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Abstract

One goal of molecular programming and synthetic biology is to build chemical circuits that can

control chemical processes at the molecular level. Remarkably, it has been shown that synthesized

DNA molecules can be used to construct complex chemical circuits that operate without any enzyme

or cellular component. However, designing DNA molecules at the individual nucleotide base level is

often difficult and laborious, and thus chemical reaction networks (CRNs) have been proposed as a

higher-level programming language. So far, several general-purpose schemes have been described for

designing synthetic DNA molecules that simulate the behavior of arbitrary CRNs, and many more

are being actively investigated.

Here, we solve two problems related to this topic. First, we present a general-purpose CRN-

to-DNA compiler that can apply user-defined compilation schemes for translating formal CRNs to

domain-level specifications for DNA molecules. In doing so, we develop a language in which such

schemes can be concisely and precisely described. This compiler can greatly reduce the amount of

tedious manual labor faced by researchers working in the field. Second, we present a general method

for the formal verification of the correctness of such compilation. We first show that this problem

reduces to testing a notion of behavioral equivalence between two CRNs, and then we construct a

mathematical formalism in which that notion can be precisely defined. Finally, we provide algorithms

for testing that notion. This verification process can be thought of as an equivalent of model

checking in molecular computation, and we hope that the generality of our verification techniques

will eventually allow us to apply them not only to DNA-based CRN implementations but to a wider

class of molecular programs.
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Chapter 1

Introduction

1.1 Molecular Computer

What is a molecular computer? For outsiders, this name alone may sound bizarre enough because the

word computer in our time usually carries the image of an electronic board filled with semiconductor

chips made of silicon. However, if we rethink the word computer, it should really be used to refer

to any kind of device that is capable of computing. At present, semiconductors are the best-

studied material for building such a device. But at the front line of human knowledge, scientists

and engineers are striving to realize many other computer models that might overpower electronic

digital computers in certain ways. In the field of molecular computation, we study how we can

induce computational behavior from molecules in solution.

The key idea of molecular computation draws from the fact that we can use chemistry to predict

the behavior of molecules in advance. For instance, suppose we know that molecule A and molecule

B tend to bind to each other to form a bigger molecule C when they are present in solution together.

Then, if we had a way of testing whether C is present in solution, we can regard this system as an

AND gate taking two inputs A and B. The species C would be present if and only if both A and

B were present in solution. This analogy gets clearer when we imagine A, B, and C as Boolean

variables indicating whether the corresponding molecules are present in solution. If this example

is not impressive enough, let us add that we can achieve Turing-universality using the same idea

[42, 38, 29], which means that anything that can be computed by an electronic computer can also

be computed by the molecular computer.

Provided we will build our molecular computer upon this idea, it is obvious that the better we

understand the behavior of a molecule, the easier it is to build a system with it. Then what shall

be our choice of this molecule? Which types of molecules do we understand best? At present, the

most popular choice is DNA molecules, due to mainly two reasons. First, their behavior is relatively

well-understood. As commonly known, a DNA strand is a sequence of nucleotide bases each of which

can be either adenine (abbreviated A), cytosine (C), guanine (G), or thymine (T). When these bases



2

ACTGCGGA

TGACGCCT

ACTGCGGA

TGACGCCT

A

B

C

Figure 1.1: A sample implementation of the example given in the previous paragraph. For simplic-
ity, the double helix structure of the species C is neglected in this diagram and only the pairing
information is given.

encounter their Watson-Crick complements (A-C and G-T), they may form hydrogen bonds to form

the famous double-helix structure. Note that this behavior, namely the Watson-Crick base pairing,

is intrinsically algorithmic. In particular, it is very easy to implement the example given in the

previous paragraph using DNA strands (Fig. 1.1). Second, there are established ways to synthesize

arbitrary DNA sequences. That is, if we design a sequence of bases to use in an experiment, we can

easily obtain the actual DNA strand with that sequence.

The first result of DNA computation was reported in 1994 by Leonard Adleman [1] (although the

possibility of a molecular computer was suggested by Richard P. Feynman in as early as 1959 [12] and

explored in seminal work by Charles H. Bennett in 1982 [2]). Adleman designed DNA strands that

will spontaneously self-assemble complexes that encode possible solutions for the Hamiltonian path

problem. Then, the actual solutions could be found by applying additional lab techniques to filter

out non-solution molecules. The experiment certainly had a strong impact on scientists working in

related fields, and it was soon followed by numerous other results exploring the possibilities of a

molecular computer. It has been shown that we can build self-assembling DNA tiles [42, 34, 31, 22],

digital logic circuitry [33, 25, 28], transcriptional networks [17], entropy-driven DNA catalysts [49],

arbitrary shapes [42, 30, 45], arbitrary chemical reaction networks [39, 4, 27], molecular robots

[23, 37, 46, 41, 40], oscillators [17, 18], and even Turing-universal stack machines [27]. Many of these

results are also closely related to other fields as well, especially bionanotechnology and biorobotics.

Then a natural question arises: it is great to hear that molecular computers can perform all

these tasks, but what is their advantage over traditional electronic computers? Why should we

study molecular computation rather than ways to build faster electronic computers? Clearly, the

goal of molecular computation is not to compete with electronic computers in speed; after all, a

molecule can never move faster than electrical current. Rather, the goal of molecular computation

lies in learning how to program complicated molecular interactions and in doing so establishing ways

to exercise delicate control at the molecular level. We can imagine a great number of immediate

applications. For instance, in a near future, we might be drinking – instead of pills – autonomous
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molecular robots that aid our immune system.

1.2 Importance of Chemical Reaction Networks

This thesis will address a very specific topic in DNA computation, namely the chemical reaction

network implementations. Before getting into the main discussion, it will be worthwhile to point

out the vital importance that chemical reaction networks possess in the field.

Chemical reaction networks (CRNs) are a universally used formal language for describing chemi-

cal systems. A CRN is defined as a set of chemical reactions (which in turn are defined by specifying

their reactants and products) paired with corresponding rate constants. The conventional notation

for writing chemical reactions is used for describing reactions in a CRN, e.g., A+B
k→ C +D. This

example says that the reaction at hand completely consumes two reactants A and B and then pro-

duces two products C and D, and k is the rate constant that governs how fast this reaction occurs.

If A happens to be a catalyst, the reaction can be written A + B
k→ A + C + D to indicate that

A is required for the reaction but does not get consumed. In general chemistry, these letter species

names are usually replaced by the actual chemical names, e.g., H2O, NaCO3, etc. However, in DNA

computation, each letter name usually denotes a specific DNA complex with a specific structure.

Fig. 1.2 is an example of how a DNA system can be described in the CRN formalism. Note that

the two DNA strands A and B are Watson-Crick complementary to each other. Hence, if these two

strands come into contact in solution, they will hybridize to form a double-stranded molecule which

we call C. In this example, the two strands are not long enough to sustain the bonding and thus

will spontaneously detach after a little time. To indicate this behavior, this reaction is modeled as

a reversible reaction.

Another point to make in this example is that in reality there exist several intermediate states

between the initial state where A and B are completely separate and the final state where they

are completely hybridized. Because base pairing does not occur simultaneously, there will be states

where only some of the nucleotide bases are hybridized. However, such intermediate configurations

ACTGC

TGACG

ACTGC

TGACG

A

B

C

A+B
k1−→ C

C
k2−→ A+B

Figure 1.2: A DNA system and its CRN representation
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CRNs
Chemical

Systems

Programming

Modeling

Figure 1.3: The role of CRNs in molecular computing

are often neglected from discussion because they rapidly turn into more stable configurations.

We have seen that CRNs are a good modeling language for DNA systems as they are for any

other type of chemical system. In molecular computing, CRNs assume one additional role that is

immensely powerful; they become a programming language for molecular interactions [10, 21, 35, 36].

Note that our attempt to obtain computational behavior in molecules is the exact reversal of the

modeling process; instead of studying the behavior of a given system, we try to create a chemical

system that exhibits a given behavior. Thus, if we had a general scheme for building a DNA system

that implements the behavior of a given arbitrary CRN, CRNs can effectively function as the “source

code” for DNA systems and the CRN formalism becomes a “programming language” [39]. Moreover,

it is known that stochastic CRNs can emulate Turing machines with an arbitrarily small probability

of error [38], so it is not just any programming language, but a powerful one.

1.3 Implementing Arbitrary Chemical Reaction Networks

For CRNs to serve the roles delineated in the previous section, we need a general scheme for im-

plementing a given CRN using real molecules, i.e., given any CRN, we should be able to design

molecules that behave according to the reactions specified in that CRN. Then, since CRNs are a

Turing-universal computational model that can encode any kind of computational behavior, it will

follow that we can perform arbitrary computation with molecules. Fig 1.4 illustrates the “compila-

tion” steps needed for this procedure.

Note that the first step of this compilation process, from abstract computational ideas to CRNs,

need not be general. The proof that this translation is always possible, which was given in [38],

used the fact that it is possible to simulate Turing machines using CRNs. However, the existence

of a general translation scheme does not necessarily mean that we have to use it. In fact, it is often

advantageous to use translation schemes that are more specific to the computational behavior of

interest. For instance, if we were to implement the logic gate Y = ((X1 ∨X2)∧X3)∨X4, it is much

more efficient to reduce it to the following small CRN than to first translate the logic gate to an

equivalent Turing machine and then translate that Turing machine to a CRN using [38].
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X1 → I

X2 → I

I +X3 → J

J → Y

X4 → Y

Clearly, the output molecule Y will be found if and only if the given logic formula is satisfied

(where the truth value of Xi is determined by the presence of the corresponding molecule in solution).

This system contains only five reactions whereas translation via Turing machines would require orders

of magnitude more reactions. However, generalizing this construction works only for a small class

of computation, namely AND-OR logic circuitry, and if we wanted to perform a different type of

computation, we would need a different construction.

Since we are likely to use many different constructions for the first step, the construction for the

second step, on the other hand, needs to be as general as possible. This is because the fact that we

allow many different implementations for the first step makes it impossible to impose any condition on

Computational behavior

CRN

(DNA) Molecules

A+B → C

X+Y+Z+D → I+J

I+B → K

AGTTGCTA
AGGCTAATCA

TCCGATTAGT

GTCGA

Figure 1.4: CRN-based compilation steps
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the CRNs that we encounter in the second step. In other words, the scheme for the second step should

work for any CRN. Fortunately, one such general construction was demonstrated by Soloveichik et

al. in [39], with a few more that followed later [4, 27, 5] (there also exist implementations that work

for a limited class of CRNs [28, 24]). A thorough understanding of such DNA-CRN translation

schemes is vital for understanding this thesis, so we will introduce the construction of Soloveichik et

al. in this section.

However, before we do so, it is necessary to first introduce a few fundamental concepts of molec-

ular computation that will recur throughout the entire thesis.

First, from this point on, we will annotate DNA strands not by specifying individual nucleotide

bases, but by specifying what we call domains. Note that the DNA strands in Fig. 1.5 are specified

by little numbered segments, or domains, instead of the actual nucleotide base sequences. Here, a

starred domain is supposed to have a sequence that is complementary to that of the corresponding

un-starred domain. This notation, often called domain specification, is a higher-level abstraction

that researchers in the field often employ to relieve the pain of dealing with long DNA sequences.

It is clear that for a domain specification to work, it should be enforced that two domains are

complementary (either fully or partially) if and only if they are the starred and the un-starred

domains of the same number. Otherwise, there will be spurious reactions which are not explained

by the domain specification of the system. For this purpose, there are sequence designer programs

[47] that translate a given domain specification to actual sequences ensuring that this condition is

enforced.

Second, in our domain specifications, we will often distinguish between “long” domains and

“short” domains depending on their ability to sustain hybridization. For instance, two comple-

mentary domains of length 5 (meaning they have five nucleotide bases) will not provide sufficient

binding energy for the two strands to stay together, while two complementary domains of length 20

will. This distinction between long domains and short domains is important, because it provides a

foundation for the so-called toehold-mediated branch migration.

In toehold-mediated branch migration, molecules are designed in such a way that they can only

react by hybridization of a toehold domain (synonymous with a “short” domain). It might seem

that since toehold domains are short, the two molecules will detach after a little time and there will

not be any significant behavior in the system. However, the situation is different when there are

appropriate domains right next to the toehold domain. For example, in Fig. 1.5, molecules X1 and

Li share complementary toehold domains 1 and 1* by which they can bind to each other. Note also

that the next domains in X1, namely 2 and 3, are also complementary to the adjacent domains on

the bottom strand of Li. In this case, X1 will compete with the short top strand of Li (2-3-4) for

the 2* and 3* domains on the bottom strand. If X1 loses this competition, then it is bound only by

one toehold domain and will spontaneously fall off. If X1 wins, the top strand 2-3-4 is bound only
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Figure 1.5: Bimolecular module: DNA implementation of the formal bimolecular reaction X1+X2 →
X3 with reaction index i (meaning just that it is the i-th reaction in the CRN). Figure taken from
[39].

by one toehold domain and will fall off. In this case, we are left with a different molecule which

has the toehold 4 open instead of the toehold 1. This behavior is modeled by the first reaction in

Fig. 1.5, which is reversible because the now-free top strand Bi can hybridize with the open toehold

4 on Hi to reverse this process.

This idea, toehold-mediated branch migration, was the basic building block for the construction

of Soloveichik et al. Fig. 1.5 shows how a bimolecular reaction (in this thesis, a reaction is bimolecular

if it takes exactly two reactants, and similarly, it is unimolecular if it takes exactly one reactant) can

be emulated using DNA molecules. Observe that the construction involves some auxiliary species

(Li, Bi, and Ti) as well as the species from the target reaction (X1, X2, and X3). These auxiliary

species are usually assumed to be in excess compared to other species, so that a little fluctuation in

the concentration of the auxiliary species will not have an effect on the kinetics of the system. This

is essential because in most CRN implementations these auxiliary species serve the role of fuel and

will constantly get consumed as the system evolves (and the system will deviate from the desired

behavior when too much fuel has been consumed).

To understand the logic of this implementation, we shall investigate its execution pathway step

by step. Suppose we begin with a huge amount of the auxiliary species Li, Bi, and Ti and a small

amount of the reactant species X1 and X2. Since both X1 and Li are present in solution, the first step

in Fig. 1.5 will start producing the intermediate species Hi. Then, the second step, which consumes

X2 and Hi and produces another intermediate species Oi and some waste, will get activated. Finally,

the intermediate Oi reacts with the auxiliary species Ti to produce the target product species X3.

Note that the waste species that get produced along with the desired product have no open toehold
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and thus are effectively inert. It is important that they cannot participate in any further reaction,

because otherwise they can form spurious pathways and cause leak and crosstalk.

Now consider the case where we start with only one of the two reactant species X1 and X2.

First, if we had only X2, none of the three reactions can occur and we will not observe any change in

the concentration of X1, X2, and X3. This is exactly the behavior expected by the target reaction

X1 + X2 → X3. The case is less simple when we start with X1 but no X2. In that case, some of

the X1 molecules will turn into Hi molecules as a result of the first reaction in action. However, the

target reaction X1 + X2 → X3 says that there should not be any fluctuation in the concentration

of any of those three species when only X1 is present. This is why the first reaction in Fig. 1.5 was

designed to be reversible. By adjusting the rate constants qi and ρ appropriately, we can ensure that

only a negligible amount of X1 gets converted to Hi if no further reaction can be triggered. This

would not have been possible if the first reaction was irreversible.

This construction works not only for this one reaction but also for CRNs consisting of many

different reactions. It is because of the modularity of this construction. Observe that X1, X2, and

X3 are of the same form albeit with different domains; in particular, the reactants (X1 and X2) and

the products (X3) of this implementation have the same structure. Because of this property, we can

use the exact same module for implementing any bimolecular reaction, even when there are cascades

of reactions. For instance, we can use the same module to implement the reaction X3 +X4 → X5.

Although X3 was a product of one reaction X1 + X2 → X3, it can also be used as a reactant to

another reaction X3 + X4 → X5 because in both cases X3 has the same structure. Note that this

was not the case for the construction shown in Fig. 1.1.

Also, note that the idea used in this construction could be generalized to implement reactions with

different number of products. It is pointed out in [39] that by modifying the Oi and Ti molecules to

have more domains and strands, we can implement reactions with an arbitrary number of products.

For instance, if we lengthen the bottom strand of Ti, put one more signal species X4 and add the

corresponding domains to Oi, we will have implemented X1+X2 → X3+X4. In contrast, this scheme

does not generalize to an arbitrary number of reactants (of course, there are some other schemes

that do [27, 4]). However, it can be easily shown that if a scheme can implement unimolecular and

bimolecular reactions, then it can implement reactions with an arbitrary number of reactants by

composing multiple modules, if we ignore kinetics. For instance, to implement A + B + C → D,

we can rather implement the following three unimolecular and bimolecular reactions: A + B → I,

I → A+B and I +C → D. If we do not count I as a signal species, the net effect would be exactly

A+B + C → D.

Obviously, the construction shown in Fig. 1.5 is merely one of the many ways to implement CRNs

using DNA molecules. Indeed, several different implementations [4, 27, 5, 9] were discovered later. It

is usually difficult to claim the superiority of one such implementation to another because they have
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different pros and cons; for example, some implementations admit easier sequence synthesis, some

have lower leak rates, etc. Thus it is expected that many more such implementations, or translation

schemes as we shall call them from now, will be developed and used in the future. Some of them

might apply only to a certain subclass of CRNs [28, 24], or might not explicitly translate from a

higher-level language [19, 20, 26, 7].

1.4 Outline

This thesis consists of two independent but related projects. The smaller of the two is about

an automated compiler for the CRN-to-DNA translation process. The compiler takes two input

data which are the translation scheme description and the target CRN and produces the domain

specification of the DNA system that implements the given CRN using the given translation scheme.

The major features of the compiler are briefly described in Chapter 2 while the details of the software

follow in the appendix.

The larger project, which we present over the next four chapters, is about a verifier that tests the

correctness of the above-mentioned compiler. However, rather than focusing only on the correctness

of our own compiler, we attempt to solve a more general version of the problem: we attempt

to test the behavioral equivalence between arbitrary CRNs. Since it is vague what is meant by

equivalence here, the first step is to propose a precise definition for it, which turns out to be a

nontrivial task and forces us to spend the whole of Chapter 4 on it. In Chapters 5 and 6, we present

algorithms for testing that notion of equivalence and report some experimental results. Chapter 3

briefly describes a software tool called reaction enumerator, which is essential for implementing our

verification algorithm.
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Chapter 2

The BioCRN Compiler

2.1 Introduction

As we delineated in the introduction chapter, there are mainly three steps in which a CRN is compiled

down to DNA molecules (Fig. 1.6). First, the given CRN is translated to domain-specified DNA

molecules. Second, the domain specification is turned into sequences of nucleotide bases. Finally,

real molecules are synthesized according to the sequence information generated in the second step.

The procedures for the second and third steps are highly standardized among researchers; the second

step is usually performed using software programs called sequence designers such as NUPACK [47]

from the California Institute of Technology. The third step is already industrialized and is usually

carried out by commercial companies.

