
Programmability of Chemical Reaction
Networks

Matthew Cook, David Soloveichik, Erik Winfree,
and Jehoshua Bruck

Abstract Motivated by the intriguing complexity of biochemical circuitry within
individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a for-
mal model that considers a set of chemical reactions acting on a finite num-
ber of molecules in a well-stirred solution according to standard chemical kinet-
ics equations. SCRNs have been widely used for describing naturally occurring
(bio)chemical systems, and with the advent of synthetic biology they become a
promising language for the design of artificial biochemical circuits. Our interest here
is the computational power of SCRNs and how they relate to more conventional
models of computation. We survey known connections and give new connections
between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets,
Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran,
and Turing Machines. A theme to these investigations is the thin line between de-
cidable and undecidable questions about SCRN behavior.

1 Introduction

Stochastic chemical reaction networks (SCRNs) are among the most fundamental
models used in chemistry, biochemistry, and most recently, computational biology.
Traditionally, analysis has focused on mass action kinetics, where reactions are as-
sumed to involve sufficiently many molecules that the state of the system can be
accurately represented by continuous molecular concentrations with the dynamics
given by deterministic differential equations. However, analyzing the kinetics of
small-scale chemical processes involving a finite number of molecules, such as oc-
curs within cells, requires stochastic dynamics that explicitly track the exact num-
ber of each molecular species [1–3]. For example, over 80% of the genes in the
E. coli chromosome are expressed at fewer than a hundred copies per cell [4], av-
eraging, for example, only 10 molecules of Lac repressor [5]. Further, observations
and computer simulations have shown that stochastic effects resulting from these
small numbers may be physiologically significant [6–8].

M. Cook (!)
Institute of Neuroinformatics, UZH, ETH Zürich, Zürich, Switzerland
e-mail: cook@ini.phys.ethz.ch

A. Condon et al. (eds.), Algorithmic Bioprocesses, Natural Computing Series,
DOI 10.1007/978-3-540-88869-7_27, © Springer-Verlag Berlin Heidelberg 2009

543

544 M. Cook et al.

In this paper, we examine the computational power of Stochastic Chemical Reac-
tion Networks. Stochastic Chemical Reaction Networks are closely related to com-
putational models such as Petri nets [9], Vector Addition Systems (VASs) [10], Frac-
tran [11, 12], and Register Machines (sometimes called Counter Machines) [13],
and for many of these systems we can also consider stochastic or nondeterministic
variants. Our initial route into this subject came through the analysis of a seemingly
quite unrelated question: What digital logic circuits are constructible with a given
set of gate types when it is not possible to copy values (as is true, for example, in
quantum circuits)? It turns out that this gate implementability question, as we will
discuss in Sect. 4.1, is very closely related to the question of what states can be
reached by a Stochastic Chemical Reaction Network.

Given the importance of stochastic behavior in Chemical Reaction Networks, it
is particularly interesting that whereas most questions of possibility concerning the
behavior of these models are decidable [10], the corresponding questions of prob-
ability are undecidable [14, 15]. This result derives from showing that Stochastic
Chemical Reaction Networks can simulate Register Machines [16] efficiently [17]
within a known error bound that is independent of the unknown number of steps
prior to halting [14]. This result—that when answers must be guaranteed to be
correct, computational power is limited, but when an arbitrarily small error prob-
ability can be tolerated, the computational power is dramatically increased—can
be immediately applied to the other models (Petri nets and VASs) when they are
endowed with appropriate stochastic rates. This result is surprising, in light of the
relatively ineffective role the addition of probability plays in the widely held belief
that BPP = P .

Several further results extend and refine this distinction.

• When endowed with special fast reactions guaranteed to occur before any slow
reaction, Stochastic Chemical Reaction Networks become Turing universal, and
thus can compute any computable function without error.

• Stochastic Chemical Reaction Networks with reaction rates governed by standard
chemical kinetics can compute any computable function with probability of error
less than ε for any ε > 0, but for ε = 0 universal computation is impossible [10,
14, 17].

• Stochastic Chemical Reaction Networks in which each reaction’s probability of
occurring depends only on what reactions are possible (but not on the concentra-
tions) are not capable of universal computation with any fixed bounded probabil-
ity of success.

• Taking the result of the longest possible sequence of reactions as the answer,
Stochastic Chemical Reaction Networks are capable of computing exactly the
class of primitive recursive functions without error.

• The time and space requirements for Stochastic Chemical Reaction Networks do-
ing computation, compared to a Turing Machine, are a simple polynomial slow-
down in time, but an exponential increase in space [14, 17].

This last result, regarding the complexity, is the best that can be expected, due to
the unavoidable fact that information must effectively be stored in the bits compris-
ing the number of molecules present of each species. For uniform computations,

Programmability of Chemical Reaction Networks 545

wherein the same finite set of chemical species and reactions are used to solve any
instance of the problem, storing n bits requires the presence of 2Ω(n) molecules. In
practice, keeping an exponentially large solution well stirred may take a correspond-
ingly large amount of time, but in any event, due to the space constraint, Stochastic
Chemical Reaction Networks will effectively be limited to logspace computations.

The intention of this paper is to review, present, and discuss these results at an
intuitive level, with an occasional foray into formal exactitude. Enjoy.

2 Formalization of Chemistry

2.1 Stochastic Chemical Reaction Networks

A Stochastic Chemical Reaction Network is defined as a finite set of d reactions act-
ing on a finite number m of species. Each reaction α is defined as a vector of nonneg-
ative integers specifying the stoichiometry of the reactants, rα = (rα,1, . . . , rα,m),
together with another vector of nonnegative integers specifying the stoichiometry of
the products, pα = (pα,1, . . . , pα,m). The stoichiometry is the nonnegative number
of copies of each species required for the reaction to take place, or produced when
the reaction does take place. We will use capital letters to refer to various species
and we will use standard chemical notation to describe reactions. So, for example,
the reaction A + D → A + 2E consumes 1 molecule of species A and 1 molecule
of species D and produces 1 molecule of species A and 2 molecules of species E

(see Fig. 1). In this reaction, A acts catalytically because it must be present for the
reaction to occur, but its number is unchanged when the reaction does occur.1

The state of the network is defined as a vector of nonnegative integers specifying
the quantities present of each species, A = (q1, . . . , qm). A reaction is possible in
state A only if there are enough reactants present, that is, ∀i, qi ≥ rα,i . When reac-
tion α occurs in state A, the reactant molecules are used up and the products are
produced. The new state is B = A ∗ α = (q1 − rα,1 + pα,1, . . . , qm − rα,m + pα,m).

We write A C→ B if there is some reaction in the Stochastic Chemical Reaction Net-
work C that can change A to B; we write

C∗→ for the reflexive transitive closure of
C→. We write Pr[A C→ B] to indicate the probability that, given that the state is ini-

tially A, the next reaction will transition to the state to B. Pr[A C∗→ B] refers to the
probability that at some time in the future, the system is in state B.

Every reaction α has an associated rate constant kα > 0. The rate of every reac-
tion α is proportional to the concentrations (number of molecules present) of each
reactant, with the constant of proportionality being given by the rate constant kα .

1In chemistry, catalysis can involve a series of reactions or intermediate states. In this paper, how-
ever, we will generally use the word catalyst to mean a species which participates in, but is un-
changed by, a single reaction.

546 M. Cook et al.

Specifically, given a volume V , for any state A = (q1, . . . , qm), the rate of reaction
α in that state is

ρα(A) = kαV

m∏

i=1

(qi)
rα,i

V rα,i
where qr def= q!

(q − r)! = q(q − 1) · · · (q − r + 1). (1)

Since the solution is assumed to be well stirred, the time until a particular reaction
α occurs in state A is an exponentially distributed random variable with the rate
parameter ρα(A); i.e., the dynamics of a Stochastic Chemical Reaction Network is
a continuous-time Markov process, defined as follows.

We write Pr[A C→ B] to indicate the probability that, given that the state is ini-
tially A, the next reaction will transition to the state to B. These probabilities are
given by

Pr[A C→ B] = ρA→B
ρtot

A

where ρA→B =
∑

α s.t. A∗α=B
ρα(A) and ρtot

A =
∑

B
ρA→B. (2)

The average time for a step A → B to occur is 1/ρtot
A , and the average time for a

sequence of steps is simply the sum of the average times for each step. We write

Pr[A C∗→ B] to refer to the probability that at some time in the future, the system is
in state B.

This model is commonly used for biochemical modeling [1–3]. When using this
model as a language for describing real chemical systems, the reasonableness of
the underlying assumptions are affirmed (or denied) by the model’s accuracy with
respect to the real system. However, in the work presented here, we will be using
the model as a programming language—we will write down sets of formal chemical
reactions that have no known basis in reality, and any network that is formally ad-
mitted by the model will be fair game. That is, while Stochastic Chemical Reaction
Networks are usually used descriptively, we will be using them prescriptively: we
imagine that if we can specify a network of interest to us, we can then hand it off
to a talented synthetic chemist or synthetic biologist who will design molecules that
carry out each of the reactions. Therefore, our concern is with what kinds of sys-
tems the formal model is capable of describing—because our philosophy is that if it
can be described, it can be made. Of course, this might not be true. A similar issue
arises in classical models of computation: It is often observed that Turing Machines
cannot be built, because it is impossible to build an infinite tape or a machine that
is infinitely reliable. Nonetheless, it is enlightening to study them. We believe the
formal study of Stochastic Chemical Reaction Networks will be similarly enlight-
ening. But before proceeding, it is worth considering just how unrealistic the model
can become when we are given free reign to postulate arbitrary networks.

An immediate concern is that while we will consider SCRNs that produce ar-
bitrarily large numbers of molecules, it is impossible that so many molecules can

Programmability of Chemical Reaction Networks 547

fit within a predetermined volume. Thus, we recognize that the reaction volume V

must change with the total number of molecules present, which in turn will slow
down all reactions involving more than one molecule as reactants. Choosing V to
scale proportionally with the total number of molecules present (of any form) re-
sults in a model appropriate for analysis of reaction times. Note, however, that for
any Stochastic Chemical Reaction Network in which every reaction involves exactly

the same number of reactants, the transition probabilities Pr[A C→ B] are indepen-
dent of the volume. For all the positive results discussed in this paper, we were
able to design Stochastic Chemical Reaction Networks involving exactly two reac-
tants in every reaction and, therefore, volume needs to be considered only where
computation time is treated. A remaining concern—which we cannot satisfactorily
address—is that the assumption of a well-stirred reaction may become less tenable
for large volumes. (However, this assumption seems intrinsically no less justified
than the common assumption that wires in boolean circuits may be arbitrarily long
without transmission errors, for example.)

A second immediate concern is that the reactions we consider are of a very gen-
eral form, including reactions such as A → A+B that seem to violate the conserva-
tion of energy and mass. The model also disregards the intrinsic reversibility of ele-
mentary chemical steps. In other words, the model allows the reaction A + B → C

without the corresponding reverse reaction C → A + B . This is true, but it is nec-
essary for modeling biochemical circuits within the cell, such as genetic regulatory
networks that control the production of mRNA molecules (transcription) and of pro-
tein molecules (translation). Although no real reaction is strictly irreversible, many
natural cellular reactions such as cleavage of DNA can be modeled as being effec-
tively irreversible, or an implicit energy source (such as ATP) may be present in
sufficiently high quantities to drive the reaction forward strongly. Thus, our models
intrinsically assume that energy and mass are available in the form of chemical fuel
(analogous to ATP, activated nucleotides, and amino acids) that is sufficient to drive
reactions irreversibly and to allow the creation of new molecules. Together with the
dependence of V on the total number of molecules, we envision the reaction solu-
tion as a two-dimensional puddle that grows and shrinks as it adsorbs fuel from and
releases waste to the environment. This is very similar in spirit to computational
models such as Turing Machines and Stack Machines that add resources (tape or
stack space) as they are needed.

