecules
using a reaction Xi → X1

i +X
2
i + . . .+X

p
i , which will add only O(log n) to the time complexity, so

that each of the p separate parallel CRNs do not interfere with one another. For brevity we omit
stating this formally when the technique is used.

9

Theorem 4.1. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably computes f , and
the expected time for C to reach a count-stable configuration on input x is O(polylog ‖x‖).

Proof. (proof sketch) Our CRC will use the counts of Yj for each output dimension yj as the global
output, and begins by running in parallel:

1. A fast, error-prone CRC F for y,b, c = f(x). It is constructed based on [1]. By [1], for any
constant c > 0, we may design F so that it is correct and finishes in time O(log5 n) with
probability at least 1−n−c. We modify it so that upon halting, it copies an “internal” output
species Ŷj to Yj (the global output), Bj, and Cj through reactions H + Ŷj → Yj + Bj + Cj

(in asymptotically negligible time). Here, H is some molecule that is guaranteed with high
probability not to be present until F has halted, and to be present in large (Ω(n)) count so
that the conversion is fast. In this way we are guaranteed that the amount of Yj produced
by C is the same as the amounts of Bj and Cj no matter whether its computation is correct
or not.

2. A slow, deterministic CRC S for y′ = f(x). It is constructed as in Lemma 4.2, running in
expected O(n log n) time.

3. A slow, deterministic CRD D for the semilinear predicate “b = f(x)?”. It is constructed as
in [3] and runs in expected O(n log n) time.

Following Angluin, Aspnes, and Eisenstat [1], we construct a “timed trigger” as follows, using
a leader molecule, a marker molecule, and n = O(‖x‖) interfering molecules. The leader fires
the trigger if it encounters the marker molecule d times without any intervening reactions with
the interfering molecules. This happens rarely enough that with high probability the trigger fires
after F and D finishes (time analysis is presented below). When the trigger fires, it checks if D is
outputting a “no” (e.g. has a molecule of L0), and if so, produces a molecule of Pfix. This indicates
that the output of the fast CRC F is not to be trusted, and the system should switch from the
possible erroneous result of F to the sure-to-be correct result of S.

Once a Pfix is produced, the system converts the output molecules Y ′
j of the slow, deterministic

CRC S to the global output Yj, and kills enough of the global output molecules to remove the ones
produced by the fast, error-prone CRC:

Pfix + Y ′
j → Pfix + Yj (4.1)

Pfix + Cj → Pfix + Y j (4.2)

Yj + Y j → ∅. (4.3)

Finally, Pfix triggers a process consuming “essential components” of F in expected O(log n)
time so that afterward, F cannot produce any output molecules. While this step is not required
for correctness, it is necessary for the time analysis in order to ensure that F does not take too
long to output (if F fails it could produce its output even after S).

First, observe that the output will always eventually converge to the right answer, no matter
what happens: If Pfix is eventually produced, then the output will eventually be exactly that given
by S which is guaranteed to converge correctly. If Pfix is never produced, then the fast, error-prone
CRC must produce the correct amount of Yj — otherwise, D will detect a problem.

10

For the expected time analysis, let us first analyze the trigger. The probability that the trigger
leader will fire on any particular reaction number is at most n−d. In time n2, the expected number
of leader reactions is O(n2). Thus, the expected number of firings of the trigger in n2 time is
n−d+2. This implies that the probability that the trigger fires before n2 time is at most n−d+2. The
expected time for the trigger to fire is O(nd).

We now consider the contribution to the total expected time from 3 cases:

1. F is correct, and the trigger fires after time n2. There are two subcases: (a) F finishes before
the trigger fires. Conditional on this, the whole system converges to the correct answer, never
to change it again, in expected time O(log5 n). This subcase contributes at most O(log5 n)
to the total expected time. (b) F finishes after the trigger fires. In this case, we may produce
a Pfix molecule and have to rely on the slow CRC S. The probability of this case happening
is at most n−c. Conditional on this case, the expected time for the trigger to fire is still
O(nd). The whole system converges to the correct answer in expected time O(nd), because
everything else is asymptotically negligible. Thus the contribution of this subcase to the total
expectation is at most O(n−c · nd) = O(n−c+d).