Unfortunately, the first step is being performed in many different ways even in a single research

group. This is due both to the previously mentioned intrinsic diversity of translation schemes and to

the lack of relevant software. Observe that the latter is a consequence of the former. While it is easy

to build a compiler that works for a single translation scheme, it is much more difficult to design

a general compiler that works for many different translation schemes. This is because translation

schemes might build on drastically different ideas; there is no guarantee that all translation schemes

will build on the same toehold-mediated branch migration idea presented in the last chapter.

To acquire the generality required for such a compiler, we chose to deviate from the conventional

definition of a compiler and adopt the translation scheme description itself as a part of the input

data. In other words, our compiler will take two input data instead of one, which are the translation

scheme description and the input CRN. Given those data, it will produce domain-specified DNA

molecules that implement the given CRN, following the procedures laid out in the given translation

scheme. If it is easier to write down a translation scheme in our input language than to write an ad

hoc compiler for it, our compiler will contribute greatly to the researchers in this field.

We should mention some previous work done in this regime. First, we note that there are some

compilers that work for a single specific translation scheme, usually written by the designers of that
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translation scheme. For example, David Soloveichik has a compiler written in Mathematica for his

translation scheme from [39]. Second, there is Visual DSD [19, 20, 7, 26] which is developed and

maintained by Microsoft Research. It is a general tool for analyzing DNA systems which provides a

programming language for specifying DNA strand displacement circuits, enumerating their domain-

level reactions, and performing simulations. However, their language acts more as a macro language

for specifying sets of DNA structures rather than a complete programming language with a specific

source language semantics. For instance, it does not have conditionals, loops, or advanced data

structures, so the user has to write a separate macro for reaction modules with a different number

of reactant or product molecules, even though they all depend on the same logic. In contrast, our

compiler will use a representational framework that explicitly begins with a CRN program that

supports various high-level programming constructs.

In this chapter, we briefly introduce our ‘BioCRN’ compiler. We will first describe some of

its major features and then provide a few example codes to help understanding. Due to space

constraints, the formal syntax and semantics of the languages used in this chapter will only be

found in the appendix at the end of the thesis.

2.2 Features

The BioCRN compiler was written in Python 2.6.6 and thus runs on all commonly used platforms. It

uses Pyparsing and DNAObjects libraries (the former is a common library and the latter is developed

and maintained by the Winfree group at the California Institute of Technology). Its main function,

as described in the previous section, is to take two input files, one containing the translation scheme

description and the other containing the target CRN, and produce the domain-specified molecule

descriptions according to the given input data.

The extensions for the input and output files are .ts (for ‘translation scheme’), .crn (‘chemical

reaction network’), and .dom (‘domain specification’) respectively. Each file extension has an asso-

ciated well-defined language in which the data are expressed. Clearly, the core of our compiler is in

the TS language. While the other two languages are mere representations of chemical reactions and

molecule structure, the TS language is required to be a high-level programming language capable of

expressing many different translation schemes. Therefore, we will discuss mainly the TS language in

this section and leave the reader to learn the other two languages through the examples presented

in the following section (or by reading the appendix).

At first glance it might seem that we could afford to develop a relatively weak programming

language for the TS files, because the TS language needs only be able to express valid translation

schemes, not arbitrary programs. However, we should not generalize from the little experience that

we have in this field that the translation schemes of the future should also be as simple and clean
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as that of Soloveichik et al. For instance, we can ambitiously imagine a translation scheme that

runs simulation on a set of randomly generated molecules and chooses the best one, and the TS

language should still be able to express that translation scheme. Thus, we designed it to be a purely

functional, dynamically typed programming language that supports conditionals, recursion, lists,

pattern matching, and even higher order functions (albeit partially). The only requirement that

our language imposes on translation schemes is that they should output a set of domain-specified

molecules in the end.

Much of the syntax for our language was inspired by Haskell, which is a general-purpose functional

programming language. The following is an example showing some common functions implemented

in the TS language.

1 # Computes the sum of the g iven l i s t o f i n t e g e r s

2 f unc t i on sum( x ) =

3 i f l en ( x ) = 0 then 0 e l s e x [ 0 ] + sum( t a i l ( x ) ) ;

4

5 # Computes the l ength o f the g iven l i s t

6 f unc t i on l en ( x ) =

7 i f x == [ ] then 0 e l s e 1 + len ( t a i l ( x ) ) ;

8

9 # Reverses the g iven l i s t

10 f unc t i on r e v e r s e ( x ) =

11 i f x == [ ] then [ ] e l s e r e v e r s e ( t a i l [ x ] ) + [ x [ 0 ] ] ;

12

13 # Appl ies the func t i on f on each entry o f the l i s t x and re tu rn s the l i s t o f the

r e s u l t s

14 f unc t i on map( f , x ) =

15 i f l en ( x ) == 0 then

16 [ ]

17 e l s e

18 [ f ( x [ 0 ] ) ] + map( f , t a i l ( x ) )

Here, tail is a built-in function that returns the given list except the first entry, and x[i] indexes

the i-th entry of the list x. In lines 7 and 11, we can notice that the plus operator is overloaded for

multiple data types. Namely, it is being used for adding two integers in line 7 and for concatenating

two lists in line 11.

This sample code should be easy to understand for those who have experience in programming.

Note that recursion and conditionals are the fundamental idea behind these implementations as

it is often the case with functional programming languages. However, since the purpose of this

language is to express translation schemes, it should also support some unconventional data types

for expressing molecule structure, concentration, etc. Thus, our language supports new data types
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called Species, Reaction, Domain, Structure, and Solution as well as traditional data types such

as integers, floats, booleans, and lists. The exact specifications of these data types are reserved for

the appendix, but in this section we will provide intuitive descriptions of some of the new data types

through examples. Also, Fig. 2.1 summarizes the general purposes of these new data types.

The following example shows a use of Domain and Structure data types. Here, gate is a

function that takes one argument of the type Domain and returns a Structure object. Since the

Structure data type is used to describe a DNA complex, gate could be understood as a function

that takes one domain and returns a molecule whose structure will somehow depend on that domain.

1 f unc t i on gate ( toeho ld ) =

2 ”b c + c∗ b∗ a∗” |

3 ”( ( + ) ) . ”

4 where {

5 a = toeho ld ;

6 b = long ( ) ; # long ( ) gene ra t e s a new unique long domain and although not

7 c = long ( ) # used here , shor t ( ) gene ra t e s a new unique shor t domain .

8 }

The second and third lines are describing the primary and secondary structures of the molecule

that will be returned by the function. This notation system using dots and parentheses is known as

dot-paren notation [16]. In this notation, a plus sign indicates strand breaks, a dot indicates that

the corresponding domain is unpaired, and a parenthesis indicates that the corresponding domain

is paired with the domain with the matching parenthesis. The structure specified in the above code

is illustrated in Fig. 2.2. While this notation system cannot express every possible structure that

can occur in a DNA molecule (in fact, the class of structures that dot-paren notation can express is

exactly those that are free of pseudoknots), it is one of the most convenient notations available today

and is widely used in the field. Fig. 2.3 provides some examples that will further help understanding

of this notation system.

Then, what is the minimal requirement for a TS source code to be valid? Just as C programmers

have to implement the ‘main’ function, translation scheme programmers need to implement the

following two functions:

1. formal is a function that constructs molecules that represent species from the input CRN.

The name of the function comes from the fact that we call species from the input CRN the

formal species.

2. main is a function that takes a list of reactions and returns all the auxiliary species required

to implement those reactions (the return value should be a Solution object).

As usual, we should study some examples to understand the purpose of each function more clearly.
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The following is an example implementing the formal function for the translation scheme from

Fig. 1.5.

1 f unc t i on formal ( s ) =

2 ”? a b c” | ”? . . . ”

3 where {

4 a = shor t ( ) ;

5 b = long ( ) ;

6 c = shor t ( )

7 } ;

Soloveichik et al. requires that the molecules representing formal species have one “history”

domain, which is variable according to the reaction that produced those molecules. Thus, each

formal species will not be mapped to a single implemented species, but it will be mapped to a class

of species. To express this, here we used a question mark as a wildcard that can match any single

unpaired domain. Recall that short() and long() are functions that generate new unique domains

of respective lengths, so formal will return a new single-stranded molecule with three new distinct

domains every time it is called. This way, no two formal species will share the same domain, as

Data type Usage
Species Used to represent chemical species. As its only data field is name which simply

stores the name of the species, its main purpose is to distinguish between
different species.

Reaction Stores information about chemical reactions. It has three data fields;
reactants which holds the list of reactant molecules, products which holds
the list of product molecules, and reversible which tells whether the reaction
is reversible.

Domain Used to represent domains. It has two data fields: id and length. Similarly
to the Species data type, it is mainly used to distinguish between different
domains using the id field.

Structure Stores the primary and secondary structure of a DNA complex along with the
domains used in it.

Solution Represents a chemical solution. It has one data field called molecules, which
stores a list of Structure objects. Conceptually, it stores the list of molecules
that are present in the solution.

Figure 2.1: New data types.

b        c

b*      c*a*

Figure 2.2: DNA secondary structure corresponding to the dot-paren notation “( ( + ) ) .” (from
the above gate function).
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        or
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        or
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Figure 2.3: Some more examples of dot-paren notation

desired by the scheme. Fig. 2.4 shows the molecule that will be constructed from this code.

a b c?

Figure 2.4: The structure from formal

Now, note that the following function constructs the Bi molecule from Fig. 1.5.

1 f unc t i on Bi ( x1 , x2 ) =

2 ”d2 d3 d4” |

3 ” . . . ”

4 where {

5 d2 = x1 . b ;

6 d3 = x1 . c ;

7 d4 = x2 . a

8 } ;

Here, x1 and x2 are assumed to be Structure objects produced by the formal function. Thus, when

we reference x1.b or x1.c, it will return the corresponding domains as was specified in the dot-paren

description in formal (if x1 or x2 were not produced by formal, it might not have domains named

a, b, or c, in which case it would result in a runtime error).
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Finally, we can write down the following main function.

1 f unc t i on main ( crn ) = i n f t y ( Bi ( crn [ 0 ] . r e a c t a n t s [ 0 ] , crn [ 0 ] . r e a c t a n t s [ 1 ] ) )

2 # ‘ in f ty ’ i s a bu i l t−in func t i on that takes a St ruc ture i n s t anc e and puts that the

s p e c i e s i s supposed to have ” i n f i n i t e ” concent ra t i on . The r e s u l t i n g ob j e c t w i l l

be a So lu t i on in s t anc e .

The argument given to the main function, crn, is a list of Reaction objects that store the reactions

from the input CRN. However, their reactants and products fields contain Structure objects

that are obtained by running each species that appears in the given reaction through the formal

function.

Thus, if we ran this translation scheme on the CRN consisting of one reaction X1 + X2 → X3,

it will correctly translate all the formal species according to the scheme from Fig. 1.5, and produce

the appropriate Bi molecule. However, as can obviously be seen, this main function ignores every

reaction but the first one, it assumes that the first reaction is bimolecular, and most importantly,

it does not produce any other auxiliary species than Bi. This is obviously not an implementation

of a correct translation scheme, and it requires much more work to make it one. A more thorough

example will be given in the next section, but will require a deeper understanding of the language

to grasp.

Lastly, note that our compiler completely ignores the kinetic aspect of the system. Thus, we do

not specify rate constants in our CRN language and we only specify the concentration of a species

as ‘infinite’ or ‘non-infinite.’ This is a major limitation of our compiler and should be improved in

the future.

2.3 Examples

1 A −> B + C

2 C −> D

Listing 2.1: sample.crn ↑

1 #

2 # David So love i ch ik ’ s t r a n s l a t i o n scheme from ”DNA as a u n i v e r s a l s ub s t r a t e

3 # f o r chemica l k i n e t i c s ” , Proceed ings o f the Nat iona l Academy o f Sc i ences ,

4 # 107 : 5393−5398 , 2010 .

5 #

6 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

7 #

8

9 f unc t i on formal ( s ) = ”? a b c”

10 | ”? . . . ”



18

11 where {

12 a = shor t ( ) ;

13 b = long ( ) ;

14 c = shor t ( ) } ;

15

16 f unc t i on ugate ( s , l )

17 = [ ” b c d + c∗ b∗ a∗” # G i

18 | ”( ( ˜ + ) ) . ” ,

19 ”e + f c∗” # T i

20 | ”˜ + ˜ . ” ]

21 where {

22 a = s . a ;

23 b = s . b ;

24 c = s . c ;

25 [ d , e , g ] = f l i p (map(gmac , l ) , 3) ;

26 f = r e v e r s e ( g ) } ;

27

28 f unc t i on gmac( s )

29 = [ ” d a”

30 | ” . . ” ,

31 ”d a b c +”

32 | ”( ( . . +”,

33 ”a∗ d∗”

34 | ”) ) ” ]

35 where {

36 d = long ( ) ;

37 a = s . a ;

38 b = s . b ;

39 c = s . c } ;

40

41 f unc t i on unimolecu lar ( r ) = i n f t y ( g ) + i n f t y ( t )

42 where

43 [ g , t ] = ugate ( r . r e a c t a n t s [ 0 ] , r . products ) ;

44

45 f unc t i on bgate ( s1 , s2 , l )

46 = [ ” b c d + e f g + f ∗ e∗ d∗ c∗ b∗ a∗” # L i

47 | ”( ( ( + ( ( ˜ + ) ) ) ) ) . ” ,

48 ”h + i f ∗” # T i

49 | ”˜ + ˜ . ” ,

50 ”b c d” # B i

51 | ” . . . ” ]

52 where {

53 a = s1 . a ;

54 b = s1 . b ;

55 c = s1 . c ;
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56 d = s2 . a ;

57 e = s2 . b ;

58 f = s2 . c ;

59 [ g , h , j ] = f l i p (map(gmac , l ) , 3) ;

60 i = r e v e r s e ( j ) } ;

61

62 f unc t i on b imo lecu la r ( r ) = i n f t y ( l ) + i n f t y ( t ) + i n f t y (b)

63 where

64 [ l , t , b ] = bgate ( r . r e a c t a n t s [ 0 ] , r . r e a c t a n t s [ 1 ] , r . products ) ;

65

66 f unc t i on main ( crn ) = sum(map( unimolecular , unirxn ( crn ) ) ) +

67 sum(map( bimolecu lar , b i rxn ( crn ) ) )

68 where

69 crn = i r r e v r e a c t i o n s ( crn )

Listing 2.2: soloveichik.ts ↑

1 sequence d1 : 5

2 sequence d2 : 15

3 sequence d3 : 5

4 sequence d4 : 5

5 sequence d5 : 15

6 sequence d6 : 5

7 sequence d7 : 5

8 sequence d8 : 15

9 sequence d9 : 5

10 sequence d10 : 5

11 sequence d11 : 15

12 sequence d12 : 5

13 sequence d13 : 15

14 sequence d14 : 15

15 sequence d15 : 15

16 # Formal s p e c i e s

17 A :

18 ? d1 d2 d3

19 ? . . .

20 C :

21 ? d4 d5 d6

22 ? . . .

23 B :

24 ? d7 d8 d9

25 ? . . .

26 D :

27 ? d10 d11 d12

28 ? . . .

29 # Constant s p e c i e s
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30 automatic4 :

31 d2 d3 d13 d7 d14 d4 + d3∗ d2∗ d1∗

32 ( ( . . . . + ) ) .

33 automatic5 :

34 d13 d7 d8 d9 + d14 d4 d5 d6 + d4∗ d14∗ d7∗ d13∗ d3∗

35 ( ( . . + ( ( . . + ) ) ) ) .

36 automatic6 :

37 d5 d6 d15 d10 + d6∗ d5∗ d4∗

38 ( ( . . + ) ) .

39 automatic7 :

40 d15 d10 d11 d12 + d10∗ d15∗ d6∗

41 ( ( . . + ) ) .

Listing 2.3: sample.dom ↑

In this section, we will investigate a full set of input and output codes to provide a broad picture

of the compilation process. In other words, we will look into how the “sample.dom” file above

is produced from “sample.crn” and “soloveichik.ts”. However, understanding the details of these

examples is not necessary for understanding the rest of this thesis, and might require an exhaustive

study of the appendix material.

As the compilation begins, first, all the formal species (A, B, C, and D in this case) are translated

using the ‘formal’ function from the TS file. Note that the formal function is written such that we

produce three new unique domains for each formal species. Accordingly, the compiler obtains the

following after this translation. We can check that the length of each domain agrees with the

specification from the formal function. (Here, 5 and 15 are being used as default lengths for ‘short’

and ‘long’ domains.)

# Formal s p e c i e s

A :

? d1 d2 d3

? . . .

C :

? d4 d5 d6

? . . .

B :

? d7 d8 d9

? . . .

D :

? d10 d11 d12

? . . .

Then, the compiler will run the ‘main’ function of the TS file, supplying the input CRN as the

argument. In this case, the argument crn will have the following value: [Reaction([A], [B, C],
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False), Reaction([C], [D], False)]. (Reaction([A], [B, C], False) denotes a Reaction

object with reactant, products, and reversible data fields having values [A], [B, C], and False

respectively. A, B, C, and D here represent the Structure objects that were generated during the

first step of compilation using the formal function.)

f unc t i on main ( crn ) = sum(map( unimolecular , unirxn ( crn ) ) ) +

sum(map( bimolecu lar , b i rxn ( crn ) ) )

where

crn = i r r e v r e a c t i o n s ( crn )

First of all, since we have a where clause, we create a local binding crn which has the value

irrev reactions(crn). irrev reactions is a function that divides every reversible reaction into

a pair of irreversible reactions. Since our input CRN does not contain any reversible reaction, the

new crn will be the same as the old crn. Also, note that crn only contains unimolecular reactions,

so when the above code computes unirxn(crn) and birxn(crn), the former will be the same as

crn itself and the latter will be an empty list. Therefore, the return value of our main function will

be sum(map(unimolecular, unirxn(crn))).

To compute this value, we need to apply the function unimolecular to each item in unirxn(crn)

and take the sum of the resulting values. Since unirxn(crn) is [Reaction([A], [B, C], False),

Reaction([C], [D], False)], we need to first compute unimolecular(Reaction([A], [B, C],

False)) and unimolecular(Reaction([C], [D], False)), and compute their sum. Now, we need

to study the unimolecular function.

f unc t i on unimolecu lar ( r ) = i n f t y ( g ) + i n f t y ( t )

where

[ g , t ] = ugate ( r . r e a c t a n t s [ 0 ] , r . products ) ;

Suppose the argument r was Reaction([A], [B, C], False). To compute the return value of

unimolecular(r), we first need to evaluate the value of g and t from the where clause. That is,

we need to evaluate ugate(r.reactants[0], r.products) first. Clearly, r.reactants[0] is A and

r.products is [B, C] where A, B, and C are Structure objects. Thus, the code will call ugate(A,

[B, C]) and try to pattern match the result into [g, t].

f unc t i on ugate ( s , l )

= [ ” b c d + c∗ b∗ a∗” # G i

| ”( ( ˜ + ) ) . ” ,

”e + f c∗” # T i

| ”˜ + ˜ . ” ]

where {

a = s . a ;

b = s . b ;

c = s . c ;
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[ d , e , g ] = f l i p (map(gmac , l ) , 3) ;

f = r e v e r s e ( g ) } ;

Note that the value of the first argument s is A, which is a Structure object created with

the formal function. If we look at the definition of formal, there are three domains that are

used to specify the structure: a, b, and c. Thus, when we write s.a, s.b, and s.c, we reference

the corresponding Domain objects, i.e., d1, d2, and d3, respectively. (If s were B, we would have

referenced d7, d8, and d9 instead.) Thus, a, b, and c in the where clause are d1, d2, and d3

respectively, but in order to evaluate d, e, f, and g, we need to call yet another function, gmac.