Another potentially unrealistic feature of the SCRN formalism is that it allows
reactions of any order (any number of reactants), despite the generally accepted
principle that all underlying physical chemical reactions are binary and that higher
order reactions are approximations in situations with some very fast rate constants.
For this reason, in our constructions, we restrict ourselves to use reactions with at
most two reactants. Further, it is generally accepted that Michaelis–Menten kinetics
are followed for catalytic reactions. For example, the above reaction A+B → C+B

should be decomposed into two reactions A + B → M and M → C + B where
M is some intermediate species, but the abbreviated intermediate-free form is also
allowed in the model. Another principle involving catalysts is that if a reaction can
occur in the presence of a catalyst, then it can usually also occur (albeit usually

548 M. Cook et al.

much more slowly) without the catalyst. For example, if A+B → C +B can occur,
then so can A → C. Continuing in this vein, a wealth of further restrictions, each
applicable in certain contexts, could arise from detailed considerations of the types
of molecules being used.

Instead of focusing on these or other restrictions, we focus on the cleanest and
most elegant formalism for Stochastic Chemical Reaction Networks and treat it as a
programming language. We happily leave the task of accurately implementing our
networks to the synthetic chemists and synthetic biologists.

2.2 Other Models of Chemical Computing

It is worth noting that several other flavors of chemical system have been shown
to be Turing universal. Bennett [18] sketched a set of hypothetical enzymes that
will modify a information-bearing polymer (such as DNA) so as to exactly and effi-
ciently simulate a Turing Machine. In fact, he even analyzed the amount of energy
required per computational step and argued that if the reactions are made chemically
reversible and biased only slightly in the favorable direction, an arbitrarily small
amount of energy per computational step can be achieved. Since then, there have
been many more formal works proving that biochemical reactions that act on poly-
mers can perform Turing-universal computation (e.g., [19–21]). In all of these stud-
ies, unlike the work presented here, there are an infinite number of distinct chemical
species (polymers with different lengths and different sequences), and thus formally,
an infinite number of distinct chemical reactions. These reactions, of course, can be
represented finitely using an augmented notation (e.g., “cut the polymer in the mid-
dle of any ATTGCAAT subsequence”), but as such they are not finite Stochastic
Chemical Reaction Networks.

A second common way of achieving Turing universality is through compartmen-
talization. By having a potentially unbounded number of spatially separate com-
partments, each compartment can implement a finite state machine and store a fixed
amount of information. Communication between compartments can be achieved by
diffusion of specific species, or by explicit transfer reactions. This is, for example,
exploited in the Chemical Abstract Machine [22] and in Membrane Systems [23].
Note that [24], contrary to its title, only establishes that Chemical Reaction Net-
works appear to be able to implement feed-forward circuits (along the lines of
Sect. 3), making them empirically at least P-hard.

3 Bounded Models: Boolean Logic Circuits

A natural relation to Boolean circuits leads one to expect that Stochastic Chemi-
cal Reaction Networks may well have similar computational power. For example,

Programmability of Chemical Reaction Networks 549

given a circuit built from NAND gates, we can construct a corresponding Stochastic
Chemical Reaction Network by replacing each gate

xk = xi NAND xj

with the four reactions

Ai + Aj → Ai + Aj + Bk,

Ai + Bj → Ai + Bj + Bk,

Bi + Aj → Bi + Aj + Bk,

Bi + Bj → Bi + Bj + Ak.

The presence of a single Ai molecule represents that xi = 0, the presence of a single
Bi molecule represents that xi = 1, and the presence of neither indicates that xi has
not yet been computed. If the circuit has only feed-forward dependencies, it is easy
to see that if one starts with a single A or B molecule for each input variable, then
with probability 1 the correct species will be eventually produced for each output
variable. In this sense, a Stochastic Chemical Reaction Network can deterministi-
cally compute the same function as the Boolean circuit, despite the uncontrollable
order in which reactions occur. Note that in this particular network, the specific rate
constants can affect the speed with which the computation occurs, but do not change
the eventuality.

Circuits of the same general flavor as the one above can be modified to work
with mass action chemical kinetics [24, 25], showing that individual Boolean logic
gates can be constructed, and that they can be connected together into a circuit.
This provides for efficient computation but is a nonuniform model: the number of
chemical species increases with the number of gates in the circuit, and thus with the
size of the problem being solved.

Contrary to the limited (finite state) computational power of Boolean circuits,
individual Stochastic Chemical Reaction Networks are not limited by finite state
spaces: there may potentially be an unbounded number of molecules of any given
species. As even minimal finite-state machinery coupled with unbounded memory
tends to allow for Turing-universal computation, one might speculate that the same
should hold true for Stochastic Chemical Reaction Networks. If so, then Stochastic
Chemical Reaction Networks would be capable of uniform computation, and pre-
dicting their long-term behavior would be undecidable.

The following sections will show that this is indeed the case. Stochastic Chemical
Reaction Networks are in fact much more powerful than one might think from the
simple Boolean circuit approach shown above.

4 Unordered Program Models: Petri Nets and VASs

The main complicating factor when trying to “program” a Stochastic Chemical Re-
action Network is that reactions occur in an uncontrollable order, making it quite

550 M. Cook et al.

Fig. 1 Four representations of the same computation. Starting with 1 A and n C’s, the maximum
number of D’s that can be produced is 2n. (a) A Stochastic Chemical Reaction Network. (b) A Petri
net. Each circle corresponds to a place (a molecular species), and each black bar corresponds to
a transition (a reaction). (c) A Vector Addition System. Note that dimensions F and G must be
added to the Vector Addition System to capture the two reactions that are catalyzed by A and B .
(d) A Fractran program. The numerators correspond to the reaction products, and the denominators
correspond to the reactants. The first seven prime numbers are used here in correspondence to the
letters A through G in the other examples. As in the previous example, F (13) and G (17) must be
introduced here to avoid unreduced fractions for the catalyzed reactions

difficult to guarantee a unique outcome for a nontrivial computation. Stochastic
Chemical Reaction Network computations that are arranged so as to guarantee a
unique outcome will be called confluent computations.

We can find clues regarding how to program such systems, including relevant
theorems, by examining the related computational models mentioned above and
shown in Fig. 1. The differences between the models are minor, amounting mostly

Programmability of Chemical Reaction Networks 551

just to different interpretations or viewpoints of the same underlying fundamental
process. For example, consider Petri nets [26], as shown in Fig. 1(b). In this model,
a network consists of a directed bipartite graph, having connections between places
(shown as circles) and transitions (shown as black bars). The state consists of a
nonnegative number of tokens at each place, and a new state is achieved by the firing
of a transition. When a transition fires, it consumes one token from the incident
place for each incoming edge, and produces one token into the incident place for
each outgoing edge (there is no difference between the two sides of the black bar).
Thus, a transition is enabled only if there are enough tokens in the input places. In
any given state, there are typically many transitions that could fire. Which one fires
first is intentionally left unspecified: the theory of Petri nets addresses exactly the
question of how to analyze asynchronous events. If the system uses rate constants
as in (1) for each transition (in which case the model is a type of stochastic Petri
net), the model is formally identical to Stochastic Chemical Reaction Networks:
each place corresponds to a molecular species (the number of tokens is the number
of molecules) and each transition corresponds to a reaction [27].

A closely related model, Vector Addition Systems (VASs), was developed and
studied by Karp and Miller [10] for analyzing asynchronous parallel processes.
Here, questions concern walks through an m dimensional integer lattice, where each
step must be one of d given vectors Vα ∈ Zm, and each point in the walk must have
no negative coordinates. Whether it is possible to walk from a point x to a point
y (the reachability question) is in fact decidable [28]. It is also decidable whether
it is possible for a walk to enter a linearly-defined subregion [29]—a special case
is whether the ith component of the point ever becomes nonzero (the producibility
question).

The correspondence between Vector Addition Systems, Stochastic Chemical Re-
action Networks and Petri nets is direct. First, consider chemical reactions in which
no species occurs both on the left side (as a reactant) and on the right side (as a
product)—i.e., reactions that have no instantaneous catalysts. When such a reaction
α occurs, the state of the Stochastic Chemical Reaction Network, represented as a
vector, changes by addition of the vector pα − rα . Thus, the trajectory of states is a
walk through Zm wherein each step is any of d given vectors, subject to the inequal-
ities requiring that the number of molecules of each species remain nonnegative,
thus restricting the walk to the nonnegative orthant.

Karp and Miller’s decidability results for VASs [10] directly imply the decidabil-
ity of the question of whether a catalyst-free Stochastic Chemical Reaction Network
can possibly produce a given target molecule (the producability question again). As
a consequence, confluent computation by Stochastic Chemical Reaction Networks
cannot be Turing universal, since questions such as whether the YES output mole-
cule or the NO output molecule will be produced are decidable. The restriction to
catalyst-free reactions is inessential here: each catalytic reaction can be replaced by
two new reactions involving a new molecular species (an “intermediate state”, see
Fig. 1(c)), after which all reachability and producibility questions (not involving the
new species) are identical for the catalyst-free and the catalyst-containing networks.

552 M. Cook et al.

4.1 Gate Implementability

The initial path leading the authors to consider the computational power of Sto-
chastic Chemical Reaction Networks came from a surprisingly unrelated topic. We
were considering the general question of whether circuits constructed from available
gate types are able to implement a desired target function. We call this the gate im-
plementability question. The terms gate and function will be used interchangeably
here.

It has been known since the time of Post [30] that given a set of functions of
boolean values, only a finite number of tests need to be done to know whether a
particular target function can or cannot be implemented by them, if function val-
ues, once produced, can be used repeatedly (in other words, if fan-out is available).
However, in situations where values cannot be used repeatedly (as is the case, for
example, in quantum computation), the implementability question becomes much
less clear. Indeed, if the analogous questions are asked for circuits built of relations,
rather than functions, then the ability to reuse values makes this question become
decidable, whereas it is undecidable if values, once produced, can only be used
once [31].

It is natural to wonder, if fan-out is not available, might the gate implementability
question become undecidable, as it did for relations?

First of all, we have to be clear about what we mean by “circuits without fan-
out.” From a feed-forward point of view, a fan-out node in a circuit is a device with
one input and two outputs, and both outputs equal the input. So, we will be generous
and expand the definition of “function” to allow multiple outputs. (If we do not do
this, then all circuits must be trees, and it becomes difficult to implement anything
at all, since in contrast with formulas, inputs cannot be used at more than one leaf of
the tree.) We will define the outputs of a feed-forward circuit to be all of the output
wires which have not been fed into some other gate, and the inputs are of course all
the input wires which are not produced as the output of another gate.

This gives us an implementability question for feed-forward circuits that is com-
parable to the implementability question for relations. As with relations, the avail-
ability of fan-out makes the question easily decidable: Simply iteratively expand
the set of implementable functions, starting with the inputs and the given functions.
However, without fan-out available, the situation is not quite so easy.

4.2 Gate Implementability Is Equivalent to Reachability
in Stochastic Chemical Reaction Networks

In this section, we will show that any gate implementability question can in fact
be reduced to a reachability question for a chemical reaction network, and vice
versa. Intuitively, the idea is that the wires in the circuit correspond to molecules, the
gates in the circuit correspond to reactions, the designer of the circuit corresponds
to the source of randomness in the Stochastic Chemical Reaction Network, and the

Programmability of Chemical Reaction Networks 553

ability to implement a given function corresponds to the reachability question for
the Stochastic Chemical Reaction Network.

The idea for the forward direction is that we consider all possible inputs to the
circuit simultaneously. Since we know what we are trying to implement, we know
how many inputs there are, and what the possible values for each input are, and thus
we know exactly how many distinct possible states the entire circuit can be in. For
example, if there are five Boolean inputs, then there are 25 = 32 possible states for
the circuit (one for each possible combination of values on the input wires), and
every wire in the circuit can have its behavior described by a vector of length 32,
giving the value of that wire in each of the 32 possible states the circuit might be in.
In this example, the five inputs to the circuit would be described by the following
vectors:

〈0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1〉,
〈0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1〉,
〈0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1〉,
〈0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1〉,
〈0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1〉.

The vector describing an output of a gate is easily calculated from the vectors for
the inputs.

The corresponding chemical reaction network will be designed to have one
species for each possible vector. (In the example above, there would be 232 species.)
Then each gate available in the implementability question is converted into a long
list of chemical reactions: For each possible combination of input vectors to the gate,
we provide a chemical reaction which takes those species as reactants and produces
the appropriate species (those corresponding to the correct outputs of the gate for
these inputs) as products.