2. F is correct, but the trigger fires before n2 time. In this case, we may produce a Pfix molecule
and have to rely on the slow CRC S for the output. The probability of this case occurring is
at most n−d+2. Conditional on this case occurring, the expected time for the whole system
to converge to the correct answer can be bounded by O(n2). Thus the contribution of this
subcase to the total expectation is at most O(n−d+2 · n2) = O(n−d+4).

3. F fails. In this case we’ll have to rely on the slow CRC S for the output again. Since this
occurs with probability at most n−c, and the conditional expected time for the whole system
to converge to the correct answer can be bounded by O(nd) again, the contribution of this
subcase to the total expectation is at most O(n−c · nd) = O(n−c+d).

So the total expected time is bounded by O(log5 n) + O(n−c+d) + O(n−d+4) + O(n−c+d) =
O(log5 n) for d > 4, c > d.

Lemma 4.2. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably computes f , and
the expected time for C to reach a count-stable configuration on input x is O(‖x‖ log ‖x‖) (where
the O() constant depends on f).

Proof. By Lemma 3.2, there is a CRC Cs that stably computes f . However, that CRC is too slow to
use in this proof. We provide an alternative proof that every semilinear function can be computed
by a CRC in expected time O(‖x‖ log ‖x‖).

By Lemma 4.3, there is a finite set F = {f1 : Nk 99K Nl, . . . , fm : Nk 99K Nl} of affine partial
functions, where each dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is defined, then
f(x) = fi(x). We compute f on input x as follows. Since each dom fi is a linear (and therefore
semilinear) set, we compute each predicate φi = “x ∈ dom fi and (∀1 ≤ i′ < i) x 6∈ dom fi′?”
by separate parallel CRD’s. (The latter condition ensures that for each x, precisely one of the
predicates is true.)

By Lemma 4.5, we can compute each fi by parallel CRC’s. Assume that for each 1 ≤ i ≤ m
and each 1 ≤ j ≤ l, the jth output of the ith function is represented by species Ŷ i

j . Each Ŷ
i
j is an

“inactive” version of “active” output species Y i
j .

11

For each 1 ≤ i ≤ m, we assume that the CRD computing the predicate φi represents its output
by voting species Li

1 to represent “yes” and Li
0 to represent “no”. Then add the following reactions

for each 1 ≤ i ≤ m and each 1 ≤ j ≤ l:

Li
1 + Ŷ i

j → Li
1 + Y i

j + Yj

Li
0 + Y i

j → M i
j

M i
j + Yj → Li

0 + Ŷ i
j .

That is, a “yes” answer for function i activates the ith output and a “no” answer deactivates the
ith output. Eventually each CRD stabilizes so that precisely one i has Li

1 present, and for all
i′ 6= i, Li′

0 is present. At this point, all outputs for the correct function fi are activated and all
other outputs are deactivated. Since eventually the count of Y i

j stabilizes to 0 for all but one value
of i, this ensures that #Yj stabilizes to the correct value of output yj .

It remains to analyze the expected time to stabilization. Let n = ‖x‖. By Lemma 4.5, the
expected time for each affine function computation to complete is O(n log n). Since the Ŷ j

i are

produced monotonically, the most Y j
i molecules that are ever produced is #∞Ŷ

j
i . Since we have m

computations in parallel, the expected time for all of them to complete is O((n log n)m) = O(n log n)
(since m depends on f but not n). We must also wait for each predicate computation to complete.
By Theorem 5 of [2], each of these predicates takes expected time O(n) to complete, so all of them
complete in expected time O(nm) = O(n).

At this point, the Li
1 leaders must convert inactive output species to active, and Li′

0 (for i′ 6= i)
must convert active output species to inactive. A similar analysis to the proof of Lemma 4.5 shows
that each of these requires at most O(n log n) expected time, therefore they all complete in expected
time O((n log n)m) = O(n log n).

Lemma 4.3. Let f : Nk → Nl be a semilinear function. Then there is a finite set {f1 : Nk 99K

Nl, . . . , fm : Nk 99K Nl} of affine partial functions, where each dom fi is a linear set, such that, for
each x ∈ Nk, if fi(x) is defined, then f(x) = fi(x).