Recall that the value of the second argument l was [B, C], which is a list. Thus, when we call

map(gmac, l), we will apply gmac on B and C individually, and store the results in a list.

f unc t i on gmac( s )

= [ ” d a”

| ” . . ” ,

”d a b c +”

| ”( ( . . +”,

”a∗ d∗”

| ”) ) ” ]

where {

d = long ( ) ;

a = s . a ;

b = s . b ;

c = s . c } ;

Let us first evaluate gmac(B). We first need to evaluate the assignments in the where clause. Note

that we need to generate a new unique domain for d. Since we already assigned d1 through d12 to for-

mal species, we will assign d a new Domain object named d13. Also, since s is B here, as we discussed

above, s.a, s.b, and s.c are d7, d8, and d9 respectively. Thus, a, b, and c become d7, d8, and d9.

That is, gmac(B) has the value [Structure("d a", ". .", (d=d13, a=d7)), Structure("d a

b c +", "( ( . . +", (a=d7, b=d8, c=d9, d=d13)), Structure("a* d*", ") )", (a=d7,

d=d13))]. Similarly, gmac(C) will have the value [Structure("d a", ". .", (d=d14, a=d4)),

Structure("d a b c +", "( ( . . +", (a=d4, b=d5, c=d6, d=d14)), Structure("a* d*",

") )", (a=d4, d=d14))].

Now, this means that back in the ugate function, the value of map(gmac, l) has the form [[S..,

S.., S..], [S.., S.., S..]]. flip is a function that works like a matrix transpose function for

lists of lists. Thus, if we compute flip(map(gmac, l), 3), the above list will turn into the form

of [[S.., S..], [S.., S..], [S.., S..]]. Now we can evaluate all bindings that appear in the

ugate function, which is shown in Fig. 2.5.

Now, note that there are tilde (∼) signs in the definition of the two Structure objects that
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a d1
b d2
c d3
d [Structure("d a", ". .", (d=d13, a=d7)), Structure("d a", ".

.", (d=d14, a=d4))]
e [Structure("d a b c +", "( ( . . +", (a=d7, b=d8, c=d9,

d=d13)), Structure("d a b c +", "( ( . . +", (a=d4, b=d5, c=d6,
d=d14))]

g [Structure("a* d*", ") )", (a=d7, d=d13)), Structure("a* d*", ")
)", (a=d4, d=d14))]

f [Structure("a* d*", ") )", (a=d4, d=d14)), Structure("a* d*", ")
)", (a=d7, d=d13))]

Figure 2.5: The values of bindings in the where clause of ugate

appear in ugate. When a domain in a Structure definition has a tilde, that domain should have

a list of Structure objects as its value like d, e, and f in this case. When this happens, BioCRN

concatenates the structural specification given in that list and puts the resulting structure in the

place of that domain. For example, the two Structure objects being specified in the ugate function

now have the following structure (Fig. 2.6).

Figure 2.6: Gi (above) and Ti (below) molecules from the ugate function. Figure generated using
Visual DSD [19].

Now, back in the unimolecular function, these two Structure objects computed in ugate are

put into the variables g and t respectively. Then, the return value of unimolecular is simply

infty(g) + infty(t), which is a Solution object that contains the two species described by g

and t (infty is a function that turns a Structure object into a Solution object that contains only

that molecule).

We are finally back in the main function, but in order to compute the final return value, we need

to repeat the same procedure as above for the second reaction in crn. We will omit that second round

here because it would be too tedious and laborious to follow it step by step. However, it is clear
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that the second round will also return a Solution object and thus the value of map(unimolecular,

unirxn(crn)) would be a list of Solution objects. Finally applying sum on that list, we will obtain

a Solution object that contains every molecule that appears at least once in any Solution object

in that list. The return value of main will be, as promised, a Solution object that contains all

auxiliary molecules needed to implement the reactions in the given CRN.

Note that this example does not reveal how the above translation scheme will deal with a bi-

molecular reaction. However, that should be fairly easy to figure out for those that have followed

the discussion above, and we leave it as an exercise for the reader.
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Chapter 3

Reaction Enumerator

As we saw in the last chapter, the BioCRN compiler produces a structural design for formal and

auxiliary molecules, but does not explain how those molecules are supposed to interact with each

other. In order to study the chemical pathways involving the produced molecules, we use a software

tool called reaction enumerator. Although building a reaction enumerator was not a part of our

research, we need to introduce it briefly here because it is necessary for understanding our next

project, the CRN implementation verifier.

3.1 Motivation

Despite the diversity of procedures that researchers go through to build a molecular program, they

all arrive at the same form in the end, which is the specification for a set of molecules. Then, those

molecules are synthesized according to the specification and put into a test tube for experiments.

Unfortunately, many molecular programs are error-prone and they exhibit unexpected behaviors

that are difficult to understand, because it is hard to figure out in an experimental setting which

chemical pathways are active in the test tube. To this end, the use of simulation techniques can be

very helpful.

As pointed out in the first chapter, DNA molecules have a simple behavior (relative to other

organic molecules) that is easily predicted. In fact, most behaviors seen in today’s DNA programs

can be predicted solely by the Watson-Crick base pairing. Thus, we can imagine a simulator that,

given a set of molecule specifications, enumerates reactions that can occur between those molecules

according to the Watson-Crick base pairing. With this “reaction enumerator,” one can discover

potential spurious pathways even before one performs experiments.
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ACTGCGGA

TGACGCCT

ACTGCGGA

TGACGCCT

A

B

C

Figure 3.1: A simple example

3.2 Enumeration

A reaction enumerator takes as input a set of molecules and enumerates all reactions that can occur

between them. We will call these input molecules the first generation. Note that as enumeration

proceeds, we will often discover “new” molecules which are not the first generation but get produced

as a result of interactions between the first generation molecules. We can call these new molecules as

well as the first generation molecules the second generation. For instance, if the reaction enumerator

takes as input the A and B molecules from Fig. 3.1, the first generation will be {A,B} but the

second generation will be {A,B,C}, because we discover the new molecule C by the interaction of A

and B. Similarly, if we still discover new molecules from interactions between the second generation

molecules, we can call them the third generation, and so on. If we continue this procedure until we

discover no new molecules, we will clearly enumerate all reactions and species that arise from the

given first generation molecules.

The above enumeration algorithm is summarized in the following pseudocode.

1 c u r r e n t g e n e r a t i o n = input molecu le s

2 whi le

3 nex t gene ra t i on = c u r r e n t g e n e r a t i o n

4 enumerate a l l r e a c t i o n s between the molecu le s in c u r r e n t g e n e r a t i o n

5 nex t gene ra t i on += newly d i s cove r ed molecu le s

6 i f c u r r e n t g e n e r a t i o n == next gene ra t i on then break

7 c u r r e n t g e n e r a t i o n = next gene ra t i on

8 end whi l e

However, this algorithm is not clearly defined until we explain how to perform the enumeration on

the fourth line of the code, i.e., until we define the semantics for enumeration.
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3.3 Semantics for Enumeration

3.3.1 Elementary Domain Step Semantics

The following semantics for enumerating DNA reactions is due to Brian Wolfe [43]. Wolfe’s reaction

enumerator is incapable of dealing with pseudoknotted structures, so if any of the following rules

produces a pseudoknotted molecule, that product will be ignored.

3.3.1.1 1-1 Binding

A 1-1 binding reaction is a reaction between two complementary unpaired domains within a single

DNA molecule.

1.4.5 Equality

Two complexes are equal if and only if there is a rotation such that the structure
and sequence are exactly identical.

2 Reaction Types

2.1 Bind

2.1.1 1-1 Binding

A 1-1 binding reaction is a reaction between two complementary, unpaired do-
mains within a single complex that produces an unpseudoknotted product com-
plex. The reaction is described below and shown in Fig. 1.

Figure 1: A 1-1 binding reaction, a single complex binds to itself.

∀ complexes C = (S, T ) ∀0 ≤ i, j < length(S) if:

S[i] = S[j]∗ Complementary

T [i] = ∅ Unpaired

T [j] = ∅ Unpaired

and

∀i < k < j: No Pseudoknot Creation

i < T [k] < j

or T [k] = +
or T [k] = ∅

Then ∃ 1-1 binding reaction R := [C] → [C′] where C′ = (S, T ′)

T ′[n] = T [n]∀n &= i, j.

T ′[i] = j, T ′[j] = i.

Connectedness is guaranteed as long as the original complex was connected.

2.1.2 2-1 Binding

∀ pairs of complexes C1 and C2, generate all circular rotations of C1 and C2 that
end in a strand break. Generate Ctot = C1,i, C2,j = ([S1,i, S2,j], [T1,i, T2,j]) =
the concatenation of the ith rotation of C1 and the jth rotation of C2.

If there exists a binding reaction (as defined above) that results in a con-
nected complex, then there exists a bimolecular reaction R := [C1, C2] → [C′

tot],

3

Figure 3.2: 1-1 binding. Figure from [43].

3.3.1.2 2-1 Binding

A 2-1 binding reaction is a reaction between two complementary unpaired domains from two different

DNA complexes. The resulting product is one connected molecule.

Figure 2: This shows the 2-1 binding reaction. Two complexes (in this case only
single strands), come together to form a single complex by binding at unpaired
domains.

Figure 3: One to one open reaction. Note that this assumes that the length of
the opening helix is below the threshold

where C′
tot is defined the same way as C′ is above. In the current version, this is

the only reaction which is defined to be slow. The source complexes for this type
of reaction must be end-states, that is, they must be in a strongly connected
component that has no outward leading “fast” edges. This is described further
in the implementation section.

2.2 Open

Open1-1 reactions are present when a series of adjacent, paired domains with a
total length less than a threshold (labelled Threshold11) completely dissociates
and the result is still a connected complex. An example is shown in Fig. 3.
Open1-2 reactions are present when a series of adjacent, paired domains with
a total length less than a different threshold (labelled Threshold12) dissociates,
leaving two distinct complexes. Note that these definitions are really only going
to be valid/useful if Threshold11 ≥ Threshold12. This is physically relevant
because the entropy gain from releasing a strand is greater than the entropy gain
from releasing a few domains, but retaining the connectedness. An example of
this type of reaction is given in Fig. 4.

For each i ∈ 0..n− 1 : T [i] $= ∅:

If T [i− 1] $= T [i] + 1

and ∃k s.t. T [i + k + 1] $= T [i + k]− 1 (this is the whole helix)

and ∀1 ≤ j ≤ k: T [i + j] = T [i + j − 1] + 1 (the helix is paired)

and
∑k

j=0 length(T [i+ j]) < Threshold11 (the helix is short enough
to open)

4

Figure 3.3: 2-1 binding. Figure from [43].

3.3.1.3 1-1 Open

A 1-1 open reaction is a reaction where a series of adjacent, paired domains with a total length less

than a threshold (usually 5-8 nts) dissociates and the resulting complex is still connected.
Figure 2: This shows the 2-1 binding reaction. Two complexes (in this case only
single strands), come together to form a single complex by binding at unpaired
domains.

Figure 3: One to one open reaction. Note that this assumes that the length of
the opening helix is below the threshold

where C′
tot is defined the same way as C′ is above. In the current version, this is

the only reaction which is defined to be slow. The source complexes for this type
of reaction must be end-states, that is, they must be in a strongly connected
component that has no outward leading “fast” edges. This is described further
in the implementation section.

2.2 Open

Open1-1 reactions are present when a series of adjacent, paired domains with a
total length less than a threshold (labelled Threshold11) completely dissociates
and the result is still a connected complex. An example is shown in Fig. 3.
Open1-2 reactions are present when a series of adjacent, paired domains with
a total length less than a different threshold (labelled Threshold12) dissociates,
leaving two distinct complexes. Note that these definitions are really only going
to be valid/useful if Threshold11 ≥ Threshold12. This is physically relevant
because the entropy gain from releasing a strand is greater than the entropy gain
from releasing a few domains, but retaining the connectedness. An example of
this type of reaction is given in Fig. 4.

For each i ∈ 0..n− 1 : T [i] $= ∅:

If T [i− 1] $= T [i] + 1

and ∃k s.t. T [i + k + 1] $= T [i + k]− 1 (this is the whole helix)

and ∀1 ≤ j ≤ k: T [i + j] = T [i + j − 1] + 1 (the helix is paired)

and
∑k

j=0 length(T [i+ j]) < Threshold11 (the helix is short enough
to open)

4

Figure 3.4: 1-1 open, assuming that the length of the opening helix is below the threshold constant.
Figure from [43].
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3.3.1.4 1-2 Open

A 1-2 open reaction is a reaction where a series of adjacent, paired domains with a total length less

than a threshold (usually 5-8 nts) dissociates, leaving two distinct complexes.

Figure 4: 1-2 open reaction. Note that this again assumes that the helix is
below the threshold for opening reactions (which can be different from 1-1 open
thresholds). Note that this can actually involve multiple domains as long as the
total helix length is less than the threshold.

Define T ′ as T ′[m] =
{
∅ : i ≤ m ≤ i + k
T [m] : otherwise

If T’ is connected, then R = [(S, T )] → [(S, T ′)] is a valid Open1-1 reac-
tion.

If all the above constraints hold except that the total length of the domains is
less than the constant Threshold12 and T ′ is disconnected, then R = [(S, T )] →
[(S1, T

′
1), (S2, T

′
2)] is a valid Open1-2 reaction. Where S1, S2, T

′
1, T

′
2 are defined

by the split of the disconnected complex (S, T ′). (should show the uniqueness
of the split operation for these cases)

The open reactions could be unified better with the rates by removing the
threshold constraint and creating a rate function which calculates the reaction
rate based on length. This cutoff could then be unified with the fast-slow cutoff.
This would result in three time scales, fast reactions, slow reactions, and reac-
tions so slow that they are ignored. This would be worth implementing, and I
shall attempt to provide notes for how I imagine it should be implemented.

2.3 3-way Branch Migration

A three-way branch migration is a displacement reaction where an unpaired
string of domains replaces an adjacent double-stranded region which is fully
complementary. Example of this type of reaction given in Fig. 5.

NOTE: In the current version of the code, all displacements occur 1 domain
at a time. In the future, consider whether displacements should also be able to
displace across nicked multiloops.

NOTE2: In the current version of the code 3-way and 4-way branch mi-
gration are evaluated in the same location (they are very similar) this may
cause problems with later extensions. I documented the input-output of these
reactions so that they could be rewritten in that case.

Where C = (S, T ) is a connected complex:

∀i, j, k s.t.:

T [i] = j (There is a pair to displace)

5

Figure 3.5: 1-2 open, assuming that the length of the opening helix is below the threshold constant.
Figure from [43].

3.3.1.5 3-way Branch Migration

A three-way branch migration is a displacement reaction where an unpaired string of domains

replaces an adjacent double-stranded region which is fully complementary. This was the building

idea for the translation scheme in [39].

Figure 5: Three way branch migration example. In this example, the result is
disconnected and so this is a 1-2 type reaction. Note also, unlike binding and
open reactions, this reaction can be irreversible. The initiation rate of binding
to the closed helix is assumed to be negligible at relevant time-scales. It can
also be reversible if the displacing and displaced strand remain bound.

S[i] = S[j]∗ = S[k]∗ (Correct pairing exists)

T [k − 1] = i + 1 (Adjacency constraint)

or the analogous constraints for branch migration in the other direc-
tion.

T ′ : T ′[m] =





∅ : m = j
i : m = k
k : m = i
T [m] : otherwise

If T ′ is connected, then R = [(S, T )] →

[(S, T ′)] is a reaction in the reaction network.
If T ′ is disconnected, then R′ = [(S, T )] → [(S1, T

′
1), (S2, T

′
2)] is a reaction in

the network, with Si, T
′
i defined by the split of (S, T ′)

2.4 4-way

Four-way branch migrations rearrange four-arm junctions. All strands involved
start and end completely base-paired. This is shown in Fig. 6.

Where C = (S, T ) is a connected complex:

∀i, j, m, n such that:

T [i] = j

T [m] = n

S[i] = S[m]

T [i− 1] = n + 1

T [j + 1] = m− 1

∃R = [(S, T )] → [(S, T ′)] where:

∀a &= i, j, m, n: T ′[a] = T [a]

6

Figure 3.6: 3-way branch migration. Figure from [43]. Shown is the 1-2 variant where one strand
dissociates after the branch migration step, but there is also a 1-1 variant in which no strand can
dissociate.

3.3.1.6 4-way Branch Migration

A four-way branch migration is a reaction that rearranges double-stranded four-arm junctions. All

strands involved start and end completely hybridized.

3.3.1.7 Transient and Resting States

Finally, we have to mention one important caveat that Wolfe’s enumerator adopts the kinetic as-

sumption that unimolecular reactions (reactions with a single reactant) are significantly faster than

bimolecular reactions (reactions with two reactants). We say that a DNA complex is in a transient

state if it has an outgoing unimolecular reaction, because the complex will quickly turn into some

other configuration. On the other hand, a DNA complex without any outgoing unimolecular reaction
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Figure 6: A 1-1 4-way branch migration. Four-way branch migrations occur at
junctions like the center of this reaction. Note that this type of reaction can also
be reversible or irreversible depending on whether the displacement reaches the
end of the helices. 1-2 4-way branch migrations are also possible (for instance
if d and e helices were not present).

T ′[i] = n

T ′[j] = m

T ′[m] = j

T ′[n] = i

R is in set of reactions iff T ′ is connected and is of type 4-way1-1
R′ = [(S, T )]→ [(S1, T

′
1), (S2, T

′
2)] (with the split complex product) is a reaction

in the network otherwise and is of type 4-way1-2

3 Reaction Space

The reaction space of a given system consists of all complexes C that can be
formed from the initial species using these 8 reaction types and an infinite
quantity of initial reactants, and all reactions which connect these complexes.

In order to limit the space of explored reactions, reactions are time-scale
separated into fast and slow reactions. Slower reactions (e.g. intermolecular
interactions) are assumed to occur only occur between substrates which have
already reached equilibrium through the fast reactions.

In the current code version, this is implemented such that bind2-1 reactions
are only considered between complexes which are strongly connected by fast
reactions without any outward fast edges.

In the general version of this, each reaction could be assigned rates (or given
rate functions, so that the rate could depend on the length/composition of a
domain). A threshold for intermediate timescales is given, and all possible
reactions are evaluated in the step to find next slow reactions and the next fast

7

Figure 3.7: 4-way branch migration. Figure from [43]. Shown is the 1-1 variant where no strand
dissociates after the branch migration step, but there is also a 1-2 variant.
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        or
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( (  + ) (  + ) )

Figure 3.8: A three-way juction

is relatively stable and is said to be in a resting state. In fact, this notion must be generalized to

a strongly connected set of states with no outgoing unimolecular reactions. (Here, we say that two

states are strongly connected if there are paths of 1-1 unimolecular reactions connecting them in

both directions.) In Wolfe’s semantics, molecules in a transient state are not allowed to participate

in bimolecular reactions, because it is highly likely that the outgoing unimolecular step will always

occur first.