The starting state for the chemical reaction network is one molecule of each of
the species used as inputs (in the example above, recalling that each vector is a
species, the starting state would be the five listed vectors), and the target state for
the reachability question is simply the corresponding set of output vector species
for the target gate in the implementability question. It is clear from the design that
the target state is reachable in the chemical reaction network if and only if the target
gate is implementable in the implementability question.

Now we will show the other direction, that any reachability question for a chemi-
cal reaction network can be reduced to an implementability question for gates with-
out fan-out.

The idea for this direction is to design some gates that can only be usefully com-
bined by following exactly the reactions of the given network. The alphabet of val-
ues used by the gates will consist of one symbol for each of the chemical species,
plus an extra symbol “ε”, which we will think of as an error symbol. There will
be one gate per reaction, plus one extra gate. Each reaction will be converted into a
gate with as many inputs as reactants and as many outputs as products. For example,

554 M. Cook et al.

the reaction A + 2B → C + D would become a gate with 3 inputs and 2 outputs,
and the computation performed by the gate is almost trivial: It outputs ε on every
output, unless its inputs are 〈A,B,B〉, in which case it outputs 〈C,D〉. Other reac-
tions are similarly converted. We also provide an extra gate with two inputs and two
outputs, which is a two-wire identity gate, except that if either input is ε, then both
outputs are ε. Otherwise, the first output matches the first input, and the second out-
put matches the second input. The purpose of this gate is to allow the error symbol
ε to spread from one wire to another, as we will see shortly.

The initial state and target state for the reachability question then become the
inputs and outputs of the target gate, and again every other possible input should
lead to all outputs being ε.

Any satisfactory solution to this implementability question clearly corresponds
to a partially ordered sequence of reactions that demonstrates a positive answer to
the reachability question. Conversely, any sequence of reactions reaching the target
state of the reachability question can be directly converted into a circuit of gates
that is almost guaranteed to implement the target gate. The only potential problem
is that if the input given to the circuit differs just slightly from the intended input,
then some of the gates will still be getting exactly the inputs that were intended, and
for some circuits, it may not be the case that all outputs are ε, but rather just some
subset of them. It is for this reason that we supplied the extra “error propagating”
gate. If necessary, this gate can be used many times at the end of a circuit (2n − 3
times for a circuit with n outputs) to ensure that if any outputs are ε, then all outputs
must be ε. Clearly, the availability of this gate will not otherwise affect the ability
to simulate the sequence of reactions. Thus, the answer to the gate implementability
question will match exactly the answer to the chemical reachability question.

5 Almost Universal: Primitive Recursive Computation

It has long been known that certain questions about whether a Petri net “might do X”
are decidable, where typical values of X are, in the language of Stochastic Chemical
Reaction Networks, “keep having reactions forever” or “grow without bound” or
“reach a certain state” or “produce at least some given quantities of given species.”
[9, 10, 28]. These results carry over directly to Stochastic Chemical Reaction Net-
works so long as the question does not ask about the probability of X happening, but
only about the possibility of it happening (i.e., only about whether the probability of
X is zero vs. nonzero).

As mentioned in Sect. 4, confluent computation by Stochastic Chemical Reac-
tion Networks can only implement decidable decision problems. Thus, for questions
about the output of a Stochastic Chemical Reaction Network (given by some final
quantity of the output species) to have any hope of being undecidable, the output
must be probabilistic in nature. We will examine questions of probability in Sect. 6;
here, we restrict ourselves to questions of possibility.

Although the questions of possibility listed above are known to be decidable,
their complexity is sometimes not so clear. The complexity of the problem for X =

Programmability of Chemical Reaction Networks 555

“grow without bound” is known to be doubly exponential [32], but the complexity
of the problem for X = “reach a certain state” has been an open problem for decades
[9].

Even though double exponential complexity sounds quite complex, the complex-
ity of these types of problems can in fact be far greater. Some suspect that the reach-
ability problem (i.e., X = “reach a certain state”) may have complexity comparable
to primitive recursive functions, which are so powerful that few natural nonprimitive
recursive functions are known.

In Sect. 5.3, we present examples of problems whose complexity does exactly
match the power of primitive recursive functions. Specifically, if X = “have a
molecule of S1 present when attaining the maximum possible amount of S2”, or
X = “have a molecule of S1 present after taking the longest possible (over all se-
quences) sequence of reactions.” These questions are equivalent in power to prim-
itive recursively defined predicates, where the number of primitive recursive func-
tions used to recursively build up the predicate is on the order of the number of
molecular species in the Stochastic Chemical Reaction Network, and the input to
the predicate corresponds to the initial state of the Stochastic Chemical Reaction
Network.

To show that such question are no more powerful than primitive recursive func-
tions, in Sect. 5.2 we show that for any Stochastic Chemical Reaction Network, it
is possible to define a primitive recursive function which can return the amount of
S1 that is produced by whichever sequence of reactions leads to the largest possible
amount of S2. Our proof, while far from straightforward, is much simpler than previ-
ous similar proofs (which used results on bounds for solutions to bounded versions
of Hilbert’s tenth problem), since it gives an explicitly primitive recursive formula
bounding the size of the tree of all possible runs of the Stochastic Chemical Reaction
Network. The bulk of the proof lies in defining this bounding function and proving
that it indeed bounds the depth of the tree. This bound enables the definition of a
primitive recursive function which analyzes the entire tree, explicitly finding the run
with the largest amount of S2 and returning the corresponding amount of S1.

5.1 Primitive Recursive Functions

Primitive Recursive Functions were first investigated in the 1920s, starting with
Skolem [33], who pointed out that many standard functions on nonnegative inte-
gers can be defined using just function composition and recursion, starting with just
the successor function. This surprising fact is illustrated in Fig. 2, which shows how
functions can be built up in this way, including for example a function that will tell
you whether a number is prime or not.

The wide range of functions that could be defined in this way led logicians to
wonder whether all mathematical functions could be defined in this way, or at least
all those functions for which there exists a deterministic algorithm for calculating
the value. Recall that this was long before people had ever written algorithms for

556 M. Cook et al.

Fig. 2 Examples of Primitive Recursive Functions. Starting with only the successor function,
other functions can be built up one by one using a simple form of recursion. Where the function
being defined is used in its own recursive definition, the rule is that it must have exactly the same
arguments but with n replaced by m

electronic computers, before Gödel’s famous incompleteness theorem [34] and be-
fore Turing Machines [35], in short, before people had figured out any satisfactory
way of standardizing or formalizing the process of mathematical calculation. Per-
haps this was the way.

It turned out that this was not the way. In 1928, Ackermann [36] showed that
there is a limit to how fast a Primitive Recursive Function can grow (depending on
how many other functions are used to help define it), and there turns out to exist
simple deterministic algorithms for calculating functions that grow even faster than
this limit, as shown in Fig. 3. Thus, the world of Primitive Recursive Functions is
not large enough to encompass all mathematical calculations.

Not long after Ackermann’s paper made it clear that Primitive Recursive Func-
tions were merely a strict subset of the functions that can be calculated, Herbrand
in 1931 [37] and Gödel in 1934 [38] defined General Recursive Functions, which in
1936 were argued by both Church [39] and Turing [35] to correspond exactly to the
set of all functions that can possibly be calculated in any algorithmic way. This ar-
gument was accepted by most people, and is now well known as the Church–Turing
thesis.

A major distinction between the General Recursive Functions and the Primitive
Recursive Functions is that the latter (and also Ackermann’s function) are defined
for all inputs—that is to say, computation eventually halts and produces an output,
no matter what the input is—whereas the former include additional functions, some
of which halt only for some inputs. Figuring out which General Recursive Functions
halt for which input is known as the Halting Problem, and it is formally undecidable:
there is no General Recursive Function that will always correctly determine whether
a given algorithm halts.

Programmability of Chemical Reaction Networks 557

Fig. 3 An illustration of the Ackermann function. The Ackermann function Ai(n) is a function
of two variables, i and n. The ith row of the Ackermann function, Ai , can be constructed visually
from the previous row Ai−1 as shown: A zig-zag line starts going up at x = 1, and bounces back and
forth between the function values (shown as dots) and the line x = y. The function values hit by the
zig-zag line become the entries for the next row. The formal definition is A0 = S, Ai+1(0) = Ai(1),
Ai+1(m + 1) = Ai(Ai+1(m)). Although each row is a Primitive Recursive Function, the diagonal
f (n) = An(n) grows faster than any Primitive Recursive Function in the same sense that 2n grows
faster than any polynomial

While most people turned their attention at this point to General Recursive Func-
tions, Rózsa Péter [40] continued to develop the theory of Primitive Recursive Func-
tions, treating them not as a historical mistake, but as an opportunity for study. Her
work makes it clear that the following definition is an equivalent way to define Prim-
itive Recursive Functions.

Definition Primitive Recursive Functions are exactly those functions which can be
computed by a Turing Machine in time bounded by some row of the Ackermann
function.

This definition makes it evident that just about every algorithm ever used for
practical calculation is in fact Primitive Recursive, since most rows of the Acker-
mann function grow far faster than the time required for any practical calculation.

Although Péter’s work showed that many seemingly different definitions all lead
to this same set of functions, the definitions were rather abstractly mathematical in
nature, none of them corresponding to what we would think of today as a fundamen-
tal computational model like a Turing Machine. So, it is interesting that Primitive
Recursive Functions arise here in relation to Stochastic Chemical Reaction Net-
works, a fundamentally reality-based model.

5.2 A Primitive Recursive Bound on the Depth of the Tree
of Reachable States

Theorem 1 Given two states A and B, in order to determine whether starting from
A a Stochastic Chemical Reaction Network can reach a state with at least as many

558 M. Cook et al.

Fig. 4 The search tree for the system of Fig. 1, starting on the left with state (A,B,D). Solid
lines represent single reactions, while dotted lines represent any number of further repetitions of a
completed cycle that purely increases a molecular quantity, leading to the attainability of arbitrarily
large quantities of that species shown, for example, as . The dashed circles are repeats of previ-
ous states, and thus do not require further exploration even if further reactions are possible. In this
example, the search tree is finite. Must this always be the case? If so, then there are no undecidable
questions among questions which can be answered by scanning the full search tree. This section
shows that the search tree is finite, and indeed boundable by a primitive recursive function

molecules as B is decidable and requires a search tree of size bounded by a primitive
recursive function of the number of molecules of each species and the stoichiometric
coefficients of the reactants.

Here, we present the details of our proof that the tree of possible execution paths
of a Stochastic Chemical Reaction Network has depth bounded by a primitive re-
cursive function whose “degree” is on the order of the number of species in the
Stochastic Chemical Reaction Network.

For those familiar with the subject, the algorithm is nearly identical to Karp and
Miller’s [10], but the rest of the proof is much more direct than comparable previous
proofs which relate other questions about the tree to primitive recursive functions.
See also [15].

The Algorithm

In this section, we will present an algorithm for finding which species can be pro-
duced and which cannot. That is, it will find out whether any reachable states have
nonzero levels of any species of interest. In fact, it will do slightly more: For any
given set of molecule quantities (such as (10A,3B, . . .)), the algorithm can find out
whether or not it is possible to reach any state that has at least these levels of these
species.

The algorithm is simply to search through the full tree of all possible reaction
sequences, using a couple of simple tricks to try to avoid getting stuck in infinite
loops.

Programmability of Chemical Reaction Networks 559

If state B has at least as many molecules of each species as state A does, then we
will say that B ≥ A. On the other hand, if B has more of some species and less of
others than A has, we say that B and A are incomparable: A ! B and B ! A.

A fundamental observation is that if the system is in state A at some point, and
then later it is in state B, and B ≥ A, then the sequence of reactions that led from A
to B may be repeated arbitrarily many times before continuing. This would appear
to be a serious obstacle to exhaustively searching the space of reachable states, but
in fact it will be the key to bounding the search. When this happens, we can consider
two cases: B = A or B > A.

If B = A, then this sequence of reactions leading from A to B had no effect,
and may be omitted entirely. In particular, it is clear that the shortest sequence of
reactions leading from the initial state of the system to any particular final state will
not visit any state more than once. Thus, no possibilities will be missed if the search
tree is simply pruned at any point where a previous state is repeated.