Proof. Let F =
{

(x,y) ∈ Nk ×Nl
∣∣ f(x) = y

}
be the graph of f . Since F is semilinear, it is

a finite union of linear sets {L1, . . . , Ln}. It suffices to show that each of these linear sets Lm is
the graph of an affine partial function. Let L′

m be the (k + 1)-dimensional projection of Lm onto
the coordinates defined by x and yi, which is linear because Lm is. Since L′

m is linear, there exist
vectors b,u1, . . . ,up ∈ Nk+1 such that L′

m =
{

b+ n1u
1 + . . . + npu

p
∣∣ n1, . . . , np ∈ N

}
.

It suffices to show that L′
m is a subset of a k-dimensional hyperplane. This is true if at most k

of the u1, . . . ,up are linearly independent. Suppose not; then there are k + 1 linearly independent
vectors among the list. Assume without loss of generality that they are u1, . . . ,uk+1. For each
1 ≤ i ≤ k + 1, let vi be ui projected onto the first k coordinates. Since there are k + 1 vectors
and they are k-dimensional, v1, . . . ,vk+1 must be linearly dependent. By Lemma 4.4, there exist
two lists of natural numbers N = (n1, . . . , nk+1) and M = (m1, . . . ,mk+1) such that N 6= M and∑k+1

i=1 niv
i =

∑k+1
i=1 miv

i. Then the points

z1 = b+
k+1∑

i=1

niu
i and z2 = b+

k+1∑

i=1

miu
i

are in L′
m. They must have different y-coordinates, or else we would have z1 = z2 (since their first

k coordinates agree), which would contradict the linear independence of u1, . . . ,uk+1. Therefore

12

L′
m does not define the graph of a function since these two identical inputs map to two different

outputs, a contradiction.

Lemma 4.4. Let v1, . . . ,vt ∈ Nk be linearly dependent vectors. Then there are two lists of natural
numbers N = (n1, . . . , nt) ∈ Nt and M = (m1, . . . ,mt) ∈ Nt such that N 6= M and

∑t
i=1 niv

i =∑t
i=1miv

i.

Proof. By the definition of linear dependence, there exist two lists of real numbersN ′ = (n′1, . . . , n
′
t) ∈

Rt and M ′ = (m′
1, . . . ,m

′
t) ∈ Rt such that N ′ 6= M ′ and

∑t
i=1 n

′
iv

i =
∑t

i=1m
′
iv

i ∈ Nk (since all
points, integer or not, in the basis of v1, . . . ,vt ∈ Nk can be so expressed). Perhaps some of the
coefficients are negative; however, by increasing both n′i andm

′
i by min{n′i,m

′
i} (which changes each

sum by the same amount, keeping them equal), we may assume that all coefficients are nonnegative.
Furthermore, since the sum

∑t
i=1 niv

i is integer-valued, N ′,M ′ ∈ Qt.
Let L be the least common multiple of the denominators of each n′i and m′

i when expressed
in lowest terms. By multiplying each coefficient by L, we obtain nonnegative integers N =
(n1, . . . , nt) ∈ Nt and M = (m1, . . . ,mt) ∈ Nt such that N 6=M and

∑t
i=1 niv

i =
∑t

i=1miv
i.

Lemma 4.5. Let f : Nk 99K Nl be a partial affine function. Then there is a CRC that computes f
on input x in expected time O(‖x‖ log ‖x‖), such that the output molecules monotonically increase
with time (i.e. none are ever consumed).