Note that the introduction of this kinetic assumption greatly reduces the number of enumerated

reactions. Sometimes, a system that yields an infinite number of DNA complexes and reactions

without this kinetic assumption is nicely reduced down to a finite system with the assumption. For

instance, a system that contains many copies of three single-stranded molecules “a b*”, “b c*”,

and “c a*”, which can form only one type of terminal species under the above kinetic restriction

(Fig. 3.8), can polymerize forever if the restriction were removed. Interestingly, there are some

reaction enumerators (e.g. Microsoft Research’s Visual DSD) that attempt to avoid this issue by

syntactically prohibiting systems that have a potential of having infinite-length polymers, but they

do so at the expense of the ability to express some interesting systems.

3.3.2 Resting States Semantics

Because the above semantics can still generate a huge number of reactions and species (and some-

times potentially infinite), we often truncate the result using the same kinetic assumption about

unimolecular and bimolecular reactions. This is done by enumerating all pathways that visit resting
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states exactly twice, namely at the start and at the end, and compressing them into single-step

reactions by ignoring what happens in the middle. The end result is a reaction graph where all

molecules that appear are in resting states (Fig. 3.9). Clearly, the number of enumerated reactions

is further decreased and it becomes much easier to investigate the result.

(a) Elementary domain step semantics (“detailed” in DSD)

(b) Resting states semantics (“infinite” in DSD)

Figure 3.9: The difference between the elementary domain step semantics and the resting states
semantics. Figures generated using Visual DSD [19] whose semantics agrees with Wolfe semantics
in this example.

Our work on the CRN implementation verification uses the Wolfe enumerator with this “resting

states semantics.”
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3.3.3 Others

Other than the Wolfe enumerator, there are some other reaction enumerators that may or may not

use different semantics from the one described above. For instance, Karthik Sarma at the Winfree

lab at the California Institute of Technology is rewriting and extending Wolfe’ enumerator to more

easily accommodate additional domain-level elementary steps, such as remote toehold mediated

branch migration [13]. Also, Visual DSD [19], which is a tool developed and maintained by Microsoft

Research, includes reaction enumeration as one of its features. It provides a very convenient graphical

user interface, but it has a weakness in that it imposes a limitation on the types of structures and

reactions that are permitted. For example, hairpins (most notably the motif from [44]), highly

branched structures, and four-way branch migration cannot be represented in their model.

3.4 Examples

To help understanding, some more examples of reaction enumeration are given in Fig. 3.10 and

Fig. 3.11.
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Chapter 4

CRN Equivalence

In Chapters 4, 5, and 6, we will discuss methods for verifying CRN implementations. Although

partly motivated by the compiler from Chapter 2, our verification techniques are independent of it

and self-contained.

4.1 Motivation

Before we go into main discussion, we shall briefly describe our motivations behind this work. For

this, we shall recall the translation scheme that we introduced in the first chapter (Fig. 1.5, [39]),

where the reaction X1 +X2 → X3 was implemented using the following three reactions. Note that

the translation scheme will only output how to design formal and auxiliary species, but we can

obtain the following reactions using the reaction enumerator described in the previous chapter.

X1 + Li −⇀↽− Hi +Bi

X2 +Hi −→ waste1 +Oi

Oi + Ti −→ waste2 +X3

To recapitulate the points needed to claim the correctness of this implementation, observe how the

first step is reversible as opposed to the other two steps. This ensures that none of the X1 molecules

is permanently consumed when X2 is not also present in the system. If the first step were irreversible

like the other two reactions, then in the absence of X2, the system will behave as if there were a

decaying reaction for X1 (because the X1 molecules will turn into Hi, which is not one of the species

that we are interested in). However, the researcher might mistakenly think that the implementation

is fine with an irreversible first step, since the system would still seem to work when X1 and X2

are both present. In general, proving the correctness of a CRN implementation involves a careful

study of many different initial conditions, which is not always easy to do. Moreover, the number of
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distinct initial conditions that need to be checked is usually infinite (the initial state is allowed to

have any number of molecules), and thus no technique based on explicit enumeration of finite state

spaces can do the job.

The situation is worse when we implement more complex CRNs with a large number of reactions.

The above example implemented only one reaction. How difficult would it be to verify an implemen-

tation of dozens of reactions? In that case, we would need to prove both that the resulting system

implements each reaction correctly and that the auxiliary molecules and the intermediate chemical

species used for the construction do not interfere with one another in an unintended manner. Note

that the translation scheme from [39] is “modular” in the sense that it has a module with which it

implements each desired reaction independently. For these modular constructions, it is important

to verify that modules implementing different reactions do not interfere with each other. But at the

same time, one might want to optimize these constructions in a way that different modules share

some fuel and intermediate species (e.g. reactions A + B → C and A + B → X + Y are likely to

be more efficiently implemented using shared fuels and intermediates). One might even want to use

an intrinsically non-modular translation scheme (although there is no such scheme that has been

reported thus far). Thus, we have numerous questions to ask before we come up with the final

verdict to the correctness of an implementation, and as the size of the target CRN becomes larger,

it becomes harder to imagine doing this verification manually.

A skeptical reader might still argue that the correctness can be easily proved at the translation

scheme level, i.e., it is easier to prove the correctness of the general method of translation than that

of each individual compilation instance. In fact, the translation scheme from [39] can be proved

to be generally correct because it was deliberately designed such that there would be no spurious

interaction between the auxiliary molecules. However, we should not generalize from that one scheme

that all translation schemes will allow for nice and clean correctness proofs. For instance, there are

translation schemes that only work for a certain class of CRNs (e.g. [28, 24]) but are much more

efficient when they do. Or else, we could go so far as to imagine that there could be randomized

translation schemes that only succeed with some probability, and then must be checked.

In any case, the problem of verifying CRN implementations seems to be in need of some au-

tomated techniques because sometimes those implementations contain very subtle bugs. Fig. 4.1

shows a translation scheme reported to have arisen during the preparation of [27], implementing the

reaction X + Y → A+ B. It seems from this figure that the translation scheme is correctly imple-

menting the target reaction. In fact, for this particular target reaction, it can be shown that this

scheme works correctly. Since this scheme correctly implements the most general form of a bimolec-

ular reaction, we might want to conclude here that this scheme will be correct for any bimolecular

reaction. Could that be true?

Fig. 4.2 shows the same translation scheme implementing a different reaction X + Y → A + A.
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While it might seem from this figure alone that this implementation works correctly for this new

reaction as well, there is a very serious problem in this implementation, as illustrated by Fig. 4.3.

In that spurious pathway, only one A molecule is produced as opposed to the desired number two,

which indicates that there is a serious logical error in this translation scheme. The astute reader will

also notice that this translation scheme will also fail on the CRN {X+Y → A+B, Z+W → B+C},
although each reaction is individually compiled correctly. Thus, it is not sufficient to verify each

reaction independently. While the corrected version of this translation scheme can be found in [27],

this example shows that it can be sometimes very difficult to detect compilation errors by eye.

4.2 The Meaning of Correctness

However, the notion of correctness that we want to test for CRN implementations is presently not

very well-defined, since the problem has not been extensively studied before. Clearly, every reaction

in the target CRN should somehow be implemented and the reactions that were not in the target

CRN should not suddenly appear, but it is not obvious how to define such concepts in a logically

rigorous way. Throughout the rest of this chapter, we will formally define the notion of correctness

of a CRN implementation in the language of mathematics. In the course, we shall see that this
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Figure 4.1: An incorrect translation scheme applied to X + Y → A+B (no exhibited bug). Figure
taken and modified from [27].
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Figure 4.2: An incorrect translation scheme applied to X +Y → A+A (intended pathway). Figure
taken and modified from [27].
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Figure 4.3: An incorrect translation scheme applied to X + Y → A+A (spurious pathway). Figure
taken and modified from [27].
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seemingly easy task is in fact very subtle and difficult.

We shall begin by noticing that our problem essentially concerns the comparison of two CRNs.

There are two CRNs involved in our verification process, which are the original target CRN and

the CRN that models the implemented DNA system, or the implemented CRN. For instance, in the

example of Fig. 1.5, our task is to compare the target CRN {X1 +X2 → X3} with the implemented

CRN {X1 + Li 
 Hi + Bi, X2 + Hi → waste1 + Oi, Oi + Ti → waste2 + X3}. The core of our

problem is to develop an algorithm that can decide which reactions are really “implemented” in the

implemented CRN. Then we could test the desired correctness by checking whether the reactions

“implemented” in the implemented CRN are exactly those reactions from the target CRN.

We will attempt to answer this problem by studying a more general problem, which we call the

CRN equivalence problem. Instead of trying to exploit the intrinsic properties of our initial problem,

such as that the species set of one CRN is a subset of the species set of the other CRN (in the above

example, {X1, X2, X3} is a subset of {X1, X2, X3, Li, Bi, Hi, Oi, Ti,waste1,waste2}), we choose to

neglect all such conditions and face the problem from the most general standpoint. In words, our

new problem will be formulated as follows; test whether two given CRNs behave equivalently with

respect to a given set of special species (which in the above example would be {X1, X2, X3}), where

the meaning of equivalent behavior is yet to be defined. Note that the original problem of verifying

CRN implementations is a special case of this new problem. By solving a more general problem,

we hope not only to allow for a wider range of applications but also to be able to safely apply the

method to any translation scheme that might employ singular techniques.

Since the BioCRN compiler outputs only the structural information of DNA molecules rather

than the implemented CRN, we need to first construct the implemented CRN using the reaction

enumerator before running our verifier. As discussed in the previous chapter, software tools such

as Brian Wolfe’s reaction enumerator or Microsoft Research’s Visual DSD can be used. These tools

simulate and generate the list of all possible reactions that can occur in the given system, which in

our case will be provided by BioCRN.

We have to mention one important caveat about our work. In this thesis, our main objective

is to test the logical equivalence of the behaviors of two CRNs, and it is beyond the scope of this

thesis to analyze the kinetics of the CRNs, i.e., we will not try to prove that the reactions are

implemented with the correct reaction rates. Our goal is to check whether the two CRNs contain

the same pathways, not whether those pathways occur at the same speed.

4.3 Basic Concepts

In order to prove properties about chemical systems, it is necessary to first confine them in some

mathematical abstraction in which propositions and proofs can be presented. Thus we shall begin by
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proposing purely mathematical definitions for some of the most fundamental concepts in chemistry

such as species, reactions, and CRNs. We will use the letter Σ to denote the namespace from which

we will assign names to species. By default, Σ will contain all upper case and lower case letters unless

stated otherwise. However, this is a mere convention that we adopt for the sake of convenience. Note

that Σ can be infinite in principle. Lastly, we know that our implemented CRNs will have specially

designated species called the formal species. These are the species that are inherited1 from the

original CRN. To make this distinction, we will also have F ⊆ Σ which is the set of formal species.

In the rest of the thesis, we will adopt a species naming strategy that assigns upper case letters to

formal species and lower case letters to non-formal species.

Definition. The elements of Σ are called species. The elements of F are called formal species.

Definition. A state is a multiset of species. If every species in a state S is a formal species, then

S is a formal state.

Definition. If S is a state, Formal(S) denotes the multiset that consists of exactly all the formal

species in S.

Definition. A reaction is a pair of multisets of species (R,P ) and it is trivial if R = P . Here, R

is called the set of reactants and P is called the set of products. We say that the reaction (R,P )

can occur in the state S if R ⊆ S. If both R and P are formal states, then (R,P ) is a formal

reaction.

Definition. If (R,P ) is a reaction that can occur in the state S, we write S ⊕ (R,P ) to denote the

resulting state (S \R) ∪ P . ⊕ is left-associative.

Definition. A CRN is a (nonempty) set of nontrivial reactions. A CRN that contains only formal

reactions is called a formal CRN.

Definition. A pathway p of a CRN C is a (finite) sequence of reactions (r1, . . . , rk) with ri ∈ C
for all i. It is said to be able to occur in the state S if S ⊕ r1 ⊕ r2 ⊕ · · · ⊕ rk = S′ for some state

S′. Note that given any pathway, we can find a unique minimal initial state associated with it.

Conveniently, the initial state of a pathway p = (r1, . . . , rk) will simply mean its minimal initial

state S, and the final state of a pathway will mean S ⊕ r1 ⊕ r2 ⊕ · · · ⊕ rk. If both the initial and

final states of a pathway are formal, then the pathway is said to be a formal pathway. Also, a

pathway whose initial and final states are identical is called futile.

To help understanding, we shall study some examples. Consider the chemical reaction 2A+B →
C. In this formalism, this will be written ({A,A,B}, {C}) since reactions are defined to be pairs of

1Since translation schemes might allow multiple implementations of a single formal species (for instance, the scheme
in Fig. 1.5 does so by allowing the question-marked “history” domain to be arbitrary), this formulation will not be
able to directly handle such translation schemes. This problem will be addressed in detail in section 4.7.
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multisets. Here, {A,A,B} is called the reactants and {C} is called the products, complying with

the common perception of the terms. Also, this reaction can occur in the state {A,A,A,B,B} but

cannot occur in the state {A,B,C,C,C,C} because the latter state does not have all the required

reactants. If the reaction takes place in the former state, then the resulting state will be {A,B,C}
and thus we can write {A,A,A,B,B} ⊕ ({A,A,B}, {C}) = {A,B,C}. Note that these notations

appear different from the conventional notations of chemistry but are equivalent. For the rest of

the discussion, we should interchangeably use the conventional notations with our notations where

doing so enhances readability. For instance, we will often write 2A + B → C + D instead of

({A,A,B}, {C,D}).
The definition of a pathway is subtle and deserves careful attention. Since the definition of S⊕ r

asserts that the reaction r can occur in the state S, the pathway (r0, . . . , rk) can occur if and only

if all of r0, r1, . . . , rk can occur in that order. More precisely, this means that r0 can occur in S, r1

can occur in S ⊕ r0, r2 can occur in S ⊕ r0⊕ r1, and so on. For example, consider the pathway that

consists of 2A+B → C and B+C → A. This pathway cannot occur in the state {A,A,B} because

even though the first reaction can occur in that state, the resulting state from the first reaction {C}
will not have all the reactants required for the second reaction. In contrast, the pathway can clearly

occur in the state {A,A,B,B}.
Lastly, note that we cannot directly express a reversible reaction in this formalism. Thus, a re-

versible reaction will be expressed using two different reactions. For example, the reversible reaction

A 
 B will be expressed by having two irreversible reactions A→ B and B → A.

4.4 Preparing the Implemented CRN

The output from the BioCRN compiler and the reaction enumerator consists of largely three parts.

First, the compiler provides us with the correspondence between the formal species of the original

CRN and the formal species of the implemented CRN. Second, it tells us which species are the fuel

that should be maintained at high concentration. Third, the reaction enumerator gives us the list

of reactions that can occur between the species that exist in the system.

In preparing the implemented CRN to fit our formalism, it is obvious what needs to be done with

the first and the third part of the input. The formal species given in the input become our F , and

the enumerated reactions become our CRN. However, how can we express that the “fuel” species

are maintained at high concentration? The answer is simple. We simply add spontaneous reactions

that produce those fuel species. Fig. 4.4 shows how the implemented CRN should be preprocessed

before it is tested under our notions of equivalence that are soon to be defined.
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X1 + Li −⇀↽− Hi +Bi

X2 +Hi −→ w1 +Oi

Oi + Ti −→ w2 +X3

formal : X1, X2, X3

fuel : Li, Bi, Ti

before

X1 + Li −⇀↽− Hi +Bi

X2 +Hi −→ w1 +Oi

Oi + Ti −→ w2 +X3

∅ −→ Li +Bi + Ti

F = {X1, X2, X3}

after

Figure 4.4: The implemented CRN from Fig. 1.5 before and after the preprocessing

4.5 Equivalence with Respect to a CRN Observer

Now that we have mathematical formalisms for expressing chemical concepts, we will attempt to

formulate a notion of equivalence between CRNs. Clearly, the most natural strategy would be to

define it with respect to some physical observer.

The main idea of the notion that we are about to introduce, called equivalence with respect to

a CRN observer, is that if two CRNs are different, they should be distinguishable by some external

formal CRN which presumably has an expanded set of formal species. This “observer” CRN will

observe each of the target CRNs by interacting with it in the same test tube, but it is not given any

additional information other than the interactions that it experiences. Thus, it can only distinguish

between CRNs by checking which pathways can occur in each environment. (Again, note that we

are restricting our analysis to notions that are independent of kinetics.) This notion can be clearly

articulated as follows. Note that this definition explains precisely (up to kinetics) the way CRNs

are studied in the real world, because as human beings we can only observe CRNs by letting them

interact with other well-studied chemical reaction networks.

Definition. Let C be an arbitrary CRN, O a formal CRN, and S a formal state. Then, we define

the sets Obs NTC,O,S and Obs TC,O,S as follows.

Obs NTC,O,S = {p′ : p′ is a pathway of O, p is a pathway of C, and some non-terminal pathway

generated by interleaving p and p′ can occur in S.}

Obs TC,O,S = {p′ : p′ is a pathway of O, p is a pathway of C, and some terminal pathway

generated by interleaving p and p′ can occur in S.}

Here, a pathway q generated by interleaving a pathway of O and a pathway of C, with respect to

S, is said to be terminal if for any pathway q′ of C ∪O that contains at least one reaction from O,

q + q′ cannot occur in S. For example, if O = {A→ B} and C = {A→ C}, the pathway (A→ B)
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with respect to {A} is clearly terminal, but it will not be terminal if C = {B → i, i→ A}.

Intuitively, the condition in the definitions of these two sets means that p′ can occur in S

with some help from reactions from C. For example, if C = {A → i, i → B, C → D} and

O = {B → C, D → E}, then p′ = (B → C, D → E) is in Obs TC,O,{A} because p = (A →
i, i → B, C → D) which is a pathway of C can be interleaved with p′ to form a terminal pathway

(A→ i, i→ B, B → C, C → D, D → E) which can occur in {A}.

Definition. Two CRNs C1 and C2 are equivalent with respect to a CRN observer if for

any formal CRN O and any formal state S, Obs NTC1,O,S = Obs NTC2,O,S and Obs TC1,O,S =

Obs TC2,O,S .

For example, it is easy to see that the CRNs {A → B} and {A → i, i → B} or the CRNs

{A + B → C + D} and {A → i, i → A, i + B → j, j → C + k, k → D} are equivalent in this

sense. In contrast, the CRNs C1 = {A → i, i → C, C → j, j → B} and C2 = {A → C} are not

equivalent because Obs NTC1,{B→A},{A} contains the pathway (B → A) but Obs NTC2,{B→A},{A}

does not. However, they will again become equivalent if we add C → B to C2.

But why do we distinguish between the set of terminal pathways and the set of non-terminal

pathways? This is because we cannot recognize the existence of decaying reactions otherwise (or in

fact, any reaction that only decreases the molecular count of each species). For example, consider

two CRNs C1 = {A → ∅} and an empty CRN C2. Clearly, these should not be deemed equivalent

in any case, but if we choose not to distinguish between terminal and non-terminal pathways, they

will indeed be considered equivalent. For example, consider the following set.

ObsC,O,S = {p′ : p′ is a pathway of O, p is a pathway of C, and some pathway generated by

interleaving p and p′ can occur in S.}

Note that for any choice ofO and S, ObsC1,O,S will be identical to ObsC2,O,S . However, since we chose

to make a distinction between terminal and non-terminal pathways, we can now distinguish between

these two CRNs because Obs TC1,{A→A+B},{A} contains (A→ A+B) whereas Obs TC2,{A→A+B},{A}

is empty.