On the other hand, if B > A, that is, if B has strictly more of some species than
the earlier state A had, then by repeating this sequence of reactions, an arbitrarily
large amount of those species may be produced. We will call such species freely
generatable after the sequence of reactions from A to B has occurred. If at any
later point in the calculation, some potential reaction is not possible because one of
the freely generatable species has run out, we can simply retroactively assume that
more repeats of the sequence from A to B were performed back at the time when
that species became freely generatable, and this will allow the potential reaction to
proceed after all. For this reason, when a species becomes freely generatable, it may
effectively be removed from the problem statement, reducing the problem to a sim-
pler problem. So, although the search tree cannot be pruned when B is reached, the
subtree beyond that point corresponds to searching the space of a simpler problem,
in which a further repetition of the reaction sequence leading from A to B would
indeed lead to pruning, since states A and B are equal in the reduced problem. The
algorithm therefore specifies the quantity of a freely generatable species as ∞, a
value which is considered larger than any other value, and which is unchanged by
the addition or removal of molecules.

It remains to show that the search tree is always finite, and thus this algorithm
will always terminate.

The Data Structure

Now, we will define a data structure whose purpose will be to help us define the
bound in the next section.

At each point in the search tree, there is a (usually infinite) set S of all states S
satisfying S ! A for every A which is an ancestor of that point in the search tree.
We will call this set of states S the remaining states for that point in the search
tree, because these are the states which, if reached on the next step, will not lead
to pruning or simplification. Our proof will examine this set of states and use the
structure of this set to provide a bound on how much deeper the search tree can be.

560 M. Cook et al.

Fig. 5 Left: An example of a
possible entry in list L4, for a
system with 7 species. Right:
All the entries that will be
added to list L3 to replace the
entry on the left, if the system
arrives at state
(2,4,1,3,3,3,0). The union
of the new 3-dimensional
regions is precisely that
portion of the old
4-dimensional region which
is *≥ the new state

For any given point in the search tree, we represent the set of remaining states by
lists Li , with each entry in list Li representing an i-dimensional region of remaining
states, specified by n − i integers (specifying quantities of n − i of the n species).
The union of all regions from all lists exactly yields the set of remaining states for
the given point in the search tree.

When a reaction takes the system to a new state (taking the search to a new point
in the search tree), the lists are modified by eliminating each list entry which repre-
sents a region containing any state greater than or equal to the new state. Each elimi-
nated entry is replaced by new entries in the list of next lower index. The new entries
are found by considering all regions of dimension one less than the old region, ly-
ing within the old region, with a previously unspecified coordinate now specified
as some particular integer k, with 0 ≤ k < m, where m is the number of molecules
present, in the new state, of the species corresponding to the dimension now being
specified. In general, this might lead to some redundancy, if some of the new regions
lie inside other existing regions, but we will not need to worry about this.

The lists for the initial state of the system are created similarly, with the “old”
region taken to be the full n-dimensional space, just a single entry in list Ln. Thus,
a system started in state (q1, q2, . . . , qn), where qi is the quantity of the ith species,
will start with

∑
i qi entries in list Ln−1. Similarly, whenever an entry in list Li is

replaced by new entries in list Li−1 due to a new state (q1, q2, . . . , qn), the number
of new entries will be

∑
i∈P qi , where P is the set of species whose quantity is

unspecified in the old entry.
If the ith species becomes freely generated, all list entries in all lists will have

their ith entry changed to be specified as ∞, which may move some of them to the
list of next lower index: Since ∞ is treated by the lists as a specified quantity, any
list entry which previously did not specify the quantity of the ith species will now
have one fewer unspecified quantities, and will thus move to the list of next lower
index.

It remains to show that these lists eventually get exhausted as the algorithm pro-
gresses deeper into the tree. For readers familiar with the game of Chomp [41], this
process is quite similar to Chomp on infinite boards.

Programmability of Chemical Reaction Networks 561

The Bound

To each point in the search tree, with its state and its lists, we can assign a pos-
itive integer as described below. We will see that regardless of which reaction is
performed at the next step, the positive integer assigned to the ensuing point in the
search tree will always be less than the positive integer assigned to the current point.
Since the positive integer strictly decreases with depth, it is in fact a bound on the
depth.

The integer for a given state A and lists Li is defined for a system with n species
in the following nontrivial way:

B(A,L) = f
|Ln−1|
n−1

(
f

|Ln−2|
n−2

(
· · ·

(
f

|L1|
1

(
f

|L0|+m·r+qmax
0 (0)

))
· · ·

))

where r is the number of nonfreely generatable species, qmax is the largest number
of molecules present of any of those r species, and m, a constant, is one more than
the maximum coefficient appearing on the right-hand side of any reaction.

The functions fi are defined as follows:

fi(x) = f i·x+m
i−1 (x),

f0(x) = x + 1.

These definitions are not meant to capture intuitive notions of any meaningful
functions, but rather are designed to (a) be explicitly primitive recursive, and (b) be
of a form that enables the necessary proof steps below to work.

In these definitions, the exponents on the functions denote multiple applications
of the function, so, for example, f 3

8 (x) = f8(f8(f8(x))). Each fi , as well as B, is
a Primitive Recursive Function, since it is easy to define repeated application of a
function: Given a function g(x), we can define h(n, x) = gn(x) using the recursive
definition h(0, x) = x, h(m + 1, x) = g(h(m,x)).

It is straightforward to show that the functions fi(x) are strictly increasing in x,
and that fi+1(x) > fi(x). Thus, if the exponents appearing within the definition of
B are in any way reduced or shifted to the right, B will decrease.

This can be used to show that regardless of whether a reaction leads to a remain-
ing state or leads to a new freely generatable species; B will always decrease.

If a reaction results in one or more freely generatable species, then some parts of
the exponents may shift to the right, and r will decrease. In the exponent of f0, the
decrease of r will more than make up for any increase in qmax (by the definition of
m), so B will decrease as promised.

If a reaction leads to a remaining state, then one or more list entries will be
replaced by other entries. Each i-dimensional entry to be removed will be replaced
by

∑
j∈P qj entries that are (i − 1)-dimensional. This number of new entries is no

more than i · qmax, since P , the set of species of unspecified quantity, is of size i.
So, the exponent of fi is reduced by 1 while the exponent of fi−1 increases by at
most i · qmax. In the formula for B, then an fi gets replaced with f

i·qmax
i−1 , and then

this exponent is possibly reduced. But the original fi was equivalent (by definition)

562 M. Cook et al.

to f i·x+m
i−1 , where x is the full argument (which must be at least qmax, since qmax

appears in the exponent of f0), so even just the f i·x
i−1 portion was bigger than the

replacement, and the f m
i−1 portion more than compensates for any increase in the

exponent of f0 due to any change in qmax. The total effect is therefore again a
decrease in B.

Thus, we have finished showing that B, a primitive recursive function of the
initial state, bounds the depth of the search tree. Thus, both the depth of the tree,
and its total size (being at most exponential in the depth), are not only finite but
bounded by a primitive recursive function of the initial state. In the next section, we
will see examples which cannot be bounded by anything smaller than this.

5.3 The Max-Path Problem

We have shown that any Chemical Reaction System can be analyzed by Primitive
Recursive Functions, but the reverse question is also interesting: Can any Primitive
Recursive Function be calculated by a Chemical Reaction System? This question
raises conceptual issues not present in the forward question, since Chemical Re-
action Systems are inherently nondeterministic, it being unspecified at each step
which reaction should occur next. Thus, one must choose how to define which of
the possible sequences of reactions should be considered as leading to the correct
(or incorrect) calculation of the function. If one chooses, say, the longest possible
sequence of reactions (the deepest leaf in the search tree), or the sequence that leads
to the most molecules being produced (either of all species put together, or of some
particular species), then it is indeed possible to calculate any Primitive Recursive
Function, where the input and output are given as numbers of molecules of certain
species. These choices provide an exact equivalence in power between Chemical
Reaction Systems and Primitive Recursive Functions. Admittedly, this is not a prac-
tically useful notion of calculation by a SCRN—if I have the chemicals in my lab,
how do I perform an experiment that indicates the output of the computation?—
but it does help clarify the boundary between decidable and undecidable questions
about SCRNs.

Theorem 2 For any primitive recursive function f , a Stochastic Chemical Reac-
tion Network can be designed with special species Sin, Sout, and Smax computing f
as follows. Starting with n molecules of Sin (and some fixed number of molecules
of other species), the reachable state with the maximal amount of Smax will have
exactly f (n) molecules of Sout.

We prove this theorem with a construction. We begin by presenting, for any cho-
sen fixed integer i, a SCRN that Max-Path-computes the ith row of the Ackermann
function. This simple example of Max-Path “computing” by SCRNs is enlightening
in and of itself, but more importantly, it plays a crucial role in our general construc-
tion, where it is used to bound the number of steps taken by a Register Machine that
computes the Primitive Recursive Function in question.

Programmability of Chemical Reaction Networks 563

Fig. 6 A Chemical Reaction System for nondeterministically computing entries for the first i rows
of the Ackermann function using 2i + 2 species. However, as shown in this paper, no Chemical
Reaction System with a finite number of species is able to compute all rows of the Ackermann
function. To compute an entry in the ith row, Ai(n), start this Chemical Reaction System in the
state (Yi , nX). Then the maximum number of molecules of X that can be produced is exactly
Ai(n), achievable by always choosing the first possible reaction from the list

SCRNs for Rows of the Ackermann Function

Figure 1(a) gives a SCRN that computes 2n. This example can be generalized to
compute any chosen row of the Ackermann function. Since the Ackermann func-
tion grows faster than any primitive recursive function, the full Ackermann function
cannot be Max-Path computed by any single SCRN; using a different SCRN for
each row of the function is the best we could hope to do.

We prove that the construction works by proving the two sides: First, we prove
that starting in state (Yi, nX) we can produce Ai(n) X’s. Second, we prove that no
more than Ai(n) X’s can be produced.

We prove the first part by induction on row index i. Our inductive assump-
tion will be that from (Yi−1, nX) we can get to (W,Ai−1(n)X). (The base case
is easy to confirm.) Now starting with (Yi, nX), we first convert all X’s to Zi−1’s
by reactions in the first column. Then through a reaction in the second col-
umn we reach (Yi−1,X,nZi−1), and the inductive assumption allows us to reach
(W,Ai−1(1)X,nZi−1). Now we repeatedly use the first possible reaction in the
third column, producing (Yi−1, same X, one fewer Zi−1), followed by the induc-
tive assumption, producing (W,Ai−1(previous X), same Zi−1), until we can no
longer use that reaction in the third column. At this point, we have produced

(
W,Ai−1

(
· · ·

(
Ai−1(︸ ︷︷ ︸

n+1 times

1
)))

X
)
=

(
W,Ai(n)X

)
.

This shows that it is indeed possible to produce Ai(n) X’s.
Now, we argue that no more than Ai(n) X’s can be produced from (Yi, nX). The

proof consists of showing that the expression

Ti

(
Ti−1

(
· · ·

(
T2

(
A

#Y1
1

(
A

#Y0
0 (#X)

)))))
where Ti(m) = A

#Zi−1
i−1

(
A

#Yi
i (m)

)

does not increase no matter which reaction is performed, assuming there is a exactly
one of the Y ’s or W present (an invariant enforced by our system). Since the initial
value of this expression is Ai(n) when starting in (Yi, nX), we would then know
that no more than Ai(n) X’s can be produced.

564 M. Cook et al.

The following two lemmas are useful.

Lemma 1 Ai(Aj (m)) ≥ Aj(Ai(m)) for i > j .

Proof If i > j , then Aj(Ai(m)) ≤ Ai−1(Ai(m)) = Ai(m + 1) ≤ Ai(Aj (m)). !

Lemma 2 Ai(m) ≥ A2
i−1(m).

Proof First, we expand Ai(n) = Ai−1(Ai−1(· · · (1))) where the composition occurs
n + 1 times. Except in edge cases, the lemma is then equivalent to showing that
Ai−1(· · · (1)) ≥ n where the composition occurs n − 1 times. This inequality holds
because applying the Ackermann function increases the argument by at least one. !