Proof. If y = f(x), then there exist kl+l+k integers a11, . . . , a
l
k ∈ Q∩[0,∞) and b1, . . . , bl, c1, . . . , ck ∈

Z such that each yj = bj +
∑k

i=1 a
j
i (xi + ci). Define the CRC as follows. It has input species

Σ = {X1, . . . ,Xk} and output species Γ = {Y1, . . . , Yl}.
Let bj1, . . . , b

j
k ∈ {−|bj |, . . . , |bj |} be integers such that

∑k
i=1 b

j
i = bj . Let c

1
i , . . . , c

l
i ∈ {−|ci|, . . . , |ci|}

be integers such that
∑l

j=1 c
j
i = ci. For each 1 ≤ i ≤ k and 1 ≤ j ≤ l, start with a leader molecule

L̂j

i,c
j
i

. For each 1 ≤ i ≤ k and 1 ≤ j ≤ l, let
n
j
i

d
j
i

be aji expressed as a fraction such that dji > ci and,

if bj < 0, nji ≥ −bj . For each 1 ≤ i ≤ k, add the reaction

Xi → X1
i +X2

i + . . . +X l
i

For each 1 ≤ i ≤ k, 1 ≤ j ≤ l and m such that min{0, cji } ≤ m ≤ dji , add the reactions

L̂j
i,m +Xj

i →

{
L̂j
i,m+1, if m < dji ;

Lj
i,0 + (nji + bji)Yj, otherwise.

Lj
i,m +Xj

i →

{
Lj
i,m+1, if m < dji ;

Lj
i,0 + njiYj, otherwise.

Each initial leader L̂ starts counting (m is the “current count”) at an initial value either above
or below 0 (depending on the sign of ci) to account for the initial offset ci of Xi. Also, each initial
leader releases a different amount of Yj (again depending on the sign of bj) to account for the initial

offset bj of Yj . After counting to dji , each initial leader L̂ converts to a normal leader L, which

releases nji Yj molecules for every dji Xi molecules encountered. Therefore (after accounting for
initial offsets) each Xi molecule converts into a number of Yj molecules based on the weighted sum

13

of the aji coefficients. Therefore when all Xj
i molecules are consumed, the number of Yj molecules

is the proper value yj = bj +
∑k

i=1 a
j
i (xi + ci).

It remains to analyze the expected completion time. Let n = ‖x‖. Since the total number of
molecules in solution at any time is O(n), the volume required is also O(n). We measure the time
to consume all Xi molecules for all i. We start with n such molecules, so the time for all of them
to convert is the maximum of n exponential random variables, each with constant expected value,
which is O(log n).

Then all Lj
i molecules must encounter every Xj

i molecule. By a coupon collector argument, this
requires at most O(n log n) time. Therefore the CRC stabilizes in expected time O(n log n).

Acknowledgements. We thank Damien Woods and Niranjan Srinivas for many useful discus-
sions.

References

[1] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, pages 61–75, 2006.

[2] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are semi-
linear. In PODC, pages 292–299, 2006.

[3] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

[4] James Aspnes and Eric Ruppert. An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98–117, 2007.

[5] Luca Cardelli. Strand algebras for DNA computing. Natural Computing, 10(1):407–428, 2011.

[6] Anne Condon, Alan Hu, Ján Manuch, and Chris Thachuk. Less haste, less waste: On recycling
and its limits in strand displacement systems. Journal of the Royal Society Interface, 2012. to
appear. Preliminary version appeared in DNA 2011.

[7] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[8] Hua Jiang, Marc Riedel, and Keshab Parhi. Digital signal processing with molecular reactions.
IEEE Design and Test of Computers, 2012. to appear.

[9] Marcelo O. Magnasco. Chemical kinetics is Turing universal. Physical Review Letters,
78(6):1190–1193, 1997.

[10] Mojżesz Presburger. Ub̈er die vollständigkeit eines gewissen systems der arithmetik ganzer
zahlen. In welchem die Addition als einzige Operation hervortritt. Compte Rendus du I. Con-
grks des Mathematiciens des pays Slavs, Warsaw, pages 92–101, 1930.

[11] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7(4):615–633, 2008.

14

[12] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393, 2010.

[13] Gianluigi Zavattaro and Luca Cardelli. Termination problems in chemical kinetics. CONCUR
2008-Concurrency Theory, pages 477–491, 2008.

15

	1 Introduction
	2 Preliminaries
	2.1 Chemical reaction networks
	2.2 Stable decidability of predicates
	2.3 Stable computation of functions
	2.4 Time complexity model

	3 Deterministic function computation
	4 Speed of deterministic function computation