Unfortunately, it turns out that this notion of equivalence is weaker than it appears and cannot

distinguish between some obviously different formal CRNs. Some example would include the CRNs

{A → B} and {A → B, A + A → B + B} or the CRNs {A → B, B → C, C → A} and

{A→ C, C → B, B → A}. Although we are currently working in the logical regime where kinetics

is ignored, this does not seem to be good because translation schemes are usually designed with

some kinetic considerations in mind and those considerations will be in vain if we consider the above

CRNs to be equivalent. Thus, if there exists a notion that solves this problem without appealing to



43

a detailed kinetic analysis, then it will be better to switch to that notion.

In the following sections, we will attempt to establish a stronger notion of equivalence that, when

reduced to formal CRNs, becomes the identity function. That is, formal CRNs C1 and C2 will be

considered equivalent if and only if C1 = C2.

4.6 Equivalence Based on Pathway Decomposition

Intuitively thinking, the weakness of a CRN observer comes from the fact that a CRN observer

cannot distinguish between a one-step reaction and a series of reactions. For instance, if a CRN

observer observes the reaction A → C from the CRN {A → B, B → C, A → C}, it cannot tell

whether it has observed the A → C reaction or the (A → B, B → C) pathway. This is because

although the CRN observer did not see the intermediate B molecule, it cannot be sure whether it

was because there was no B molecule or it was that there was a B molecule but it simply did not

choose to interact with the CRN observer. For this reason, the CRN observer cannot distinguish

between the CRNs {A→ B, B → C, A→ C} and {A→ B, B → C}.
However, it is not so easy to think about this “one-step reachability” when the given CRN is

not a formal CRN. For example, we might be tempted to declare that pathways that go through an

intermediate formal state (when occurring from its minimal initial state) are not encoding a one-step

behavior. This approach draws inspiration from pathways like (A → i, i → B, B → j, j → C)

where the existence of the intermediate formal state {B} shows that it is a composition of smaller

pathways (A→ i, i→ B) and (B → j, j → C). Similarly, this approach will also be able to catch

that the pathway (A→ i, i→ B, A→ i, i→ B) is not one-step because of the intermediate formal

state {A,B}. However, it does not take long before we notice that this approach is not a complete

solution, because it cannot rule out (A → i, A → i, i → B, i → B) which is behaviorally nearly

the same as (A→ i, i→ B, A→ i, i→ B).

A new approach that we are about to introduce, called equivalence based on pathway decompo-

sition, provides an elegant solution to this problem. Unlike the CRN observer approach, it exploits

the fact that most CRN implementations (in fact, all known implementations at present) share a

nice property that we call modularity. It means that any pathway that is implementing a formal

reaction consumes only formal species and fuel species and produces only formal species and some

inert “waste” species. Modular CRNs are nice in that they allow us to concentrate on these modules

that implement the target reactions and not worry about the byproducts of those modules. That is,

once a module takes place as a whole, there is no room for spurious interaction between this module

and other modules because all it has produced are the desired formal species and some chemically

inert species.
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4.6.1 Types of Species

Now imagine that we can somehow filter out the fuel and waste. Then, under the assumption that

the given implementation is modular, every module will only consume and produce formal species.

This will prove to be a very nice property when we discuss the ways to analyze these modules later,

so we will first establish a way to filter out the fuel and waste.

Generally, the species of an implemented CRN can be classified in four categories. First, formal

species are the species inherited from the target CRN (X1, X2, and X3 in Fig. 1.5). Second, fuel

species are the auxiliary species that are assumed to be maintained at high concentration (Li, Bi,

and Ti in Fig. 1.5). Third, waste species are the inert species that get produced along with the

desired products of the target chemical reaction (waste1 and waste2 in Fig. 1.5). A refinement of this

idea will be defined more rigorously below. Lastly, we call all other species simply intermediate

species (Hi and Oi in Figure 1.5). Except formal species, intermediate species are the most im-

portant species because they carry the information about the computation that is being performed.

For instance, an Oi molecule encodes the information that one X1 and one X2 molecules have been

consumed, because there is no other way that it can be produced.

If we view molecules as information carriers, we need to consider only two of the above four

categories. Clearly, a fuel species molecule cannot carry any information because those species are

assumed to be maintained at effectively constant concentrations. Thus, producing or consuming

one fuel species molecule will not have any effect on the rest of the system. The situation is

slightly different for a waste species molecule. It encodes some information in that we can learn

which reactions occurred from the existence of waste molecules. However, the fact that they are

completely inert prevents that information from being propagated further. For these reasons, we

will completely ignore fuel and waste species from our future discussion.

To reflect this point, we perform one more preprocessing step that removes all the fuel and waste

species from the implemented CRN, i.e., we will treat the CRN as if those species never existed. To

understand this accurately, imagine a world where it is impossible to detect fuel or waste species

molecules. In that world, if we ignore kinetics, the CRN on the right in Fig. 4.5 will look like a

correct model of the system, even though the one on the left is a more detailed model. In fact, even

if we consider kinetics, since fuel species are maintained at constant concentration and waste species

are inert, the CRN on the right will still be a valid model, although the effective rate constants may

change.

Note that the verifier would need to autonomously distinguish between waste species and inter-

mediate species, whereas formal species and fuel species come in already tagged by the user (or the

BioCRN compiler). Moreover, there could be many different criteria for this task. For example, we

can define waste species to be the species that do not interact with any other species at all. However,

this definition is usually too strict to be used in practice. For instance, waste species interacting with
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X1 + Li −⇀↽− Hi +Bi

X2 +Hi −→ waste1 +Oi

Oi + Ti −→ waste2 +X3

∅ −→ Li +Bi + Ti

before

X1 −⇀↽− Hi

X2 +Hi −→ Oi

Oi −→ X3

after

Figure 4.5: The implemented CRN from Fig. 1.5 before and after the preprocessing

one another need not be prohibited as long as such interactions do not produce a species that can

interact with non-waste species. Thus we propose the following criterion for distinguishing waste

species and intermediate species. Note that the definition of an intermediate species is recursive.

Definition. A species is an intermediate species if all of the following conditions hold.

1. It is not a formal species or a fuel species.

2. It is a reactant of a reaction that involves at least one formal or intermediate species either as

a reactant or a product.

A species that is neither formal, fuel, nor intermediate is called a waste species.

Finally, note that fuel species might interact with one another to form non-fuel species. However,

because we are assuming infinite supply of fuel species, it means that we will have infinite supply

of those non-fuel species as well, which is a trait of a fuel species. Thus, we revise our definition to

count such species as fuel species (of course, this does not apply to formal species).

Definition. A non-formal species is called a fuel species if at least one of the following conditions

hold.

1. It is tagged as a fuel species in the input.

2. It appears as a product of a reaction whose reactants are all fuel species.

This implies that after preprocessing of the input, reactions that do not require any reactant

can only produce formal species. Note that the adoption of this broader definition of fuel species

may not be conceptually necessary. However, it will turn out later that it greatly helps with the

performance of our algorithms.

Thus, we have defined how the four types of species should be distinguished and clearly explained

how we should preprocess the implemented CRN such that it only involves formal and intermediate

species. From this point, we assume that all CRNs have only formal and intermediate species.



46

4.6.2 Implementing Formal Reactions as Pathways

Now, because our CRN only has formal and intermediate species, we can think of our modules

as pathways that only consume and produce formal species in the net effect (although various

intermediate species can be generated in the middle, they should eventually be all removed). Thus,

we can introduce the following definition for describing modules.

Definition. We say that a pathway p = (r1, . . . , rk) implements a formal reaction (R,P ) if it

satisfies the following conditions.

1. If S and T are the initial and final states of p, R = S and P = T .

2. Let Si = S⊕ r1⊕ · · ·⊕ ri (so that S0, S1, . . . , Sk are all the states that p goes through). Then,

there exists 0 < j ≤ k such that Formal(Si) ⊆ S for all i < j and Formal(Si) ⊆ T for all i ≥ j.
When a formal pathway satisfies this condition, we call it regular.

While the first condition needs no particular explanation, some time needs to be spent on the

second condition because it is somewhat subtle. It articulates that there should be a point in the

pathway prior to which we only see the formal species from the initial state and after which we

only see the formal species from the final state. The existence of such a turning point allows us to

interpret this pathway as a module that implements the reaction (R,P ) where the real transition is

occurring at that turning point. Before this turning point, because we only see the formal species

from the initial state, we can say that we are still in the state R only happening to not detect some

of the molecules in it. For a similar reason, we can claim that we are already in state P after the

turning point.

Importantly, this condition rules out some counterintuitive implementations such as (A→ i, i→
C + j, C + j → k, k → B) or (A → i + B, i + B → j + A, j + A → B) as implementations of

A→ B.

4.6.3 Pathway Decomposition

However, the above definition will still interpret pathways like (A → i, A → i, i → B, i → B) as

correctly implementing A+A→ B+B. To prevent this, we again take note of the fact that this path-

way can be thought of as a composition of two smaller pathways each implementing (A→ i, i→ B).

Clearly, if a module is merely a composition of smaller modules, it should not be considered a module

in the first place. Therefore, we introduce the following notion of decomposability on pathways. For

better understanding, Fig. 4.6 provides some examples of decomposable formal pathways.

Definition. A formal pathway p is decomposable if p can be partitioned into two nonempty

subsequences (which need not be contiguous) that are each formal pathways. If a pathway is not

decomposable, it is said to be prime.
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Now, we have an important theorem that almost immediately follows, which says that any formal

pathway in a system can be retrieved from “composing” prime formal pathways. However, one should

also notice that this does not imply that every formal pathway has a unique decomposition into prime

pathways. For example, the pathway (A → i, B → i, i → C, i → D) can be decomposed in two

different ways: (A→ i, i→ C) and (B → i, i→ D), and (A→ i, i→ D) and (B → i, i→ C).

Theorem 4.1. Any formal pathway can be generated by interleaving one or more prime formal

pathways.

Proof. Trivial.

Finally, we are ready to articulate what we mean by implementing a CRN using pathways.

Definition. A CRN is regular if every prime formal pathway implements some formal reaction.

Equivalently, a CRN is regular if every prime formal pathway is regular.

Theorem 4.2. If a CRN C is regular, for any formal CRN C′, C ∪ C′ is regular.

Proof. This immediately follows from the fact that any pathway of length greater than one that

contains a formal reaction is decomposable.

This means that an irregular CRN contains some formal pathway that cannot be interpreted

as implementing any formal reaction or series of reactions. In such cases, we will say that the

given CRN does not implement any formal CRN by pathway decomposition (of course, it can still

be a non-modular implementation that is correct in some other sense). On the other hand, if the

A i j i j B

C k D
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l E

m F
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j

B
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B

C D

Figure 4.6: Some examples of decomposable formal pathways. The partition of reactions is marked
by different colors. Note that only in the last case, a pathway is not regular after decomposition.
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given CRN C is regular, it is now obvious what formal CRN C′ that C should be interpreted as

implementing. We call C′ the formal basis of C.

Definition. The set of prime formal pathways in a given CRN is called the elementary basis of

the CRN. The formal basis is the set of (initial state,final state) pairs of the nonfutile pathways

in the elementary basis.

One final problem is that since the formal basis and regularity both only concern formal pathways,

we might fail to catch a problem that arises with non-formal pathways. To avoid this problem, we

introduce the following property.

Definition. Let p be a pathway with a formal initial state and T its final state. Then, a pathway

p′ = (r1, . . . , rk) is said to be the closing pathway of p if p′ can occur in T and T ⊕ r1 ⊕ · · · ⊕ rk
is a formal state. A CRN is confluent if every pathway with a formal initial state has a closing

pathway.

This means that the given CRN is capable of cleaning up all the intermediate species that it

produced. For example, the CRN {A→ i, i+ B → C} will not be confluent because if the system

starts from the state {A}, it will immediately turn into {i} and this i molecule will fail to be removed.

Similarly to before, we will say that non-confluent CRNs do not implement any formal CRN, but it

can be a non-modular implementation that is correct by some other definition.

For a more subtle example, let us consider the CRN {A→ i+B, i+B → B}, which is clearly

confluent according to the definition above. In fact, there will be no problem with this implemented

CRN when it is operating by itself. However, when intermediate species require some formal species

in order to get removed, the implemented CRN might not work correctly when there are other

reactions in the test tube as well. For instance, if the above implementation runs in an environment

that also contains the reaction B → C, there is no longer a guarantee that i will always be removed,

i.e., the CRN consisting of these three reactions will not be confluent. Thus, we often want to enforce

that CRNs should be able to remove intermediate species without any help from formal species.

Definition. A closing pathway is strong if its reactions do not consume any formal species. A CRN

is strongly confluent if every pathway with a formal initial state has a strong closing pathway.

Theorem 4.3. If a CRN C is strongly confluent, for any formal CRN C′, C∪C′ is strongly confluent.

Proof. Suppose p is a pathway of C ∪ C′ that has a formal initial state. Clearly, if we remove from

p all reactions that belong to C′ and call the resulting pathway p′, then p′ has exactly the same

intermediate species in its final state as p does. This is because the removed reactions are all formal

reactions. Since C is strongly confluent, p′ has a strong closing pathway, and so too does p.

In a sense, strong confluence means that we can always get an immediate (formal) interpretation

of a chemical state (or of the intermediate species in a state). From this point, whenever we say
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confluence, we will implicitly mean strong confluence. Similarly, we will use the word ‘closing

pathway’ to mean ‘strong closing pathway.’

A+B → i
i+ C → D
i→ E

confluent

A→ i
i+B → C

not confluent

A→ i
i→ A

i+B → C

confluent

Figure 4.7: Some examples of confluent and non-confluent CRNs

4.6.4 Conclusion

We have introduced all necessary concepts for defining our problem. The purpose of this section is to

define with utmost clarity the notion of equivalence between CRNs, which is exactly the following.

Definition. Two confluent and regular CRNs are said to be equivalent with respect to pathway

decomposition if their formal bases are identical. Note that since formal bases by definition do

not contain any trivial reaction, two formal CRNs will be deemed equivalent if they differ only by

trivial reactions.

The following theorems provide some justification for this definition.

Theorem 4.4. If two confluent and regular CRNs C1 and C2 are equivalent with respect to pathway

decomposition, they are equivalent with respect to a CRN observer.

Proof. Fix a formal CRN O and a formal state S. Let p′ be a pathway of O and p a pathway of C1.

Let p′′ be a pathway that can be formed by interleaving p and p′, and we also assume that p′′ can

occur in S. Since C1 is strongly confluent, we will assume that p is a formal pathway because we

can always make it one by finding a strong closing pathway and appending it. Thus, p′′ will also be

a formal pathway.

Then, we completely decompose p′′ into prime pathways. By regularity, we know that each prime

pathway has a unique turning point where the intermediate state becomes no longer contained in the

formal state. Now, we can reorder the prime pathways in p′′ according to the position of these turning

points so that reactions that belong to the same prime pathway are adjacent. For example, if p′′ was

(A→ i, B → j, j → C, i→ D,C+D → E), which consists of three prime pathways (A→ i, i→ D),

(B → j, j → C), and (C + D → E), it will become (B → j, j → C,A → i, i → D,C + D → E)

after this reordering. Now, since C1 and C2 are equivalent with respect to pathway decomposition,

for each prime pathway in p′′, except for the reactions from O, there should be a prime pathway

of C2 that consumes and produces the same species. Thus, after some substitutions, we can obtain
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a pathway p′′′ of C2 and O that can occur in S (note that the definition of regularity was chosen

carefully to allow this). Most importantly, p′′′ still has p′ as a subsequence.

Now, assume towards a contradiction that p′′ was terminal with respect to S and p′′′ is non-

terminal. Then, we can find a pathway q = p′′′ + q′ of C2 ∪ O such that q′ contains at least one

reaction from O. Again, by strong confluence, we can assume that q is formal. Then, since p′′′

was formal, q′ should also be formal. Thus we can apply the same procedure as above to obtain

a pathway of C1 ∪ O that has the same initial state as q′ and has at least one reaction from O.

This pathway can then be appended to p′′ to draw a contradiction to the assumption that p′′ was

terminal. Similarly, if p′′ was non-terminal and p′′′ is terminal, we can also draw a contradiction.

Thus, we have shown that Obs NTC1,O,S ⊆ Obs NTC2,O,S and Obs TC1,O,S ⊆ Obs TC2,O,S .

Noting that a symmetric argument should also hold, we can easily see that Obs NTC1,O,S =

Obs NTC2,O,S and Obs TC1,O,S = Obs TC2,O,S , as desired.

Theorem 4.5. If C1 and C2 are formal CRNs, they are equivalent with respect to pathway decom-

position if and only if C1 = C2.

Proof. Trivial.

To test this new notion of equivalence, we need an algorithm for enumerating the formal basis

of a given CRN, which we will address in the next chapter. In addition, we will also explain how to

identify irregular and non-confluent CRNs.

4.7 History Domains

Before we move on to the algorithms, we have one final issue to discuss. In previous sections, we

assumed that our implemented CRN allows only one implementation for each formal species, which

is often not the case. Some implementations [39, 4] use the idea of a history domain, in which a

formal species gets implemented as a class of species that have some variable domains that depend

on previous reactions but have the same domains everywhere else. In the BioCRN compiler, this

concept was implemented using the question-mark wildcard, which can match any single unpaired

domain.

In such cases, we will want to identify all strands that match the same wildcard specification as

in Fig. 4.8, because they should all have the same behavior (meaning that they all can participate

in the same reactions and produce the same product species) and in doing so, we can obtain a CRN

in which each formal species has only one representation. For this transformation to be consistent,

we should also identify all species that contain such species as a part, as in Fig. 4.9. Note that

the representations of a formal species might not necessarily be single-stranded molecules. However,
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even when they are multi-strand complexes, we can locate the strands with question-marked domains

inside them and apply the same grouping procedure as above.

? 1 2 3

specification for X

11 1 2 3

12 1 2 3

13 1 2 3

these species should all be called X

Figure 4.8: Grouping species using wildcards. Figure taken and modified from [39].

specification for H these species should all be called H

?
1

1*

2 5 6

5*4*2* 6*

3

3*

10
7

11
1

1*

2 5 6

5*4*2* 6*

3

3*

10
7

12
1

1*

2 5 6

5*4*2* 6*

3

3*

10
7

13
1

1*

2 5 6

5*4*2* 6*

3

3*

10
7

Figure 4.9: Grouping species using wildcards. Figure taken and modified from [39].

In order to ensure that this grouping is safe, we also carry out a safety check where it is tested

whether species grouped under the same name actually have the same behavior. Let C be our original

implemented CRN, and f : Σ→ Σ be the new naming function for the species in C, i.e., species that

are being grouped together will have the same value of f . Then, we check the following property.

Definition. The naming function f is said to be consistent if the following is true. If (R,P ) ∈ C,
then for every state S such that f(S) = f(R), there exists (S, T ) ∈ C such that f(T ) = f(P ). Here,

f(S) denotes the multiset obtained by replacing every element x of S by f(x).