Now, we will use these lemmas to show that each of the three types of reactions
(in the three columns) does not increase our expression.

Consider the reaction X + Yi → Zi−1 + Yi . The reaction takes subexpres-
sion Ti(Ti−1(· · · (#X))) = A

#Zi−1
i−1 (Ai(Ti−1(· · · (#X)))) to subexpression A

#Zi−1+1
i−1

(Ai(Ti−1(· · · (#X − 1)))). The start subexpression is equal to

A
#Zi−1
i−1

(
Ai

(
Ti−1

(
A0

(
· · · (#X − 1)

))))
≥ A

#Zi−1
i−1

(
Ai

(
A0

(
Ti−1

(
· · · (#X − 1)

))))

using the first lemma. Since Ai−1(Ai(m − 1)) = Ai(m), this expression equals the
end subexpression.

Now, consider the reaction Yi → X +Yi−1. It takes the subexpression Ai(A
#Zi−2
i−2

(Ti−2(· · · (#X)))) to the subexpression

A
#Zi−2
i−2

(
Ai−1

(
Ti−2

(
· · · (#X + 1)

)))
≤ A2

i−1
(
A

#Zi−2
i−2

(
Ti−2

(
· · · (#X)

)))

by applications of the first lemma. This is not more than the original subexpression
by the second lemma.

Lastly, consider the reaction W + Zi → Yi . This reaction takes subexpression
A

#Zi
i (A

#Zi−1
i−1 (Ti−1(· · · (#X)))) to A

#Zi−1
i (A

#Zi−1
i−1 (Ai(Ti−1(· · · (#X)))), which is not

greater than the original by applying the first lemma.

SCRNs for Primitive Recursive Functions

Now, we show that given any primitive recursive function f , a Stochastic Chemical
Reaction Network can be designed so that the state with the maximal amount of
S2 will have exactly f (n) molecules of S1, where n is given as input by being the
number of molecules of an input species S3 when the system is started. We sketch
the proof here.

Any primitive recursive function can be computed by a Register Machine2 in
time bounded by some row of the Ackermann function (see Sect. 5.1). The required

2See Sect. 6 for a description of Register Machines and Broken Register Machines, and how
SCRNs can be designed to simulate Broken Register Machines.

Programmability of Chemical Reaction Networks 565

row can be determined by a structural examination of the primitive recursive func-
tion. Our Stochastic Chemical Reaction Network is designed to first compute an
upper bound B on the running time needed to compute f by computing the appro-
priate row of the Ackermann function as in the previous section.

The Stochastic Chemical Reaction Network then simulates a Broken Register
Machine (that is, a Register Machine whose decrement instructions may fail nonde-
terministically even when the register is not empty) for B steps, which we know is
more than enough time for the Register Machine program to finish. After each of the
B steps (with the halt instruction changed to a nop (no operation) instruction so
that B steps can indeed occur), the Stochastic Chemical Reaction Network passes
control to a “subroutine” which doubles the amount of S2 (actually, all it can do
is allow the amount of S2 to at most double, but that is good enough). In addition,
every successful decrement of a register produces an extra molecule of S2. Thus,
S2 winds up being a large integer whose binary digits are a record of the times at
which decrement instructions successfully decremented a register. This means that
any run with the largest possible amount of S2 must have always succeeded at decre-
menting whenever possible. In other words, it emulated the Register Machine in the
correct, nonbroken way. Thus, we can be sure that in this run, S1 has been computed
correctly. Since the bulk of the time is consumed by doubling S2, the correct run is
also the longest possible sequence of reactions for the Stochastic Chemical Reaction
Network, and the same remains true if we append a “clean up” routine to the end of
the computation, that clears away the large quantity of S2.

Thus primitive recursive functions are in perfect correspondence with questions
of the form “How many molecules of S1 will there be if a Stochastic Chemical
Reaction Network produces the maximal amount of S2?” or “How many molecules
of S1 will there be if the Stochastic Chemical Reaction Network takes the longest
possible sequence of reactions?” So, although questions of possibility in Stochastic
Chemical Reaction Networks are decidable, we have shown here that in some ways
they have the full power of primitive recursive functions.

6 Ordered Program Models: Register Machines and Fractran

Because of the above and other decidability results, Petri nets, Stochastic Chemical
Reaction Networks, and VASs are typically conceptually grouped with nonuniform
models such as Boolean circuits, as was mentioned in Sect. 3. However, when pro-
vided with rate constants and evaluated in a probabilistic context, these models are,
in fact, capable of uniform computation as well.

Bennett [18] proposed a method for simulating a TM that uses a DNA-like in-
formation carrying polymer as the equivalent of a TM tape, with an attached chem-
ical group representing the head position and head state.3 Reactions then occur on

3Recall that a TM consists of an infinite tape, and a head which can be in some finite number of
internal states pointing to a specified position on the tape and capable of reading and writing from

566 M. Cook et al.

Fig. 7 A register machine comparing the value of register R1 to R2. If R1 ≤ R2, then it outputs 1
in register R3. If R1 > R2 then it outputs 2 in register R3. The start state is indicated with “start”
and the halting states are those without outgoing arrows

this polymer that mimic the operation of the TM. The SCRN corresponding to this
system has a different species for each polymer sequence, length, and the “head”
chemical group and location. A single molecule then represents a single TM (tape
and attached head), and reactions transform this molecule from one species to an-
other. Thus, infinitely many species and infinitely many reactions are needed to
represent Bennett’s biomolecular TM simulation as a SCRN (although augmented
combinatorial formalisms, which go beyond SCRNs, can represent Bennett’s chem-
ical TMs and other Turing-universal polymer-based chemical machines; see, for
example, [21]).

Taking a different approach of storing and processing information, we show that
SCRNs with a finite set of species and chemical reactions are Turing universal in
probability—they can execute any computer program for any length of time, and
produce the correct output with high probability. Thus, to increase the complex-
ity of the computation performed by SCRNs, it is not necessary to add new reac-
tions or species (as is the case when simulating circuits or using arbitrarily complex
polymers). Our method, building on [16] as described in [14], involves showing
that Register Machines (RMs) can be simulated by SCRNs for any length of time
with little probability of error. Since it is known that any computer program can be
compiled to a RM [13, 42], we can conclude that any computer program can be
effectively compiled to a SCRN. Also since there exist specific RMs known to be
Turing-universal (i.e., capable of simulating any computer program), we can con-
clude that there is a Turing-universal SCRN that can simulate any computer program
with high probability.

Register Machines are a simplified, idealized abstraction of how computers work,
with a CPU manipulating memory. Minsky showed in the 60s that Register Ma-
chines are capable of universal computation. A Register Machine is a machine that
has a fixed number of registers, each of which can hold an arbitrary nonnegative
integer. In addition to the registers, it has a fixed program which consists of a set
of instructions. Every instruction is either an increment instruction, a decrement in-
struction, or a halt instruction. The increment and decrement instructions specify

and to the tape. Reading a bit of the tape allows the head to transition to different internal states
and move left or right depending on the read bit; whether and which symbol is written depends of
the state of the head.

Programmability of Chemical Reaction Networks 567

which register is to be incremented or decremented, and they also specify which
instruction should be executed next, after the increment or decrement. Decrement
instructions, however, might not succeed with their intended decrement—if the reg-
ister is 0, it cannot be decremented. In this case, the decrement instruction is said
to fail, and each decrement instruction specifies an alternate next instruction to go
to in the case that the decrement fails. The current state of a Register Machine is
given by the values of the registers, along with which instruction is the next one
to execute. A simple example of an RM comparing two integers is shown in Fig. 7.
Register Machines are nice because of their simplicity, which makes it easy for other
systems to simulate them.

One variant of Register Machines which in our experience is sometimes useful is
what we call Broken Register Machines. These are the same as Register Machines
except that decrement instructions are allowed to fail (nondeterministically) even
if the register is nonzero. (If the register is zero, the instruction is of course forced
to fail as before.) It is possible to show that Broken Register Machines turn out
to be equivalent to Petri nets and VASs (and thus to Stochastic Chemical Reaction
Networks as well), although the equivalence is not quite as direct as for the other
systems. The nature of the equivalence between Broken Register Machines and Sto-
chastic Chemical Reaction Networks, combined with the fact that Broken Register
Machines only need to decide between two options at a time, enables one to show
that in fact only two priority levels are necessary for a Stochastic Chemical Reaction
Network to be universal.

Another model that turns out to be related is a lesser known model called Fractran
[11], shown by Conway to be Turing universal. A Fractran program consists of an
ordered list of rational numbers (see Fig. 1(d)). Execution is deterministic: starting
with a positive integer n as input, we find the first fraction on the list that produces
an integer when multiplied by n, and this product becomes the new number n′. This
process is iterated forever unless it halts due to no fraction resulting in an integer.
Conway showed that any Register Machine program can be converted directly into a
Fractran program: representing every integer in fully factored form, n = p

a1
1 · · ·pam

m ,
where pi is the ith prime, the exponents a1 . . . ak store the contents of the k regis-
ters, while other distinct primes ph are each present iff the Register Machine is in
state h. The denominator of each Fractran fraction conditions execution on being in
state h and—if the operation is to decrement the register—on having a nonempty
register. The numerator provides for increments and sets the new state. Since Reg-
ister Machines are Turing-universal (although since they only allow increment and
decrement operations, thus storing all state in unary, they entail exponential slow-
downs compared to more reasonable computational models); it follows that Fractran
is also universal.

Examination of Conway’s construction illustrates the relation to VASs, Petri nets,
and Stochastic Chemical Reaction Networks. Considering the integer n as the vec-
tor of exponents in its prime factorization, multiplication by a fraction corresponds
to subtracting the exponents in the denominator and adding the exponents in the nu-
merator, subject to the condition that no negative exponents are generated. This cor-
responds exactly to a Vector Addition System. Equivalently, each fraction can be in-

568 M. Cook et al.

terpreted as a chemical reaction: each species is represented by a unique prime num-
ber, and the denominator specifies the reactants and their stoichiometry, while the
numerator specifies the products. (Catalytic reactions would correspond to nonre-
duced fractions, and can be avoided as shown in Fig. 1.) The determinism—and
hence universal computational power—inherent in Fractran execution corresponds
to there being a strict priority in which the various possible transitions are applied.

6.1 Computation in Stochastic Chemical Reaction Networks

If it were possible to prioritize the reactions in a Stochastic Chemical Reaction Net-
work, then by analogy to the ordered fractions in Fractran, this would establish the
Turing-universality of Stochastic Chemical Reaction Networks. (This result is also
well known in the field of Petri nets, and our analysis of Register Machines shows
that in fact only two distinct priority levels are necessary.)

By giving higher-priority reactions vastly faster rate constants kα , we can approx-
imate a priority list: almost surely, of all reactions for which all reactants are present
in sufficient number, a reaction with a much faster rate will occur first. However,
“almost surely” turns out not to be good enough for a couple of reasons. First, there
is a nonzero probability of the slow reaction happening at each step, and thus proba-
bility of successful output falls exponentially with the number of steps. Second, the
number of molecules of a given species can potentially exceed any bound, so the
ordering of actual rates ρα(A) may eventually be different from the specified or-
dering of rate constants kα . Especially in light of the decidability results mentioned
above, it is not surprising that this naive approach to achieving Turing universality
with Stochastic Chemical Reaction Networks fails.

If there were some way to increase rate constants over time, this could solve these
problems, but of course, rate constants cannot change. Another way to promote one
reaction over another would be to give the preferred reaction some extra time to
occur before the competing reaction has a chance to occur. This approach turns out
to be workable, and it is not too hard to set up some reactions that produce a signal
after some delay, where the delay depends on a particular concentration. We refer
to such a set of reactions as a clock. An important technical point is that since the
entire computation will consist of an unknown number of steps, the probability of
error at any given step must be decreasing so that the sum of all the probabilities can
remain small regardless of how long the computation winds up taking. To address
this issue, the clock can at each step increase the concentration that controls its delay,
so that the delays are progressively longer, and thus the probabilities of error are
progressively smaller. Fortunately, it turns out that a simple polynomial slowdown
in overall computation time is all that is required for making the total probability of
error (over the entire course of the arbitrarily long computation) be small.

In the following, we give a construction for simulating Register Machines with
Stochastic Chemical Reaction Networks with only a polynomial slowdown, and we
prove that successful output will occur with fixed probability 1 − ε independent of

Programmability of Chemical Reaction Networks 569

the input and computation time. An initial number of “precision molecules” can be
added to reach any desired level of ε. Thus, tolerating a fixed, but arbitrarily low,
probability that computation will result in an error, Stochastic Chemical Reaction
Networks become Turing universal. In consequence, the probabilistic variants of the
reachability and producibility questions are undecidable.

The simulation is relatively simple to understand, but its performance is limited
by the fact that it is simulating a Register Machine, which is exponentially slower
than a Turing Machine (in the space used by the Turing Machine), due to its unary
representation of information. Can Stochastic Chemical Reaction Networks do bet-
ter than this? It turns out that they can. In Sect. 7, we discuss a more sophisticated
algorithm that allows Stochastic Chemical Reaction Networks to directly polyno-
mially simulate a Turing Machine.

Probability in SCRNs Is Undecidable

Theorem 3 For all 0 ≤ ε < 1/2, the following problem is undecidable: given a
Stochastic Chemical Reaction Network C, a species S, and a starting state A, de-
termine, to within ε, the probability that C starting from A will produce at least one
molecule of S.

To prove this theorem, we will show how Stochastic Chemical Reaction Net-
works are capable of simulating Register Machines. First, we define the correspon-
dence between instantaneous descriptions of Register Machines and states of Sto-
chastic Chemical Reaction Networks that our construction attains. Then we show
that determining whether a Register Machine ever reaches a particular instantaneous
description is equivalent to ascertaining whether our Stochastic Chemical Reaction
Network enters a set of states with sufficiently high probability.

Definition 1 An instantaneous description ID of a Register Machine M with t reg-
isters is a vector (a, c1, . . . , ct) where a is a state of M and ci ∈ N represents the
value of register i.

Definition 2 The reachability relation ID
M∗→ ID′ is defined naturally. Namely, it is

satisfied if M eventually reaches ID′ starting from ID.

Definition 3 For two states A and B of a Stochastic Chemical Reaction Network C,

we write A C→ B if there is a reaction that takes the system from A to B. Let
C∗→ be

the reflexive transitive closure of
C→.

Instantaneous descriptions of a Register Machine map to sets of states of our
Stochastic Chemical Reaction Network as follows.

Definition 4 For an instantaneous description ID = (a, c1, . . . , ct) of a Register Ma-
chine M let M(ID, n) be the state of a Stochastic Chemical Reaction Network that
contains exactly:

570 M. Cook et al.

• n molecules of species A,
• ci molecules of Ri ∀1 ≤ i ≤ t ,
• 1 molecule of Sa ,
• and 1 molecule of T , B , B ′, and B ′′ each.

Definition 5 Our Stochastic Chemical Reaction Networks will be said to ε-follow a
Register Machine M if there is some n0 such that for all instantaneous descriptions
ID and ID′ of M we have

(a) ID
M∗→ ID′ ⇐⇒ Pr[M(ID, n0)

C∗→ M(ID′, n) for some n] > 1 − ε,

(b) ID M∗" ID′ ⇐⇒ Pr[M(ID, n0)
C∗→ M(ID′, n) for some n] < ε.

Theorem 4 For any Register Machine M , and any ε > 0, there is a Stochastic
Chemical Reaction Network C that ε-follows M .

In fact, slight modifications of our construction can show that all questions about
whether a Stochastic Chemical Reaction Network “might do X” mentioned Sect. 5
becomes uncomputable in the probabilistic setting (“does X with probability >ε”).

Proof We construct a Stochastic Chemical Reaction Network to simulate the Reg-
ister Machine, consisting of two components: a clock module and a register logic
module (Fig. 8). The communication between the modules is established through
two species, T and C, of which at most a single molecule is present. Whenever the
clock releases the C, the register logic module can complete a step of the register
machine (with the exception of the actual decrement of a decrement instruction),
converting the C into a T in the process. The clock module then takes the T and, af-
ter a delay, releases another C to repeat the process. The delay imposed by the clock
module makes it exceedingly likely that any decrement waiting to happen will oc-
cur before the next C is released. This effectively enforces the reaction order that is
necessary for correct computation.

The register logic module has a single molecule of species Sa for every state a of
the register machine. The number of molecules of species Ri stores the value of the
register i. If the current register machine state a is an increment state, once the clock
module releases the C, then the reaction Sa + C → Sb + Ri + T increments the ith
register and transitions to the next state b. If the current state is a decrement state and
the register i being read is empty, then the reaction Sa + Ri → S′

a is not possible,
and once the clock module releases the C, the reaction Sa +C → Sc +T takes place
and transitions to the state c indicating that the register is empty. If the register i is
not empty (i.e., there is at least one molecule of Ri in solution), then the intent is that
the reaction Sa + Ri → S′

a should decrement the register and capture Sa before the
clock module next releases a C. (Otherwise, the reaction Sa + C → Sc + T could
occur first, erroneously sending the register logic module into the state c, which is
only supposed to happen if the register is empty.)

Thus, the only possible error that can occur in the register logic module is if
Sa + C → Sc + T occurs before Sa + Ri → S′

a in a decrement step, when register

Programmability of Chemical Reaction Networks 571

Fig. 8 Simulating a register machine. (a) The communication between the clock and the register
logic modules is through single molecules of species C and T . (b) The clock module is responsible
for producing a C molecule once every so often. The clock module is designed so that the length of
time between receiving a T and producing a C slowly increases throughout the computation, thus
slowing down the register logic module to help it avoid error. Specifically, the more A’s there are,
the longer the delay. The clock starts out with n0 A’s and one each of B , B ′, and B ′′ and T . Every
clock cycle not only produces a C, but increases the number of A’s by one. Thus, at the beginning
of the kth cycle, there are n = k + n0 molecules of A. The clock’s operation is further analyzed in
Fig. 9. (c) The register logic module simulates the register machine state transitions. The register
logic module starts out with quantities of molecules of Ri indicating the starting value of register i,
and a single molecule of species Sa where a is the start state of the register machine. Note that at
all times the entire system contains at most a single molecule of any species other than the A and
Ri species. All rate constants are 1 (The construction will work with any rate constants)

i is not empty. By delaying the release of the C, the clock module ensures that the
probability of this happening is low. The delay increases from step to step suffi-
ciently to guarantee that the union bound taken over all steps of the probability of
error does not exceed ε.

Let us analyze the probability of error quantitatively. Suppose the current step is
a decrement step and that the decremented register has value 1. This is the worst
case scenario since if the register holds value greater than 1, the rate of the reaction
Sa + Ri → S′

a is correspondingly faster, and if the step is an increment step or the
register is zero, then no error can occur. Figure 9 illustrates the state diagram of the
relevant process. All of the reactions in our Stochastic Chemical Reaction Network

572 M. Cook et al.

Fig. 9 The state diagram for a single decrement operation when there are n A’s and the register
to be decremented holds the value 1, and the corresponding system of differential equations gov-
erning the instantaneous probabilities of being in a given state. The numbers on the arrows are the
transition rates. The instantaneous probability of being in state T is s, in state T ′ is s′, and in state
T ′′ is s′′. The instantaneous probability of being in the error-possible state is p and the probability
of being in the no-error state is q

have the same rate constant of 1. Thus, all reactions with exactly one molecule of
each reactant species in solution have the same reaction rate of 1. There are two
reactions for which this single molecule condition is not true: T ′ + A → T + A

and T ′′ + A → T ′ + A, since there are many A’s in solution. If there are n A’s in
solution, each of these two reactions has rate n. Now, we will bound the probability
that the clock produces the C before the Sa + Ri → S′

a reaction occurs, which is a
bound on the probability of error. The top 4 states in the diagram (Fig. 9) represent
the 4 possible states of the clock: we either have a T , T ′, T ′′, or a C. A new cycle
starts when the register logic module produces the T and this is the start state of the
diagram. No matter what state the clock is in, the reaction Sa + Ri → S′

a can occur
at rate 1 in the register logic module. Once this happens, no error is possible. On the
diagram this is indicated by the bottom state (no error) which is a sink. On the other
hand, if a C is produced first then an error is possible. This is indicated by the sink
state C (error possible).

We compute the absorption probability of the error-possible state by solving the
corresponding flow problem. Solving the system of differential equations in Fig. 9
for dp

dt under the condition that ds
dt = −1, ds′

dt = ds′′
dt = 0, we find that the absorption

probability of the error-possible state is p = 1
(n+2)2+4 . Thus, the probability of error

for a step with n A’s is bounded by p = 1
(n+2)2+4 . In order to be sure that the

probability that no error occurs during any point in the computation is larger than

Programmability of Chemical Reaction Networks 573

1 − ε, recall that n increases by one at each step, so we need

∞∑

n=n0

1
(n + 2)2 + 4

< ε.

The terms in the above inequality are inversely quadratic in n, so if n0 = 1 then the
sum is finite (in fact, it is roughly 0.3354). This means that for any ε, we can choose
an appropriate n0, the initial number of A’s, to make the above inequality true. !

How fast is the Register Machine simulation? Since each consecutive step is
potentially delayed longer and longer, we need to be careful that the simulation
is not slowed down too much. Indeed, it can be shown that the expected time to
perform t steps of the Register Machine simulation requires at most O(t4) SCRN
time [14].

6.2 Eliminating Dependency on the Number of Molecules Disables
Universal Computation

If the rates of the possible reactions do not depend on the number of molecules then
it can be shown that the system is incapable of universal computation. In particular,
it will be predictable in the sense that the probability that at least one molecule of
a given species is eventually produced can be computed to arbitrary precision. This
precludes the previous output method of using an indicator species whose produc-
tion with high or low probability indicates the outcome of the computation. Further,
any other method of output that can be converted to this form of output cannot
be universal either. This includes, for example, Stochastic Chemical Reaction Net-
works that enter a specific state with high or low probability to indicate the output.
Specifically, the model we are considering here is the following: Suppose we are
given a Stochastic Chemical Reaction Network with given constant rates for all the
reactions, and an initial set of molecules. Then at each step, based solely on the re-
action rates, a reaction is chosen. This reaction then occurs if the reactants for it are
present. Such steps continue indefinitely.

The difference between this model and the standard stochastic one is that in the
standard model, the reaction rate is obtained by combining a rate constant with the
current concentrations as described in Sect. 2.1 (see (1)), while here for all reactions
α and states A, ρα(A) = kα if all the reactants of α are present in A and 0 otherwise.

Theorem 5 Let S be the infinite set of all states with at least one molecule of the
indicator species present. Suppose for all reactions α and states A, ρα(A) = kα if
all the reactants of α are present in A and 0 otherwise. Then there is an algorithm

that given 0 < ε and any starting state A, computes Pr[A C∗→ B for some B ∈ S]
within ε.

574 M. Cook et al.

Let S̃ be the (probably infinite) set of states from which no state in S is reachable,
and let R be the set of states outside S from which it is possible to reach S. (Note
that given any state, the question of whether it is possible to reach some state in S
is computable, as shown in Sect. 5.2.) Note also that there is a bound b such that
for any state A ∈ R, the length of the shortest sequence of reactions leading from
A into S is at most b. This means that there is some constant p0 such that for any
state r ∈ R, the probability of entering S within b steps is at least p0. Thus, the
probability of remaining in R must decay at least exponentially.

This implies that the probability that the system will eventually enter S or S̃ is 1,
and so simply by computing the probabilities of the state tree for R far enough, one
can compute the probability of entering S to arbitrary precision.

7 Efficiency of Computation by Stochastic Chemical Reaction
Networks

Section 6 showed that universal computation (in probability) can be performed by
SCRNs, but our construction inherits the ridiculous inefficiency of Register Ma-
chines, which in general require exponential time to simulate Turing machine com-
putations. Is it possible to use the power of chemistry to perform computations more
quickly and efficiently?