This property ensures that same reactions are implemented for every species under the same

name. For instance, if f(X1) = f(X2) = X, f(Y ) = Y and ({X1}, {Y }) is in C, then we should also

have ({X2}, {Y }) in C. Otherwise, we cannot really say X1 and X2 are different representations of

the same species, because one can produce Y and one cannot. What if Y also had two different
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representations, i.e., f(Y1) = f(Y2) = Y ? In this case, if ({X1}, {Y1}) ∈ C, it would suffice to have

either ({X2}, {Y1}) or ({X2}, {Y2}) in C. Because Y1 and Y2 are being regarded as the same species,

producing a Y1 molecule and producing a Y2 molecule have no recognizable difference.

If the naming function obtained from the wildcard-based grouping is consistent under the above

definition, we can obtain a simplified version of the implemented CRN in which each formal species

has a single representation. Otherwise, we can say that the use of a wildcard domain was erroneous.
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Chapter 5

Algorithm for Enumerating the
Formal Basis

In the previous chapter, we reduced the CRN implementation verification to the CRN equivalence

testing. We developed mathematical formalisms that can express a strong notion of equivalence

between CRNs, called equivalence based on pathway decomposition, and concluded that we can

test this notion by simply comparing the two CRNs’ formal bases. In this chapter, we present an

algorithm for finding the formal basis of a given CRN and testing whether the given CRN is confluent

and regular. Then, we can simply apply that algorithm to the two CRNs that we want to compare

and decide whether they are equivalent.

5.1 Objective

Because the formal basis is defined in terms of the elementary basis, the most obvious way to enu-

merate the formal basis is to first enumerate the elementary basis and obtain the formal basis from

it. However, even for CRNs with a finite formal basis, the elementary basis is usually infinite. For

example, consider the CRN {A→ i, i→ j, j → i, j → B}. This is obviously a correct implemen-

tation of {A→ B}, and indeed its formal basis is exactly {A→ B}. However, its elementary basis

contains infinitely many pathways because we can have infinitely many rounds of i → j and j → i

between A→ i and j → B reactions (note that these pathways are all undecomposable). Moreover,

this kind of reversible steps is pervasive in existing CRN-to-DNA translation schemes, so this issue

of potentially infinite pathways in the elementary basis is unavoidable.

Ideally, we will want an algorithm that always terminates when the given CRN has a finite

formal basis, but unfortunately, the algorithm that we are about to present does not match the

ideal. In fact, it is not clear to us at this point whether the problem of deciding the finiteness of

the formal basis of a given CRN is even decidable. Alternatively, we will present an algorithm that

terminates under a very moderate assumption which is almost never violated in a practical CRN
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implementation.

To explain this condition, we first need to extend the notion of decomposability that we previously

defined on formal pathways to all pathways that have formal initial states (but do not necessarily

terminate in one). This is because our algorithm will constructively generate all undecomposable

pathways in the CRN and those pathways will be incomplete while being worked on.

Definition. A pathway that has a formal initial state is called semiformal.

Definition. Let p be a semiformal pathway. We say that p is decomposable if p can be partitioned

into two nonempty subsequences (which do not need to be contiguous) each of which are semiformal

pathways. We also say that these two subsequences are a decomposition of p.

It is easy to check that this definition is identical to our previous definition on formal pathways.

That is, if p is a formal pathway, it is decomposable with our previous definition if and only if it is

decomposable with this new definition.

Then, we define the width of a pathway as follows.

Definition. Let p = (r1, . . . , rk) be a pathway and let Si = S ⊕ r1 ⊕ · · · ⊕ ri where S is the initial

state of p. The width of p is defined to be maxi |Si|.

In other words, the width of a pathway is the maximum number of molecules that need to exist

simultaneously in order for the pathway to occur.

Starting in the next section, we will present an algorithm that terminates if and only if the

given CRN has an upper bound to the width of an undecomposable semiformal pathway. This is

a moderate condition because if a CRN does not have such an upper bound, it would mean that

the CRN contains “modules” that produce an infinite number of intermediate molecules. It is a

structure that is highly unlikely to occur in a correct practical implementation. If necessary, we can

also put an artificial limit on the width so that when this limit is exceeded, we will force-stop the

algorithm and produce a warning.

5.2 Main Theorems

Before we present the pseudocode of our algorithm, we will first prove some important theorems

that will argue the correctness and identify the termination condition of our algorithm.

Definition. The branching factor of a CRN C is defined to be the following value.

max
(R,P )∈C

max{|R|, |P |}
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In the case of a DNA-based implementation, this constant is usually 2 (refer to the enumera-

tion rules from Chapter 3), but it is possible to have DNA-based implementations with arbitrary

branching factors [4, 5, 39].

Proposition 5.1. Suppose a pathway p is obtained by interleaving pathways p1, . . . , pl. Let S be

the initial state of p and S1, . . . , Sl the initial states of p1, . . . , pl. Then, S ⊆ S1 + S2 + · · ·+ Sl.

Proof. Trivial.

Theorem 5.2. If p is an undecomposable semiformal pathway of width w > 0, there exists an

undecomposable semiformal pathway of width smaller than w but at least (w− b)/b, where b is the

branching factor of the CRN. (Note that if w = 1, the lower bound (w− b)/b might be negative. In

this case, it would simply mean that there exists an undecomposable semiformal pathway of width

0, which would be the empty pathway.)

Proof. Since w > 0, p is nonempty. Let p−1 denote the pathway obtained by removing the last

reaction (R,P ) from p. Also, let S0, . . . , Sk be the states that p goes through, and S′0, . . . , S
′
k−1

the states that p−1 goes through. Si is potentially unequal to S′i because if the last reaction in p

consumes some new formal species, then the minimal initial state of p−1 might be smaller than that

of p.

It is obvious that the minimal initial state of p−1 is smaller than the minimal initial state of p by

at most |R|, i.e., |S0|−|S′0| ≤ |R|. This means that for all 0 ≤ i ≤ k−1, we have that |Si|−|S′i| ≤ |R|.
Clearly, if there exists some 0 ≤ i ≤ k−1 such that |Si| = w, then |S′i| ≥ |Si|−|R| = w−|R| ≥ w−b,
so p−1 has width at least w − b. If there exists no such i, then we have that |Sk| = w. Clearly,

|Sk−1| = |Sk| − |P |+ |R| and it follows that

|Sk| − |P |+ |R| − |S′k−1| = |Sk−1| − |S′k−1| ≤ |R|.

This is equivalent to |Sk| − |S′k−1| ≤ |P |. Since |Sk| = w, we have that |S′k−1| ≥ w − |P | ≥ w − b.
Thus, p−1 achieves width at least w − b.

Then, we decompose p−1 until it is no longer decomposable. As a result, we will end up with

l ≥ 1 undecomposable pathways p1, p2, . . . , pl which by interleaving can generate p−1. Also, they

are all semiformal. First, we show that l is at most b. Assume towards a contradiction that l > b.

Then, by the pigeonhole principle, there exists i such that (R,P ) can occur in the sum of the final

states of p1, . . . , pi−1, pi+1, . . . , pl (since |R| ≤ b and (R,P ) can occur in the sum of the final states

of p1, . . . , pl, the b reactants of (R,P ) are distributed among l > b pathways and there exists at least

one pi that does not provide a reactant and can be omitted). Then, consider the decomposition

(pi, p
′
i) of p−1 where p′i denotes the pathway we obtain by interleaving p1, . . . , pi−1, pi+1, . . . , pl in

the same order that those reactions occur in p−1. By Proposition 5.1, p′i is semiformal. Since pi’s are
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all semiformal, the proposition also tells us that the intermediate species in the final state of p′i will

be exactly the same as those in the sum of the final states of p1, . . . , pi−1, pi+1, . . . , pl. That is, the

final state of p′i contains all the intermediate species that (R,P ) needs to occur, i.e., p′i with (R,P )

appended at the end should have a formal initial state. However, this means that p is decomposable

which is a contradiction. Hence, l ≤ b.
Now, note that if we have l pathways each with widths w1, . . . , wl, any pathway obtained by

interleaving them can have width at most
∑l

i=1 wi (for the same reason as in the previous paragraph).

Since p−1 had width at least w− b, we have that w− b ≤∑l
i=1 wi. Then, if wi < (w− b)/b for all i,

then
∑l

i=1 wi < w − b, which is contradiction. Thus, we conclude that at least one of p1, . . . , pl has

width greater than or equal to (w − b)/b. It is also clear that its width cannot exceed w. Thus, we

have found a pathway p′ which

1. has a smaller length than p, and

2. has width at least (w − b)/b and at most w.

If p′ has width exactly w, then we have failed to meet the requirements of the claim. However, since

we have decreased the length of the pathway by at least one and the width of a zero-length pathway

is always 0, we can eventually get a smaller width than w by repeating this process.

Corollary 5.3. Suppose that w,wmax are integers and that (w + 1)b ≤ wmax. Then, if there are

no undecomposable semiformal pathway of width greater than w and less than or equal to wmax,

then there exists no undecomposable semiformal pathway of width greater than w.

Proof. Assume towards a contradiction that there exists an undecomposable semiformal pathway

p of width w′ > w. If w′ ≤ wmax, then it is an immediate contradiction. Thus, assume that

w′ > wmax. By Theorem 5.2, we can find an undecomposable semiformal pathway q of width v

where (w′ − b)/b ≤ v < w′. Since w′ > wmax, we have that v ≥ (w′ − b)/b > (wmax − b)/b ≥
((w + 1)b− b)/b = w. If v ≤ wmax, we have a contradiction. If v > wmax, then take q as our new

p and repeat the above process. Since v is smaller than w′ by at least one, we will eventually reach

a contradiction.

Thus, there exists no undecomposable semiformal pathway of width greater than w.

This theorem gives us a hint on how to exploit the bounded width condition that we imposed

on the input CRN, but it does not illuminate a way to enumerate all undecomposable semiformal

pathways of bounded width in finite time (because there will still be an infinite number of them).

To solve this problem, we need to define a few more concepts.

Definition. Let p be a semiformal pathway. The decomposed final states (DFS) of p is the set

of unordered pairs (T1, T2) where T1 and T2 are the final states of some decomposition of p (which

are not necessarily formal).
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Note that for an undecomposable pathway, the DFS is an empty set.

Definition. Let p = (r1, . . . , rk) be a semiformal pathway. Also, let Si = S ⊕ r1 ⊕ · · · ⊕ ri where

S is the initial state of p. Let j ≤ k be the greatest integer such that Formal(Si) ⊆ S for all i ≤ j.

Then, there exists a unique minimal state S′ which contains Formal(Si) for all i > j (clearly, it will

be an empty state if j = k). We call such S′ the regular final state of p.

Proposition 5.4. If p is a formal pathway, then it is regular if and only if its final state is equal to

the regular final state or the regular final state is empty.

Proof. For the forward direction, suppose p = (r1, . . . , rk) is a regular formal pathway. It would

suffice to show that if its regular final state is not empty, it must be equal to the final state. Note

that for p, j from the definition above will have to be strictly less than k, because otherwise the

regular final state of p will be empty. Also, since p is regular, we have that Formal(Si) ⊆ Sk for all

i > j where Si = S ⊕ r1 ⊕ · · · ⊕ ri as before. Thus, it is clear that the regular final state of p must

be exactly Sk.

For the reverse direction, suppose p is a formal pathway. If its final state is equal to its regular

final state, it is trivial that p is regular. If its final state is empty, then it means that Formal(Si) ⊆ S0

for all i, so clearly p is regular, too.

Definition. The quintuple of the initial state, the final state, the width, the DFS, and the regular

final state of a pathway is called the signature of the pathway.

Theorem 5.5. If m is any number, the set of signatures of all semiformal pathways of width at

most m is finite.

Proof. Clearly, there is only a finite number of possible initial states, final states, widths, and regular

final states. Also, since there is only a finite number of possible final states, there is only a finite

number of possible DFS’s.

Theorem 5.6. Suppose p1 and p2 are two pathways with the same signature. Then, for any reaction

r, p1 + (r) and p2 + (r) also have the same signature.

Proof. Let p′1 = p1 + (r) and p′2 = p2 + (r). It is trivial that p′1 and p′2 have the same initial and

final states and the same width. It is also clear that they should have the same regular formal state.

Thus we need only show that p′1 and p′2 have the same DFS.

Suppose (T1, T2) is in the DFS of p′1. That is, there exists a decomposition (q′1, q
′
2) of p′1 where

q′1 and q′2 have final states T1 and T2. The last reaction r is either contained in q′1 or q′2. Without

loss of generality, suppose the latter is the case. Then, if q1 = q′1 and q2 + (r) = q2, then (q1, q2)

should decompose p1, which is a prefix of p′1. Since p1 and p2 have the same DFS, there should be a
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S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A A A A h k l X X o X
B i i i m Y Y Y
C C h C C n

j

The j from the definition occurs at S6 and the regular final state is {X,Y }.
Since this coincides with the final state, the pathway is regular.

S0 S1 S2 S3 S4 S5 S6

A i k C h D D
B B l m E

j

The j from the definition occurs at S2 and the regular final state is {C,D,E}.
Since this is different from the final state, the pathway is irregular.

S0 S1 S2 S3 S4

A i k X X
B B X l Y

B
j

The j from the definition occurs at S1 and the regular final state is {B,X, Y }.
Since this is different from the final state, the pathway is irregular. Note that the intuitive reason

that this pathway is irregular is that the product X is produced before the reactant B is consumed.

Figure 5.1: Finding regular final states

decomposition (s1, s2) of p2 that has the same final states as q1 and q2. Clearly, (s1, s2 + (r)) should

be a decomposition of p′2 and thus (T1, T2) is also in the DFS of p′2.

By symmetry, it follows that p′1 and p′2 have the same DFS.

Note that, if we can enumerate the set of signatures of all undecomposable semiformal pathways,

we can immediately find the formal basis or test the regularity of the given CRN (Proposition 5.4).

Thus, the final piece of the puzzle needed here is an algorithm that enumerates the signatures of

all undecomposable semiformal pathways, given that there is an upper bound to the width of such

pathways.

5.3 Algorithm

Our algorithm, which is explained in the following pseudocode, consists of two subroutines that are

very short and easy to understand.
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1 f unc t i on enumerate (p , w, r e t )

2 i f p has width g r e a t e r than w then return r e t

3 i f p i s not semiformal then return r e t

4 s i g = s i g n a t u r e o f p

5 i f s i g i s in r e t then return r e t

6 add s i g to r e t

7 f o r every r e a c t i o n rxn

8 r e t = enumerate (p + [ rxn ] , w, r e t )

9 end f o r

10 r e turn r e t

11 end func t i on

12

13 f unc t i on main ( )

14 w max = 0

15 whi le t rue

16 s i g n a t u r e s = enumerate ( [ ] , w max , {})

17 w = maximum width o f an undecomposable pathway in s i g n a t u r e s

18 i f (w+1)∗b <= w max then break

19 w max = (w+1)∗b

20 end whi l e

21 end func t i on

The subroutine enumerate is a function that is designed to enumerate the set of signatures of

all semiformal pathways with width at most w. It takes three arguments p, w, and ret. Here, p is

the semiformal pathway that is currently being worked on, w is the width bound, and ret is the set

of signatures that have been discovered so far. It is easy to note from the above pseudocode that

enumerate(p, w, ret) generates and returns the set of signatures of all pathways of width at most

w that contain p as a prefix. It uses the memoization technique in that it does not further expand

a pathway whose signature has been already found and stored in ret (line 5). This is justified by

Theorem 5.6. Note that this observation alone proves the overall correctness of this subroutine,

because this subroutine basically works by enumerating every single semiformal pathway except for

the ones discarded by memoization. Also, because of memoization, the termination condition for

this subroutine is clearly articulated by Theorem 5.5.

The subroutine main repeatedly calls enumerate, increasing the width bound appropriately. The

correctness of this bound is given by Corollary 5.3. It is trivial that main will terminate if and only

if there exists a bound to the width of an undecomposable semiformal pathway. It is also trivial how

to extract the formal basis from the found signature set.
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5.4 Testing Confluence and Regularity

Finally, we discuss how to test confluence and regularity.

Theorem 5.7. A CRN is confluent if and only if every undecomposable semiformal pathway has a

closing pathway.

Proof. The forward direction is trivial. For the reverse direction, we show that if a CRN is not con-

fluent, there exists an undecomposable semiformal pathway that does not have a closing trajectory.

By definition, we have a semiformal pathway p that does not have a closing pathway. If this

pathway is undecomposable, then we are done. Otherwise, we can decompose it into two pathways

p1 and p2. Suppose both of these pathways have closing pathways. Then, since the final state of

p has the same intermediate species as the sum of the final states of p1 and p2 (by Proposition

5.1 and the fact that p1 and p2 are semiformal), the two closing pathways concatenated will be a

closing pathway of p (because a closing pathway does not ever consume a formal species). This is a

contradiction. Thus, we conclude that at least one of p1 or p2 does not have a closing pathway.

Thus, either p is undecomposable or we can find a shorter pathway that does not have a closing

pathway. Since a pathway of length 0 has a closing pathway, we will eventually find an undecom-

posable pathway with no closing pathway by repeating this process.

By the above theorem, we can test confluence by considering only undecomposable pathways.

Since we already have in our signature set all the states that can be the final state of some unde-

composable semiformal pathway, it would suffice to check that each of those states has a closing

trajectory. This can easily be done using a simple BFS-based algorithm.

Also, as was pointed out earlier, we can easily test regularity from our signature set using

Proposition 5.4.

5.5 Output of the Verifier

Note that the pseudocode from the previous section can be easily modified so that it stores one

“representative” pathway for each signature found. This will be very useful in practice, because

1. in case the formal basis of the implemented CRN contains a reaction that is not in the target

CRN, the verifier can provide the spurious pathway corresponding to that reaction to the user,

2. if the CRN is not confluent, the verifier can output a semiformal pathway which does not have

a closing pathway,

3. and if the CRN is not regular, the verifier can output an irregular prime pathway.

These outputs, which can be interpreted as a counterexample to the given implementation, can

greatly help the user locate the error in the implementation.



61

5.6 Improving Performance

One problem with our algorithm is its exponential worst-case time complexity (exponential in w, the

upper bound on the width of undecomposable semiformal pathways, because the DFS of a pathway

with width w can be as large as ∼ 2w). However, we can use some ad hoc techniques to greatly

improve the empirical performance of the algorithm. For example, the following theorem allows us

to dramatically reduce the number of pathways to enumerate.

Definition. If S is a state, Intermediate(S) denotes the multiset that consists of exactly all the

intermediate species in S.

Theorem 5.8. If p is an undecomposable semiformal pathway with an initial state of size m > 0,

there exists an undecomposable semiformal pathway with an initial state of size smaller than m but

at least min(R,P )∈C{(m− |Formal(R)|)/|Intermediate(R)|} (where C denotes the CRN at hand).

Proof. Since m > 0, p is nonempty. Let p−1 denote the pathway obtained by removing the last

reaction (R,P ) from p. Let x be the number of formal species in R. Also, let S and S−1 denote the

initial states of p and p−1 respectively.