Trivial ways to speed up a chemical computer involve changing environmental
conditions such as increasing the temperature or the effective concentration (molec-
ular count per unit volume). In order to discuss the “intrinsic speed” of the computer
we are proposing, we fix the temperature, as well as the maximum concentration (re-
call that the volume scales dynamically with the molecular count in our model, see
Sect. 2.1). Then the performance of the chemical computer will be gauged asymptot-
ically as the size of the “tape” as well as the number of simulation steps increases.
With improved chemical programming, it turns out that compared to the abstract
Turing Machine, its chemical implementation incurs only a polynomial slowdown.
The volume required, however, inevitably grows exponentially with the size of the
tape of the Turing machine being simulated. This is impossible to avoid since fixing
the number of species there is simply no way to store information in a form other
than unary.

7.1 Stochastic Chemical Reaction Networks Can Efficiently
Simulate Turing Machines

Theorem 6 For any 0 < ε < 1/2 and any Turing Machine M, we can make a Sto-
chastic Chemical Reaction Network that, starting with n molecules of species Sin
(and some number of molecules of other species, dependent on ε but not n), will with
high probability (> 1 − ε) result in fast (expected time polynomial in the running
time of M(n)) and accurate (eventually produces Shalt iff M(n) halts) computation.

Programmability of Chemical Reaction Networks 575

Of course, by having different output species, the same output method can be
used to indicate a 0/1 output or in fact an integer output encoded in unary.

The overall idea to achieve this fast Turing Machine simulation is to adopt the
Register Machine simulation, but allow more sophisticated operations on the regis-
ters [14, 17]. If in addition to incrementing and decrementing a register, we could
double or halve the value of any register and check the remainder in a constant
number of clock cycles of the Register Machine simulation, then we could simulate
a Turing Machine in linear time. To do this, we can represent the accessed portion of
the Turing Machine head tape as two integers whose binary representation encodes
the tape to the left and to the right of the head respectively, such that their least
significant bits represent the contents of the tape cells immediately to the left and
right of the head. Since reading and removing the least significant bit corresponds
to halving and checking for remainder, and writing a new least significant bit cor-
responds to doubling and possibly adding one, a single Turing Machine step can be
performed in a small constant number of these enhanced Register Machine cycles.
With registers represented in unary molecular counts, halving would correspond to
a reaction scheme that takes two molecules of one species and produces one mole-
cule of another species, while doubling would correspond to a reaction scheme that
takes one molecule of one species and produces two molecules of another species.
Conversion of all molecules must take place quickly and exactly—if a single mole-
cule is not converted, the least significant bit(s) will be in error. Unfortunately, we
will see that halving a register quickly is rather difficult, but fortunately we will be
able to avoid the halving operation.

In the following section, we provide a construction similar to (but not identical
to) that in of Ref. [14] and give an informal explanation of how it works.

The Exploding Computer

To perform computation quickly using molecular counts, we have a number of chal-
lenges. The primary difficulty is that if every molecule matters for a decision, then
the presence or absence of a single molecule (for example, the parity of a register)
must be communicated to all other molecules in the system that are affected by the
decision. But in our model of well-mixed chemistry, communication happens only
by chance collisions between molecules—and rare species will therefore interact
rarely.

The main technique that allows large numbers of molecules to be processed
quickly is for the state changes to occur via explosive chain reactions. These “ex-
plosions” do not necessarily increase the number of molecules; they might simply
change the molecules from one form to another. Each explosion starts as an expo-
nentially growing chain reaction, until the amount of reactive material starts to get
used up, at which point it finishes with exponential decay of the reactive material.
Thus, an exponential amount of reactive material can be processed in a given amount
of time, as shown in Fig. 10. By changing the number of product molecules in the
reaction, the explosion scheme can be easily transformed into a means to quickly
and exactly double the number molecules present.

576 M. Cook et al.

Fig. 10 The time course of a reactant-limited chain reaction explosion, shown as a conversion
from a species A to a species B , initiated by a trigger T . If at the beginning, a fraction p of all
molecules in the system are A molecules, then the number of converted molecules grows like ekpt ,
where t is time and k is the rate constant of the reaction catalyzed by B . For the first half of the
chain reaction, at least p/2 of the molecules are A, and so the expected time for the first half
to complete is under (2/kp) log |A|/2. For the second half of the chain reaction, over p/2 of the
molecules are B , so each molecule of A gets transformed at a rate above kp/2, so the quantity
of A decreases faster than ekpt/2, and the expected time for the second half to complete is under
(2/kp) log |A|/2. Thus, the total time needed for the explosion to finish is on the order of log |A|/p

The naive implementation of having a halving reaction akin to 2M → M ′ is slow
for the same reasons as shown in Fig. 11.

If we are to avoid having to halve the value of a register, we must have an archi-
tecture for computation that only requires doubling when reading and writing bits
to and from memory. To do this, we use the digits of the memory integer as a queue
of binary digits. We can read and remove the most significant digits (as we will
show), we can shift the digits over (by doubling, or multiplication by a constant),
and we can write new low order digits by simply producing a few extra molecules.
Thus freshly written digits get exponentially amplified step by step until they are
the largest contribution to the overall magnitude, at which point the system is able
to detect their value.

Before proceeding, we should make sure that these operations are sufficient for
efficient simulation of Turing Machines. To see this, here is how to convert a Turing
Machine into a program that uses only queues. First, consider a Turing Machine
that uses a fixed amount of space on a binary tape. This finite tape is encoded in the
queue using three bits per cell, one bit for the cell’s value, an another bit to indicate
the cell that the Turing Machine head is reading, and the third bit to indicate the
first and last cells. Note that after one time step, the tape will be changed only in
the three cells around where the head is reading: the center cell might have a new
value, and either of the adjacent cells might need to be marked to indicate that this
is where the Turing machine is now reading. To implement a single time step of the
Turing Machine, the new queue program will make a pass through the whole queue,
keeping the most recent three cells memorized at every step. Each step consists of
spitting out the correct new value for the oldest of the three cells and then reading in
one more cell. The queue program knows when it has completed a pass, thanks to the
third bit in each cell. Thus, to simulate Turing Machines that use arbitrary amounts

Programmability of Chemical Reaction Networks 577

Fig. 11 (A) To read the most significant digit of M , we compare M (red) to a known threshold
quantity T (blue). This is done by a simple reaction, M + T → T̂ . The goal is that after all the M

and T molecules have reacted to form T̂ , only the species in excess, either M or T , will remain.
However, the time it takes for this reaction to complete will depend on the amounts of M and T .
(B) If M and T are present in nearly equal quantities, then toward the end of the reaction only
a few molecules of M and a few molecules of T will remain, and we will need to wait a very
long time to be confident that these last few molecules have found and reacted with each other,
especially when the volume is large. (C) If either M or T is significantly in excess of the other,
with the excess being at least some constant fraction of the entire volume, then toward the end of
the reaction, as one of the species approaches extinction, its rate of decay will remain exponential,
and the reaction will fully finish quickly, regardless of volume

of tape, the queue program can simply output some blank cells at the beginning
and end of each pass. Overall, the queue program is slower than the original Turing
Machine, but only by a linear factor—if the original machine took O(t16) steps, the
queue program will take O(t17) steps. (Slightly more efficient implementations are
possible [14, 43].)

With this queue architecture, the challenge of detecting a single molecule is
avoided; all we need is a scheme that allows the system to be able to read the high
order memory digit quickly and accurately. This can be achieved by storing integers
in the memory using a Cantor-set structure. To be able to read the most significant
digit of the memory integer, we need to compare the memory integer to a threshold
value, and as shown in Fig. 11 it is important that the memory integer not be too
close to the threshold value. That is, the magnitude of the memory integer, regard-
less of the contents of the memory, should be separated from the threshold value it is
being compared to by a gap that is at least some fixed fraction of the threshold value
itself, so that the comparison will always complete in logarithmic time. The way we
will satisfy this requirement is by using numbers which, in base 3, use only the dig-

578 M. Cook et al.

its 1 and 2. These numbers have a Cantor-set structure. Thus, the highest possible
k + 1 digit number starting with 1, namely 2 · 3k − 1 = 1222 . . .23, and the lowest
possible k + 1 digit number starting with 2, namely 2.5 · 3k − 0.5 = 2111 . . .13,
are separated by an interval that is proportional in size to the numbers themselves,
making the leading digit easily detectable.

The system can write a low order digit into the memory by simply having just a
single molecule present of the species responsible for writing this digit.

We have discussed the representation of the queue (i.e., encoded Turing Machine
tape) as the molecular counts of a register species—but how do we represent which
step of the program is currently being executed? Since the program contains a finite
number of states, it is possible to assign a distinct molecular species for each pro-
gram state. In fact, we combine both representations into one: if the queue program
is in state 10 with the integer M in the queue, then we will have M copies of the
molecular species M10. The molecular count encodes the queue, and the molecu-
lar species encodes the program step being executed. Thus, to push a “1” onto the
bottom of the queue and transition to state 20, we perform an “explosion” that con-
verts the M copies of M10 into 2M copies of M20 and then produce one more M20.
Effectively, the chemical system is designed as a sequence of conditional explosive
reactions, each of which changes the “color” of the solution.

As in the Register Machine simulation of the previous section, the system can
have a very low chance of ever making a mistake, even though there is some chance
of error at every step, as a result of having the speed of the system regulated by a
clock that slows down over time. Since each step is more likely to succeed when
it is given more time to complete its work, the slowing clock makes successive
steps more and more likely to succeed. Intuitively, if it makes it through the first
several steps without error, later steps become progressively easier to do correctly,
so it’s quite likely to just go forever without making any mistakes. Mathematically,
the probability of error decreases at each step fast enough that the sum of all the
probabilities of error converges to a small value. This value can be made arbitrarily
small, regardless of the computation to be done by the Turing machine, simply by
starting the system with a greater number of precision molecules (P in Fig. 12).

The molecular species and reactions for the simulation are shown in Fig. 12.
Four clock cycles are required for each step so that the various suboperations do not
interfere with each other. At each step, the clock molecule C triggers an explosive
chain reaction, and the output of that chain reaction is used to catalyze all the other
reactions occurring at that step (with the exception of comparisons and subtractions,
which have no catalysts).

When reading a bit of memory, the reactions compare the memory M with the
threshold T , as discussed in Fig. 11. After the first clock cycle, which performs the
comparison, only half of the remaining reactions will occur, according to the result
of the comparison. If T > M , then the leading digit of M was “1,” and only the
reactions on the left side will occur. If M > T , then the leading digit of M was “2,”
and only the reactions on the right side will occur. During the second clock cycle, D
is subtracted from M either once or twice, so as to zero out the leading digit (which
was just read). During the third cycle, the threshold T is restored, and the fourth
cycle cleans up D and M .

Programmability of Chemical Reaction Networks 579

Fig. 12 Reactions for a chemical system emulating a Turing Machine that has been converted into
a queue program. The horizontal dashed lines represent clock cycles. This example uses the con-
vention that the program states of the queue program are multiples of 10, while substates required
for the chemical implementation modify the rightmost digit. Species listed to the side of an arrow
are catalysts for the reaction: At least one of them must be present for the reaction to occur. In a
slight abuse of this notation, when the clock signal C is used as a “catalyst,” it is actually being
converted to C4. (So, it is not really being used catalytically—but this notation makes the diagram
cleaner.) Mi molecules store the memory integer and encode the program state i. T molecules (of
various sorts) store the comparison threshold. D molecules store a single ‘1’ in the most significant
digit. There is more D than T. P molecules store the current precision of the system. C is the clock
signal. There is exactly one C molecule at any time. (a) Reading a bit of memory. (b) Writing a bit
of memory. (c) Operation of the clock. Any D species (D, D′, D′′, or D∗) can serve as a catalyst
for the conversion of the C in each step

Every read operation must be followed by a write operation, so that the tape
does not shrink. Extra write operations are allowed, so the tape can grow, but states
corresponding to such extra operations must include the reactions in the gray region.
The first clock cycle multiplies M by 3, and if the tape is growing, then T , P , and D

also get multiplied by 3. The second clock cycle writes the new digit of M . The third
cycle cleans up D, T , and P , and it also adds D to P . This way, the precision P is

580 M. Cook et al.

always a multiple of D, and the multiple grows by one with each write operation,
so the precision of the simulation increases at every step. The fourth cycle cleans
up M .

The clock molecule is used to trigger the advance from one stage of the reaction
to the next. Therefore, when C is used as a “catalyst,” it is actually transformed into
a C4, so that it cannot trigger the advance to the following stage until some time
has passed. Effectively, the clock slowly lets the C4 become a C again. To become
a C, it has to work its way down, but since P is greater than D by a growing factor,
the process of the C4 becoming a C becomes slower and slower as time goes on.
This slowing of the clock is what makes the whole system become more and more
reliable over time.

A detailed construction based on the same principles is presented in [14], with
an analysis of its error probability and running time. A more efficient construction
can be implemented based on the work of Angluin et al. in the distributed comput-
ing literature [17] (see [14, 44]). Simulating tTM steps of a Turing Machine using
sTM space can be done in polylog(m) · tTM time where m = O(2sTM) is the total
maximum molecular count encountered.

7.2 Turing Machines Can Efficiently Simulate Robust Stochastic
Chemical Reaction Networks

We have seen that enforcing reaction order, even probabilistically, is enough to
achieve Turing-universality. However, our simulation of Turing Machines (and Reg-
ister Machines) by Stochastic Chemical Reaction Networks, uses reaction propensi-
ties rather weakly: while it was essential that one reaction propensity is higher than
another, and increases over time, the exact value of reaction propensities are not used
in the computation. Intuitively, we can say that a Stochastic Chemical Reaction Net-
work behaves “robustly” if its behavior does not depend crucially upon getting the
reaction propensities exactly right. Formal definitions can be found in [44], as well
as the proof that the Turing Machine embedding based on [17] is robust.

Such robust chemical systems form an interesting class, whose computational
power can be almost exactly captured, bounding above and below the maximum
amount of computation such systems can perform in a unit of time, compared to
a Turing Machine. Although on the order of m reactions can occur per unit time,
where m is the total number of molecules present, the actual amount of computation
is at most polylog(m) Turing Machine steps.

While fast Turing Machine embeddings in robust Stochastic Chemical Reaction
Networks show a lower bound on their computational power, how can we show
that they are not capable of performing more computation per unit time? The main
idea of the argument is that robust chemical systems are easy to simulate by a Tur-
ing Machine. Intuitively, since robust chemical systems are robust to perturbations
in reaction rates, they permit some sloppiness when trying to predict their behavior.
Then, since it is widely believed that there is no universal way of speeding up Turing

Programmability of Chemical Reaction Networks 581

Machines, it should not be possible to speed up arbitrary Turing Machines by em-
bedding them in an chemical system and simulating the system. With some caveats
related to real-number arithmetic, for robust systems, the problem of estimating the
probability of being in a given state at a given time t can be solved in polylog(m) · t
computation time on a Turing Machine, where m is the maximum molecular count
encountered. This implies that, loosely stated, for robust Stochastic Chemical Re-
action Networks, it is neither possible to embed more than polylog(m) computation
time per chemical unit time, nor is it possible to simulate the Stochastic Chemical
Reaction Network using less than polylog(m) computation time per chemical unit
time [44].

It should be emphasized that the correspondence between Turing Machines and
Stochastic Chemical Reaction Networks is surprisingly tight. One can simulate the
other with surprisingly little loss of efficiency (especially for programs using little
memory where polylog(m) for m = O(2sTM) is small compared to tTM).

8 Concluding Remarks

The power of different systems to do computation can vary greatly. It has previ-
ously been assumed that systems such as genetic regulatory networks and chemical
reaction networks are much weaker than the gold standard computational systems
such as Turing Machines. On the other hand, we have become accustomed to proofs
that even some of the simplest systems are capable of universal computation [45,
46], meaning that they are in some senses equivalent in power to Turing Machines,
and thus predicting their eventual behavior is impossible even in theory. Chemical
reaction networks have been shown to be universal when combined with polymer
memory [18] or membrane-separated compartmental memory [22], but researchers
have previously assumed that on their own, a finite number of species in a well-
mixed medium can only perform bounded computations [22, 24].

In contrast with this historical intuition, here we have shown that in fact such
“plain” chemical reaction networks can indeed perform unbounded computation, us-
ing the concentration (number of molecules) of each species as the storage medium.
We went on to pinpoint both the power and the weakness of chemical reaction net-
work computation by showing that it is just as fast as Turing Machine computation,
but that it requires exponentially more space.

This universality of chemical reaction networks turns out to derive from their
probabilistic nature. If the possible reactions in a chemical system could be priori-
tized, so that the next reaction at each step is always the one with highest priority,
then universal behavior is easily attainable (along the lines of [12]), but of course
chemistry does not behave in this way. However, since the reaction rates in a chemi-
cal system are influenced by the concentrations, they are somewhat under the control
of the system itself, and as we have shown, this weak form of prioritization turns out
to be enough to let the system perform universal computation with high probability
of success.

582 M. Cook et al.

If we require that the chemical system be guaranteed to give the right answer
without fail, then the system is effectively deprived of the opportunity to use its reac-
tion rates, since they only influence what is likely to happen, not what is guaranteed
to happen. Indeed, in this situation, the system is incapable of universal computa-
tion. Thus, the stochastic reaction rate foundation turns out to be the source of the
computational power of chemical reaction networks.

Open questions, along the lines of the results we have given, include:

(1) Are continuous Stochastic Chemical Reaction Networks (using mass action ki-
netics) Turing universal?4

(2) Can one have a universal Stochastic Chemical Reaction Network which has
constant probabilities (that do not depend on concentrations) for all reactions
except one, with the remaining reaction having a decaying probability that de-
pends on time (but not on concentrations)?

(3) Can Stochastic Chemical Reaction Networks that have reversible reactions be
universal?

(4) What is the power if one wishes to guarantee that all paths in a Stochastic Chem-
ical Reaction Network lead to same result (confluent computation)? Are we lim-
ited to Boolean logic circuits, or can we do some sort of uniform computation?

(5) Can a more efficient Turing Machine simulation be embedded in a nonrobust
Stochastic Chemical Reaction Network than a robust one?

Acknowledgements The research was supported in part by the “Alpha Project” at the Center
for Genomic Experimentation and Computation, an NIH Center of Excellence (grant number P50
HG02370), as well as NSF Grants No. 0523761 and 0728703 to EW and NIMH Training Grant
MH19138-15.

References

1. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem
81:2340–2361

2. Arkin AP, Ross J, McAdams HH (1998) Stochastic kinetic analysis of a developmental path-
way bifurcation in phage-l Escherichia coli. Genetics 149:1633–1648

3. Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many
species and many channels. J Phys Chem A 104:1876–1889

4. Guptasarma P (1995) Does replication-induced transcription regulate synthesis of the myriad
low copy number proteins of Escherichia coli? Bioessays 17:987–997

5. Levin B (1999) Genes VII. Oxford University Press, Oxford
6. McAdams HH, Arkin AP (1997) Stochastic mechanisms in gene expression. Proc Natl Acad

Sci 94:814–819
7. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single

cell. Science 297:1183–1185
8. Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory

circuit induces transient cellular differentiation. Nature 440:545–550
9. Esparza J, Nielsen M (1994) Decidability issues for Petri nets—a survey. J Inf Process Cybern

3:143–160

4Eric Stansifer (personal communication) seems to have answered this question in the affirmative.

Programmability of Chemical Reaction Networks 583

10. Karp RM, Miller RE (1969) Parallel program schemata. J Comput Syst Sci 3(4):147–195
11. Conway JH (1972) Unpredictable iterations. In: Proceedings of the 1972 number theory con-

ference. University of Colorado, Boulder, pp 49–52
12. Conway JH (1987) Fractran: a simple universal programming language for arithmetic.

Springer, New York, chap 2, pp 4–26
13. Minsky M (1967) Computation: finite and infinite machines. Prentice–Hall, New Jersey
14. Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chem-

ical reaction networks. Nat Comput. doi:10.1007/s11047-008-9067-y
15. Zavattaro G, Cardelli L (2008) Termination problems in chemical kinetics. In: van Breugel F,

Chechik M (eds) CONCUR. Lecture notes in computer science, vol 5201. Springer, Berlin,
pp 477–491

16. Liekens AML, Fernando CT (2006) Turing complete catalytic particle computers. In: Pro-
ceedings of unconventional computing conference, York

17. Angluin D, Aspnes J, Eisenstat D (2006) Fast computation by population protocols with a
leader. Technical Report YALEU/DCS/TR-1358, Yale University Department of Computer
Science. Extended abstract to appear, DISC 2006

18. Bennett CH (1982) The thermodynamics of computation—a review. Int J Theor Phys
21(12):905–939

19. Păun G (1995) On the power of the splicing operation. Int J Comput Math 59:27–35
20. Kurtz SA, Mahaney SR, Royer JS, Simon J (1997) Biological computing. In: Hemaspaandra

LA, Selman AL (eds) Complexity theory retrospective II. Springer, Berlin, pp 179–195
21. Cardelli L, Zavattaro G (2008) On the computational power of biochemistry. In: Horimoto

K, Regensburger G, Rosenkranz M, Yoshida H (eds) AB. Lecture notes in computer science,
vol 5147. Springer, Berlin, pp 65–80

22. Berry G, Boudol G (1990) The chemical abstract machine. In Proceedings of the 17th ACM
SIGPLAN–SIGACT annual symposium on principles of programming languages, pp 81–94

23. Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287:73–
100

24. Magnasco MO (1997) Chemical kinetics is Turing universal. Phys Rev Lett 78:1190–1193
25. Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and

Turing machines. Proc Natl Acad Sci 88:10983–10987
26. Petri CA (1962) Kommunikation mit Automaten. Technical Report Schriften des IMM No 2.

Institut für Instrumentelle Mathematik, Bonn
27. Goss PJE, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology

by using stochastic Petri nets. Proc Natl Acad Sci USA 95:6750–6755
28. Mayr EW (1981) Persistence of vector replacement systems is decidable. Acta Inform 15:309–

318
29. Sacerdote GS, Tenney RL (1977) The decidability of the reachability problem for vector addi-

tion systems (preliminary version). In: 9th annual symposium on theory of computing, Boul-
der, pp 61–76

30. Post EL (1941) On the two-valued iterative systems of mathematical logic. Princeton Univer-
sity Press, New Jersey

31. Cook M (2005) Networks of relations. PhD thesis, California Institute of Technology
32. Rosier LE, Yen H-C (1986) A multiparameter analysis of the boundedness problem for vector

addition systems. J Comput Syst Sci 32:105–135
33. Skolem T (1923) Begründung der elementaren Arithmetik durch die rekurrierende Denkweise

ohne anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich. Viden-
skapsselskapets Skrifter. 1. Matematisk-naturvidenskabelig Klasse, 6

34. Gödel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme, I. Monatschefte Math Phys 38:173–198

35. Turing A (1936–1937) On computable numbers, with and application to the Entscheidungs-
problem. Proc Lond Math Soc 42(2):230–265

36. Ackermann W (1928) Zum hilbertschen Aufbau der reellen Zahlen. Math Ann 99:118–133
37. Herbrand J (1931) Sur la non-contradiction de l’arithmétique. J Reine Angew Math 166:1–8

584 M. Cook et al.

38. Gödel K (1934) On undecidable propositions of formal mathematical systems. In: Davis M
(ed) The undecidable. Springer, Berlin, pp 39–74. Lecture notes taken by Kleene and Rosser
at Princeton

39. Church A (1936) An unsolvable problem of elementary number theory. Am J Math 58:345–
363

40. Péter R (1951) Rekursive funktionen. Akadémiai Kiadó, Budapest
41. Gale D (1974) A curious nim-type game. Am Math Mon 81:876–879
42. Minsky ML (1961) Recursive unsolvability of Post’s problem of ‘tag’ and other topics in

theory of Turing machines. Ann Math 74:437–455
43. Neary T, Woods D (2005) A small fast universal Turing machine. Technical Report NUIM-

CS-2005-TR-12, Dept. of Computer Science, NUI Maynooth
44. Soloveichik D (2008) Robust stochastic chemical reaction networks and bounded tau-leaping.

arXiv:0803.1030v1
45. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15:1–40
46. Cook M, Rothemund PWK (2004) Self-assembled circuit patterns. In: Winfree E (ed) DNA

computing 9, vol 2943. Springer, Berlin, pp 91–107