It is obvious that the initial state of p−1 is smaller than the initial state of p by at most x, i.e.,

|S−1| ≥ |S|−x. Then, we decompose p−1 until it is no longer decomposable. As a result, we will end

up with l undecomposable pathways p1, p2, . . . , pl which by interleaving can generate p−1. Also, they

are all semiformal. First, we show that l is at most y, where y is the number of intermediate species

in R (clearly, x + y = |R|). Assume towards a contradiction that l > y. Then, by the pigeonhole

principle, there exists i such that (Intermediate(R), P ) can occur in the sum of the final states of

p1, . . . , pi−1, pi+1, . . . , pl (as in the proof of Theorem 5.2). Then, consider the decomposition (pi, p
′
i)

of p−1 where p′i denotes the pathway we obtain by interleaving p1, . . . , pi−1, pi+1, . . . , pl in the same

order that those reactions occur in p−1. By Proposition 5.1, p′i should have a formal initial state and

the intermediate species in the final state of p′i are exactly the same as those in the sum of the final

state of p1, . . . , pi−1, pi+1, . . . , pl. Thus, the final state of p′i contains all the intermediate species that

(Intermediate(R), P ) needs to occur, i.e., p′i with (R,P ) appended at the end should have a formal

initial state. However, this means that p is decomposable which is a contradiction. Hence, l ≤ y.

Now, note that if we have l semiformal pathways whose initial states have size m1, . . . ,ml, any

pathway obtained by interleaving them can have an initial state of size at most
∑l

i=1mi. Since p−1

had an initial state of size at least m− x and l ≤ y, we can conclude that at least one of p1, . . . , pl

has an initial state of size at least (m− x)/y. It is also clear that the size of its initial state cannot

exceed m. Thus, we have found a pathway p′ which

1. has a smaller length than p, and
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2. has an initial state of size at least min(R,P )∈C{(m − |Formal(R)|)/|Intermediate(R)|} and at

most m.

If p′ has an initial state of size exactly m, then we have failed to meet the requirements of the

claim. However, since we have decreased the length of the pathway by at least one and a zero-length

pathway has an empty initial state, we can eventually get an initial state of size smaller than m by

repeating this process.

The following theorem helps us further eliminate a huge number of pathways from consideration.

Definition. Let p be a semiformal pathway. We say that p is strongly decomposable if p is

decomposable and at least one of the decomposed subsequences is a formal pathway.

Theorem 5.9. Let p be a semiformal pathway. If it is strongly decomposable, any pathway that

contains p as a prefix is decomposable.

Proof. Trivial.

Finally, note that we can optimize the constants in Theorem 5.2 as follows.

Theorem 5.10. If p is an undecomposable semiformal pathway of width w > 0, there exists

an undecomposable semiformal pathway of width smaller than w but at least (w − b)/br, where

br = max(R,P )∈C{|Intermediate(R)|}.

Proof. Similar to the proofs of Theorems 5.2 and 5.8.

These three theorems allow us to modify our algorithm as follows, which shows a considerably

faster performance in practice. The subroutine enumerate now has one additional argument i which

is the bound to the size of the initial state (as in line 3). By Theorem 5.8, the value of this bound,

which is set in lines 22-23, is justified. Also, Theorem 5.10 allows us to use a tighter bound in lines

24-25. Finally, line 5 was added in the light of Theorem 5.9. Note that if the user wants even faster

termination, one can integrate algorithms that test confluence and regularity into enumerate and

terminate the whole algorithm as soon as a counterexample is found.

1 f unc t i on enumerate (p , w, i , r e t )

2 i f p has width g r e a t e r than w then return r e t

3 i f p has an i n i t i a l s t a t e o f s i z e g r e a t e r than i then return r e t

4 i f p i s not semiformal then return r e t

5 i f p i s s t r o n g l y decomposable then return r e t

6 s i g = s i g n a t u r e o f p

7 i f s i g i s in r e t then return r e t

8 add s i g to r e t

9 f o r every r e a c t i o n rxn
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10 r e t = enumerate (p + [ rxn ] , w, r e t )

11 end f o r

12 r e turn r e t

13 end func t i on

14

15 f unc t i on main ( )

16 w max = 0

17 i max = 0

18 whi le t rue

19 s i g n a t u r e s = enumerate ( [ ] , w max , i max , {})

20 w = maximum width o f an undecomposable pathway in s i g n a t u r e s

21 i = maximum i n i t i a l s t a t e s i z e o f an undecomposable pathway in s i g n a t u r e s

22 i bound = max( i ∗y+x ) taken over a l l r e a c t i o n s (R,P) where

23 x means | Formal (R) | and y means | Inte rmed iate (R) |

24 i f w∗ b r+b <= w max and i bound <= i max then break

25 w max = w∗ b r+b

26 i max = i bound

27 end whi l e

28 end func t i on
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Chapter 6

Results

6.1 Test Runs on Existing CRN Implementations

In this section, we will present the results of the test runs of our algorithm on existing translation

schemes. The six translation schemes and four sample CRNs used in the test runs are described in

Table 6.1 and Table 6.2, and the actual input files that were used are presented in the appendix.

In each test run, the sample CRN was first converted to a DNA implementation by BioCRN using

the specified translation scheme and then provided to Brian Wolfe’s reaction enumerator to find

the reaction network of the implementation under the resting states semantics. With translation

schemes that use history domains, this implemented CRN was also simplified according to the

process explained in Section 4.7. The consistency check for this simplification process, which is also

explained in Section 4.7, was also performed and none of the translation schemes exhibited any

inconsistency problem. Finally, the fuel and waste species were removed from this reaction network

and the resulting CRN was finally fed to our algorithm for testing. All test runs were performed on

a personal computer with 2.4GHz Core 2 Duo processor and 4GB RAM. The codes used for these

test runs can be found at “http://dna.caltech.edu/biocrn verifier/biocrn verifier.tgz”.

Translation Scheme Description
Soloveichik David Soloveichik’s translation scheme from [39].

Qian Lulu Qian’s translation scheme from [27].
Qian Bug A slightly different version of the above translation scheme that

was illustrated in Fig. 4.3.
Cardelli FJ A translation scheme using Luca Cardelli’s fork and join gates

from [4], which was pointed out to have bugs in the same paper.
Cardelli C The translation scheme proposed by Luca Cardelli, as shown in

Fig. 9 of [4].
Cardelli 2D Luca Cardelli’s translation scheme from [5].

Table 6.1: List of the tested translation schemes

Table 6.3 is the summary of the 24 different test runs that were performed. For each test run,

the size of the input CRN, the size of the implemented CRN, the final verdict, and the elapsed
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CRN Description
crn1 {A→ B, B +B → A, B → ∅}
crn2 {A+B → C, C → D, D + E → A}
crn3 {A+B → C, C → D, D + E → A, E + F → G, D + C → H,

A+G→ H + I + E +B, D → E + E}
crn4 {A+B → B +B, B + C → C + C, C +A→ A+A}

Table 6.2: List of the tested CRNs

running time were recorded. Surprisingly, many of the known translation schemes were shown to be

incorrect in the four CRNs that we tried them on.

For instance, the translation scheme from [27] (Qian in the table) was shown to produce an

irregular implemented CRN for all four inputs. We investigated the output of the verifier, and the

problem in this scheme is that a module is finalized only after all its products are produced. For

instance, a reaction A→ B will be translated to the following three reactions in this scheme.

A � i

i � j +B

j → ∅

In this case, it is clear that the prime pathway (A → i, i → j + B, j + B → i, i → A) will be

irregular. Is it really problematic? Yes1, because if there were also a B → B + C reaction present,

a system starting from the state {A} can reach the state {A,C}, which should be impossible if

the above module correctly implemented the A → B reaction. The authors of [27] independently

discovered this problem, and it will be corrected in the journal version of that paper.

Interestingly, the scheme that was modified from [27] (Qian Bug in the table) which was believed

to have a fatal bug (Fig. 4.3) was shown to be rather correct in the first two input cases. This is

because this scheme avoids the above problem when the number of products of the reaction at hand

is one. In fact, A→ B is implemented as below, which does not show any problem.

A � i

i → B

However, when the number of products of any reaction in the target CRN is larger than one, this

scheme exhibits the same problem as above.

Cardelli FJ [4] also had the same problem. Cardelli FJ was already pointed out to have a problem

by the authors of [4], but it was a different type of a problem that arises due to crosstalk between

1However, if we can guarantee that there exists no other formal reaction in the system, there can be some notions
of correctness which consider this example to be correct (although it still violates the temporal logical property that
a system that started from {A} cannot observe an A molecule after it observes a B molecule at least once).
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Translation Scheme Input CRN Size of the
Input CRN

Size of the Imple-
mented CRN

Verdict Running Time

Cardelli C crn1 3 20 Correct* 64.39s
Cardelli C crn2 3 28 Correct* 4.96s
Cardelli C crn3 7 68 Correct* 725.79s
Cardelli C crn4 3 36 Correct* 4.66s

Cardelli C noGC crn1 3 11 Correct 0.18s
Cardelli C noGC crn2 3 13 Correct 0.15s
Cardelli C noGC crn3 7 31 Correct 1.32s
Cardelli C noGC crn4 3 15 Correct 0.32s
Cardelli 2D noGC crn1 3 30 Irregular 4459.89s
Cardelli 2D noGC crn2 3 34 Irregular 0.15s
Cardelli 2D noGC crn3 7 88 Irregular 0.46s
Cardelli 2D noGC crn4 3 42 Irregular 0.27s

Qian Fixed crn1 3 17 Correct 21.96s
Qian Fixed crn2 3 22 Correct 9.58s
Qian Fixed crn3 7 60 ? ∞
Qian Fixed crn3 7 60 Correct* 2357.60s
Qian Fixed crn4 3 30 Correct 114.65s

Correct* means that the verifier was run under some artificial bounds on the width and the initial
state size of pathways.

Table 6.4: Test run results

different modules. Here, the scheme was shown to generate the same irregular structure as the

above two schemes (Figs. 6 and 7A in [4]). However, this problem does not occur with their join

gate (Fig. 7 in [4]), so crn4 which only has bimolecular reactions was translated correctly.

The algorithm failed to terminate on Cardelli C [4] in the three hours that we allowed it to run.

This translation scheme uses a complicated “garbage collection” mechanism to remove “garbage”

intermediate species that it produces, and apparently this mechanism blows up the number of

distinct pathway signatures in the system. Thus, we tried the algorithm with a restriction that it

only enumerates pathways with an initial state of size at most two (because all the reactions in the

target CRNs had less than two reactants), and obtained the results in Table 6.4. These results do

not guarantee that this translation scheme is correct on the four input CRNs, but they at least tell

us that if there is a problem, then it must be due to crosstalk between different modules because

the problematic pathway will have an initial state of size greater than two. We also tested a simpler

version of Cardelli C in which the garbage collection mechanism was removed (Cardelli C noGC in

Table 6.4). As shown in Table 6.4, it was shown to be correct for all four CRNs.

Cardelli 2D was shown to be irregular in the first input case, which is because of essentially the

same problem as that of Qian, Qian Bug, and Cardelli FJ. It was also shown to be not confluent in

the other three input cases, but when we analyzed the output of the verifier, it turned out that it was

because the scheme uses a reaction mechanism that our reaction enumerator does not support (Fig. 8

of [5] uses a trimolecular reaction which was originally proposed in [48]). This problem can be fixed
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by using a more thorough reaction enumerator in the future2. Since this trimolecular mechanism

also occurs in the garbage collection module, we implemented a simplified version in which the

garbage collection was removed (Cardelli 2D noGC in Table 6.4). Now, the scheme exhibited the

same irregularity problem in all four cases.

Finally, the authors of [27] provided us with the corrected version of their translation scheme

(Qian Fixed in Table 6.4), which was shown to be correct for crn1, crn2, and crn4. However, the

algorithm failed to terminate in reasonable time on crn3, and accordingly we performed another run

in which we limited the width of enumerated pathways to 6 and the size of the initial state to 2

(this time, limiting of the initial state size alone did not help much). Under those restrictions, the

scheme was also shown to be correct* for crn3.

Thus, our verifier was able to locate many subtle errors from various known translation schemes.

Although it failed to terminate quickly on some input cases, it finished in less than one second

in most cases, which is surprising considering the exponential worst-case time complexity of the

algorithm. Especially, when there is an error, the algorithm tended to find a counterexample very

quickly, which will be useful in practice. If the verifier does not terminate for a long time, the user

can also opt to impose certain limits on the algorithm (in the form of artificial constant bounds)

to achieve a verification certificate with various different levels of confidence. In conclusion, we

claim that our algorithm is not only theoretically correct, but will also be practically useful to the

researchers studying DNA-based CRN implementations.

2Note that if more enumerators with various different semantics are built in the future, our verifier will be able to
analyze systems under different physical assumptions.



69

Chapter 7

Discussion

In this thesis, we have presented two useful tools for molecular programming: the BioCRN compiler

and the CRN implementation verifier. These tools can be readily used in the research of DNA-based

CRN implementations. They will not only contribute to the automation of molecular programming,

but also help many researchers have more theoretical confidence in their implementations and con-

centrate on reducing experimental flaws. In particular, our verifier is capable of producing the exact

pathway in which the implementation fails, which will be very helpful in debugging errors.

It seems that our algorithm for enumerating undecomposable semiformal pathways may be useful

for many more applications. In any chemical system in which we are only interested in certain species,

our techniques can be used to enumerate independent pathways in the system and analyze them,

even if the system has nothing to do with using DNA to implement chemical reaction networks. In

these cases, we will need to drop CRN-specific conditions such as confluence or regularity if necessary.

For this reason, our research might be a promising first step toward automated verification of

any DNA system. As we mentioned in the introduction chapter, CRNs are a very powerful modeling

language that can express a wide range of chemical behavior. In this sense, CRNs can be used

as a specification language for molecular programs, where we specify the desired behavior between

key species. In fact, the system does not even need to be based on DNA strand displacement as

long as we have a way to enumerate possible reactions (i.e. we have an equivalent of the reaction

enumerator).

Also, there is an indication that similar techniques can be used to verify DNA systems not only

at the domain level but also at the individual base pair level. This is easily seen by observing that a

sequence-level design can be viewed as a domain-level design that uses four different ‘short’ domains

named A, G, C, and T. At present, however, this kind of direct translation will produce too many

reactions and species for the reaction enumerator and the verifier to terminate in a reasonable time.

There are some more key areas in which improvements can be made about CRN implementation

verification:
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1. Our verification algorithm is intrinsically exponential, and can fail to produce the answer in a

reasonably short time for some input. There might be ways to reduce the time complexity of

the algorithm, either by a mathematical breakthrough or by ad hoc observations.

2. Our method can verify a single compilation instance (i.e. a single translation scheme applied

on a single CRN), but cannot prove the correctness of a given translation scheme in general

(for all possible input CRNs). It would be interesting to provide an automated method for

proving the correctness of a translation scheme.

3. There have been some published results that use polymer molecules [27]. Our formulation

of CRNs in this thesis regards every polymer molecule as a different species, whereas ideally

there should be a way to group them in a smart way such that we can express a potentially

infinite number of polymer species efficiently. This will be an interesting area of study because

the polymer molecules allow us to build a theoretically infinite memory with a finite number

of component species.

4. The reaction enumerators introduced in this thesis are not capable of dealing with pseudo-

knotted structures. For a broader range of applications, it would be advantageous to have a

verifier that can work with pseudoknot-capable enumerators.

5. It is possible that an implementation of a CRN that is incorrect according to our definitions

might still work very well in practice. This can occur when the erroneous pathways are

kinetically extraordinarily rare, because the discussion of chemical kinetics was entirely left

out in our research. There is an interesting idea to consider in this light; if we can somehow

enumerate a full list of the elementary basis (although it is often infinite), we might be able

to analyze each prime formal pathway kinetically, giving rise to provable kinetic properties for

the full system.

Historically, the ways to model and analyze chemical systems have been studied in various per-

spectives, ranging from Petri nets and bisimulation to temporal logic [8, 11, 32, 3]. None of these

approaches seems to be directly applicable to the logical verification of DNA implementations in an

obvious way. This was the main reason that we came to invent an entirely new set of definitions

rather than develop on existing ones. When we limit our scope to DNA-based CRN implementations,

there have been some papers that attempted to define their own notions of correctness and prove

it [4, 5, 39]. However, these notions were usually either too specific to be widely adopted or not

strong enough to be interesting in general. Finally, there is a software tool called PRISM, which is

designed for automatic verification of probabilistic systems [15]. Some researchers have successfully

used it to test temporal logical properties on chemical systems [14, 6], but it is not obvious what

temporal logical properties will ensure the implementation’s correctness.
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In this thesis, we proposed a mathematical formalism for chemical systems that is fundamentally

different from any method mentioned above. Although our results are certainly not perfect at this

point, we hope that they will not only contribute to the field’s current understanding about the

CRN implementations, but also inspire scientists to think about the verification problem in its own

right.
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Appendix A

The BioCRN Compiler

A.1 Introduction

Recently, it has been shown that chemical reaction networks (CRNs) can be algorithmically trans-

lated down to synthetic DNA molecules that emulate their behavior [39, 4, 27]. The existence of such

a general translation scheme assigns CRNs a very important role in molecular programming, because

now they can serve as a programming language for DNA systems. It means that any computational

idea that can be encoded in a CRN can also be implemented using DNA molecules.

Conceptually, there are mainly three steps in which a CRN is compiled down to DNA molecules.

First, the given CRN is translated to domain-specified DNA molecules. Second, the domain spec-

ification is turned into sequences of nucleotide bases. Third, real DNA molecules are synthesized

according to the sequence information generated in the second step. The procedures for the second

and third steps are highly standardized among researchers; the second step is usually performed

using software programs called sequence designers, e.g., NUPACK [47]. The third step is highly

industrialized and is usually carried out by commercial companies.

Unfortunately, the first step is being performed in many different ways even in a single research

group. The reasons are twofold. First, there are many different “translation schemes” with different

pros and cons. Second, there is no standardized software that can carry out this task. Observe that

the second reason is a consequence of the first. While it is easy to build a compiler that works for

a single translation scheme, it is much more difficult to design a general compiler that works for all

translation schemes. This is because translation schemes might build on drastically different ideas.

BioCRN is a general compiler for DNA-to-CRN translation that is designed to work for a wide

range of translation schemes. The purpose of this compiler is to allow researchers to easily switch

between different translation schemes, modify existing translation schemes, and even verify the

correctness of the compilation1.
1For this, one needs to interface BioCRN with a few other software tools such as the reaction enumerator and the

CRN equivalence tester.
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A.2 Overview

The BioCRN compiler is written in Python 2.6.6 and thus runs on all commonly used platforms.

It uses Pyparsing and DNAObjects libraries. (The former is a common library and the latter is

developed and maintained by the Winfree group at the California Institute of Technology. For

information about the latter, contact Joseph Schaffer, Karthik Sarma or Seung Woo Shin.)

BioCRN takes two input files and produces one output file. The two input files are the target

CRN and the translation scheme description, and the output file is the domain specification of the

translated molecules. The extensions for the input and output files are .crn (‘chemical reaction

network’), .ts (for ‘translation scheme’), and .dom (‘domain specification’) respectively.

A.3 Syntax and Semantics

A.3.1 CRN Language

Since the CRN language is very simple, we replace the formal syntax definition with the following

example.

X1 -> X2 + X3

X2 + g ->

-> E

E + x <=> Ex

# This is a comment.

The CRN language adopts the Python style comment, ignoring everything that appears after

a sharp (#) character. The first four lines of the above code illustrates how to write a normal

irreversible reaction, a decaying reaction, a spontaneous reaction, and a reversible reaction in the

CRN language.

A.3.2 DOM Language

The DOM language has two types of statements. First, the user can specify the length of a domain

as follows.

sequence <identifier> : <integer>

Here, identifier is an alphanumeric string (which has to start with an alphabet) which is the name

of the domain whose length is to be specified. The following integer is the length of the domain.

For instance, we can write the following to mean that the length of a domain d1 is 5 nucleotide

bases.
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sequence d1 : 5

The second type of a statement is the structure specification for a DNA complex. This is always

done in three lines, as follows.

<identifier>:

<primary structure>

<secondary structure>

Here, identifier is an alphanumeric string that specifies the name of the DNA complex to be

described. The following two lines, which store the primary and secondary structure information

about the complex, use the dot-paren notation (as in NUPACK [47]). For instance, we can write

the following to describe the molecule shown in Fig. A.1.

A:

b c + c* b* a*

( ( + ) ) .

b        c

b*      c*a*

Figure A.1: A dot-paren notation example from the above code

In this notation system, a plus sign indicates strand breaks, a dot indicates that the corresponding

domain is unpaired, and a parenthesis indicates that the corresponding domain is paired with the

domain with the matching parenthesis. While this notation system cannot express every possible

structure that can occur in a DNA molecule (in fact, the class of structures that dot-paren notation

can express is exactly those that are free of pseudoknots), it is one of the most convenient notations

available today and is widely used in the field. Fig. A.2 provides some examples that will further

help understanding of this notation system.

The following is an example of a typical DOM file.

sequence a : 5

sequence b: 15

sequence c: 15

# The following is a formal species.

A:

b c + c* b* a*

( ( + ) ) .
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b        c

b*      c*a*

d a        b

b*

c

d

a

b

c

a* c*d

a
b*

b

c*
c

a*

b c d + c* b* a*

( ( . + )  )  .

       or

c* b* a* + b c d

(  (  .  + ) ) .

b* d c b a

(  . . ) .

a b c + c* d a*

( . ( + )  . )

      or

c* d a* + a b c

(  . (  + ) . )

a b* + b c* + c a*

( (  + ) (  + ) )

        or

b c* + c a* + a b*

( (  + ) (  + ) )

        or

c a* + a b* + b c*

( (  + ) (  + ) )

Figure A.2: Some more examples of dot-paren notation

Like the CRN language, the DOM language also supports the Python style comment.

A.3.3 TS Language

A.3.3.1 Function definition

As the TS language is a functional programming language, the top-level statements are mostly

function definitions. It is usually done in the following way.

function <identifier>(<arguments>) = <body>;

For instance, we can define some common functions as follows.

# The TS language also supports the Python style comments.

# Computes the sum of the given list of integers

function sum(x) =

if len(x) = 0 then 0 else x[0] + sum(tail(x));

# Note that list indices start from zero.

# Computes the length of the given list

function len(x) =
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if x == [] then 0 else 1 + len(tail(x));

# Reverses the given list

function reverse(x) =

if x == [] then [] else reverse(tail[x]) + [x[0]];

# Applies the function f on each entry of the list x and returns the list of the results

function map(f, x) =

if len(x) == 0 then

[]

else

[f(x[0])] + map(f, tail(x));

Here, tail is a built-in function that returns the given list except the first entry, and x[i], as

usual, indexes the i-th entry of the list x. In the definitions for len and reverse, we can notice

that the plus operator is overloaded for multiple data types. Namely, it is being used for adding two

integers in len and for concatenating two lists in reverse.

The TS language provides many different names for functions. The keywords class, module,

macro all have the same meaning as function, but the programmer can use them appropriately to

enhance the readability of the code.

A.3.3.2 Global declaration

At the top-level, the user can also declare global constants. For instance, the following code will

generate a toehold domain that can be used universally in the implementation.

global toehold = short();

A.3.3.3 Conditionals

The TS language supports conventional if-then-else statements. It can be used the following way.

function power2(x) =

if x == 1 then 2

elseif x == 2 then 4

elseif x == 3 then 8

else 16;

# this function will be incorrect because it returns 16 whenever x is greater

# than 3.

The number of elseif clauses is unlimited.
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A.3.3.4 Local bindings

The TS language also supports the Haskell style where clauses. It allows the user to create local

bindings. The following example illustrates its usage.

function area(r) =

r * r * pi where pi = 3.14159265358979323846264338327950288419;

If one wishes to create multiple bindings at once, one can use the following syntax as well.

global x = e + f where {

a = 2;

b = a + 1;

c = b + 1;

d = c + 1;

e = d + 1;

f = 4

}

The bindings will be created in the order that they are listed, so the value of x in this case will be

10.

A.3.3.5 Pattern matching

The global and where keywords support basic pattern matching. For instance, we can write the

following.

global [x, y] = [2, 3];

The values of x and y will be 2 and 3, respectively.

A.3.3.6 Function calls, attributes, and list indexing

The function calls in the TS language are made the same way as most other programming languages.

For instance, if we want to call a function called sum on a variable l, we write sum(l). To reference

an attribute x of an object A, we simply write A.x. List indexing is done in the same way as in

Python, e.g., l[0], l[1], l[2], etc. The list index always starts from 0.

A.4 Types

A.4.1 Conventional Data Types

The TS language supports the following common data types: integer, float, boolean, and list. These

data types are handled the exact same way as in Python except that the boolean data type does
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not explicitly exist in the TS language. There is no ‘true’ or ‘false’ keyword in the TS language, so a

boolean value only arises as a result of logical operators (such as == or !=). The following are some

examples of how to use these data types.

global x = [1,2,3,4,5]; # defines a list of five elements

global y = 2.35 + x[1]; # the result should be 4.35

global z = x == y; # the result will be false

A.4.2 New Data Types

The TS language supports new (object) data types called Species, Reaction, Domain, Structure,

and Solution in order to facilitate handling molecule information. Fig. A.3 summarizes the general

purposes of these new data types.

Data type Usage
Species Used to represent chemical species. As its only data field is name which simply

stores the name of the species, its main purpose is to distinguish between
different species. In the current version of the compiler, this data type has no
particular use.

Reaction Stores information about chemical reactions. It has three data fields;
reactants which holds the list of reactant molecules, products which holds
the list of product molecules, and reversible which tells whether the reaction
is reversible.

Domain Used to represent domains. It has two data fields: id and length. Similarly
to the Species data type, it is mainly used to distinguish between different
domains using the id field.

Structure Stores the primary and secondary structure of a DNA complex along with the
domains used in it.

Solution Represents a chemical solution. It has one data field called molecules, which
stores a list of Structure objects. Conceptually, it stores the list of molecules
that are present in the solution.

Figure A.3: New data types.

A.4.2.1 Species data type

The Species data type was designed in anticipation of new features to be implemented in the future,

and it currently has no particular use.

A.4.2.2 Reaction data type

The Reaction data type is used when the input CRN is given to the TS code’s main function (which

is an analog to C/C++’s main function and will be introduced shortly). A CRN in the TS language

is expressed as a list of Reaction objects, which contain reactant and product species as Structure

objects.
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A.4.2.3 Domain data type

The Domain data type is usually used to define Structure objects, which require the primary and

secondary structure information. Unlike the above two data types, a Domain object can be created

using built-in functions like short or long.

A.4.2.4 Structure data type

The Structure data type is used to store structural information of a DNA molecule. It can be

created in runtime using the following syntax:

global X = "a b c + c* b*" | ". ( ( + ) )"

where {

a = short();

b = long();

c = long();};

X will have the structure shown in Fig. A.1. Note that the quotation marks here do not indicate that

what comes between them is a string, but they are simply syntactic tokens for creating a Structure

object. Similarly, the vertical bar is not an operator, but merely a syntactic token.

The domains that were used to create a Structure object can be referenced later using the

names that were used at the time of creation. For instance, the user can reference the three domains

that were used in X by writing X.a, X.b, and X.c.

A.4.2.5 Solution data type

A Solution object is basically a set of molecules. In later versions, it will eventually have to specify

the concentration of each molecule as well, but currently it is assumed that every molecule has an

infinitely large concentration. A Solution object can be created from a Structure object using the

built-in function called infty.

A.5 Built-In Operators

A.5.1 Arithmetic Operators

The TS language implements the following binary arithmetic operators: +, -, *, and /. While these

operators basically support numerical data types like integers and floats, the plus operator is also

overloaded for other data types such as lists and Solution objects. It works as a concatenation

operator for lists and as a set union operator for Solution objects. The language also supports a

unary minus operator, used to negate a numerical value.
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A.5.2 Logical Operators

Like in C/C++, one can use the following numerical comparison operators on integer and float

values: ==, !=, <, >, >=, and <=. Also, one can use the keywords and and or to perform logical and

and or operations respectively.

A.6 Built-In Functions

A.6.1 tail function

It takes a list argument and returns the same list starting from the second element. For example,

tail([1,2,3]) returns [2,3]. If the given list is empty, tail reports a runtime error.

A.6.2 complement function

The complement function takes one argument. If given a Domain object, it computes the Watson-

Crick complement of the given domain. If given a Structure object that describes a single strand

molecule, it returns a Structure object that is the mirror image of the given Structure object.

The mirror image refers to the structure obtained by reversing the list of the domains and replacing

each of them with its complement.

A.6.3 infty function

This function simply converts a given Structure object into a Solution object containing only that

molecule.

A.6.4 short function and long function

As discussed earlier, these functions create a new unique domain of respective length. Currently, 5

and 15 are being used as the default lengths for these functions. If the user wants to create a domain

of specific length, unique function can be used.

A.6.5 unique function

This function takes an integer as its only argument and returns a new unique domain of that length.

A.6.6 flip function

This function takes two arguments: a list l and an integer n. Here, l is assumed to be a len(l)×n
matrix expressed as a list of lists, and otherwise, it will result in a runtime error. Then, flip(l,

n) will return the transpose of the given matrix, which will be a n×len(l) matrix. For instance,
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if M is [[1,2,3],[4,5,6]], then flip(M, 3) will return [[1,4],[2,5],[3,6]]. The usage of this

function will be further explained in the examples section.

A.6.7 rev reactions function and irrev reactions function

These functions take one argument, which should be a list of Reaction objects. First, irrev reactions

turns every reversible reaction into a pair of irreversible reactions that it comprises. This is because

some translation schemes can implement reversible reactions only as two separate irreversible reac-

tions. Conversely, rev reactions finds all pairs of matching irreversible reactions and merge them

into one reversible reaction.

A.6.8 sum function

This function simply computes the sum of a list using the built-in plus operator. This means that

it can be used on either a list of integers, a list of lists, or a list of Solution objects because the

plus operator is overloaded for those types. If given an empty list, the function will return an empty

Solution object.

# sum([1,2,3,4,5]) will evaluate to 15

# sum([[1,2], [3,4,5]]) will evaluate to [1,2,3,4,5]

# sum([infty(x), infty(y)]) will evaluate to a Solution object containing both x and

# y molecules.

A.6.9 len function

This function, as usual, computes the length of a given list, e.g., len([1,2,3]) will be 3.

A.6.10 reverse function

This function reverses a given list.

A.6.11 unirxn function, birxn function, and rxn degree function

The unirxn function takes one argument, which is a list of Reaction objects, filters out reactions

that do not take exactly one reactant, and returns the resulting list. The birxn function performs

the same task but leaves only the reactions that take exactly two reactants. The most general

version of these functions is the rxn degree function, which takes an additional argument that

specifies the number of reactants that we want. These functions are conveniently provided to the

user because some translation schemes apply different constructions for reactions with different

number of reactants (e.g. Soloveichik et al., 2010 [39]).
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A.6.12 map function

This function works the same way as the map function in any other functional language. In other

words, map(f, [a,b,c,...,z]) where f is a function evaluates to [f(a), f(b), f(c), ...,

f(z)].

A.7 Runtime

In order for a TS code to be functional, it has to implement two functions.

1. formal is a function that produces Structure objects that describe how the species from the

input CRN should be constructed. The name of the function comes from the fact that we call

species from the input CRN the formal species.

2. main is a function that takes a list of reactions and returns all the auxiliary species required

to implement those reactions (the return value should be a Solution object).

We should study some examples to understand the purpose of each function more clearly. The fol-

lowing is an example implementing the formal function for the translation scheme from Soloveichik

et al., Proceedings of the National Academy of Sciences, 2010 [39].

1 f unc t i on formal ( s ) =

2 ”? a b c” | ”? . . . ”

3 where {

4 a = shor t ( ) ;

5 b = long ( ) ;

6 c = shor t ( )

7 } ;

Soloveichik et al. requires that the molecules representing formal species have one “history”

domain, which is variable according to the reaction that produced those molecules. Thus, each

formal species will not be mapped to a single implemented species, but it will be mapped to a class

of species. To express this, here we used a question mark as a wildcard that can match any single

unpaired domain. Recall that short() and long() are functions that generate new unique domains

of respective lengths, so formal will return a new single-stranded molecule with three new distinct

domains every time it is called. This way, no two formal species will share the same domain, as

desired by the scheme. Fig. A.4 shows the molecule that will be constructed from this code.

Now, note that the following function constructs the Bi molecule from Fig. 3 of the same paper.

1 f unc t i on Bi ( x1 , x2 ) =

2 ”d2 d3 d4” |

3 ” . . . ”
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a b c?

Figure A.4: The structure from formal

4 where {

5 d2 = x1 . b ;

6 d3 = x1 . c ;

7 d4 = x2 . a

8 } ;

Here, x1 and x2 are assumed to be Structure objects produced by the formal function. Thus, when

we reference x1.b or x1.c, it will return the corresponding domains as was specified in the dot-paren

description in formal (if x1 or x2 were not produced by formal, it might not have domains named

a, b, or c, in which case it would result in a runtime error).

Finally, we can write down the following main function.

1 f unc t i on main ( crn ) = i n f t y ( Bi ( crn [ 0 ] . r e a c t a n t s [ 0 ] , crn [ 0 ] . r e a c t a n t s [ 1 ] ) )

2 # ‘ in f ty ’ i s a bu i l t−in func t i on that takes a St ruc ture i n s t anc e and puts that the

s p e c i e s i s supposed to have ” i n f i n i t e ” concent ra t i on . The r e s u l t i n g ob j e c t w i l l

be a So lu t i on in s t anc e .

The argument given to the main function, crn, is a list of Reaction objects that store the reactions

from the input CRN. However, their reactants and products fields contain Structure objects

that are obtained by running each species that appears in the given reaction through the formal

function.

Thus, if we ran this translation scheme on the CRN consisting of one reaction X1 + X2 → X3,

it will correctly translate all the formal species according to the scheme from Soloveichik et al.,

and produce the appropriate Bi molecule. However, as can obviously be seen, this main function

ignores every reaction but the first one, it assumes that the first reaction is bimolecular, and most

importantly, it does not produce any other auxiliary species than Bi. This is obviously not an

implementation of a correct translation scheme, and it requires much more work to make it one. A

complete implementation of the translation scheme from Soloveichik et al. will be presented in the

next section.

To enhance the reader’s understanding of the compiler, Fig. A.5 pictures how the compiler uses

the TS code that the user provides.

Lastly, note that our compiler completely ignores the kinetic aspect of the system. Thus, we do

not specify rate constants in our CRN language and we only specify the concentration of a species

as ‘infinite’ or ‘non-infinite.’ This is a major limitation of our compiler and should be improved in
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The compiler runs all formal species that appear in the input 
CRN through the ‘formal’ function to obtain formal species 

designs (as Structure objects).

The compiler makes a Reaction object for each reaction in the 
CRN. In its ‘reactants’ and ‘products’ data fields, the Structure 

objects obtained from the previous step are stored.

The list of the Reaction objects prepared in the second step is 
passed to the ‘main’ function of the given TS code.

The compiler produces the output DOM file using the 
information returned by the ‘main’ function.

Figure A.5: The compiler flow chart
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the future.

A.8 Examples

1 A −> B + C

2 C −> D

Listing A.1: sample.crn ↑

1 #

2 # David So love i ch ik ’ s t r a n s l a t i o n scheme from ”DNA as a u n i v e r s a l s ub s t r a t e

3 # f o r chemica l k i n e t i c s ” , Proceed ings o f the Nat iona l Academy o f Sc i ences ,

4 # 107 : 5393−5398 , 2010 .

5 #

6 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

7 #

8

9 f unc t i on formal ( s ) = ”? a b c”

10 | ”? . . . ”

11 where {

12 a = shor t ( ) ;

13 b = long ( ) ;

14 c = shor t ( ) } ;

15

16 f unc t i on ugate ( s , l )

17 = [ ” b c d + c∗ b∗ a∗” # G i

18 | ”( ( ˜ + ) ) . ” ,

19 ”e + f c∗” # T i

20 | ”˜ + ˜ . ” ]

21 where {

22 a = s . a ;

23 b = s . b ;

24 c = s . c ;

25 [ d , e , g ] = f l i p (map(gmac , l ) , 3) ;

26 f = r e v e r s e ( g ) } ;

27

28 f unc t i on gmac( s )

29 = [ ” d a”

30 | ” . . ” ,

31 ”d a b c +”

32 | ”( ( . . +”,

33 ”a∗ d∗”

34 | ”) ) ” ]

35 where {

36 d = long ( ) ;
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37 a = s . a ;

38 b = s . b ;

39 c = s . c } ;

40

41 f unc t i on unimolecu lar ( r ) = i n f t y ( g ) + i n f t y ( t )

42 where

43 [ g , t ] = ugate ( r . r e a c t a n t s [ 0 ] , r . products ) ;

44

45 f unc t i on bgate ( s1 , s2 , l )

46 = [ ” b c d + e f g + f ∗ e∗ d∗ c∗ b∗ a∗” # L i

47 | ”( ( ( + ( ( ˜ + ) ) ) ) ) . ” ,

48 ”h + i f ∗” # T i

49 | ”˜ + ˜ . ” ,

50 ”b c d” # B i

51 | ” . . . ” ]

52 where {

53 a = s1 . a ;

54 b = s1 . b ;

55 c = s1 . c ;

56 d = s2 . a ;

57 e = s2 . b ;

58 f = s2 . c ;

59 [ g , h , j ] = f l i p (map(gmac , l ) , 3) ;

60 i = r e v e r s e ( j ) } ;

61

62 f unc t i on b imo lecu la r ( r ) = i n f t y ( l ) + i n f t y ( t ) + i n f t y (b)

63 where

64 [ l , t , b ] = bgate ( r . r e a c t a n t s [ 0 ] , r . r e a c t a n t s [ 1 ] , r . products ) ;

65

66 f unc t i on main ( crn ) = sum(map( unimolecular , unirxn ( crn ) ) ) +

67 sum(map( bimolecu lar , b i rxn ( crn ) ) )

68 where

69 crn = i r r e v r e a c t i o n s ( crn )

Listing A.2: soloveichik.ts ↑

1 sequence d1 : 5

2 sequence d2 : 15

3 sequence d3 : 5

4 sequence d4 : 5

5 sequence d5 : 15

6 sequence d6 : 5

7 sequence d7 : 5

8 sequence d8 : 15

9 sequence d9 : 5

10 sequence d10 : 5
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11 sequence d11 : 15

12 sequence d12 : 5

13 sequence d13 : 15

14 sequence d14 : 15

15 sequence d15 : 15

16 # Formal s p e c i e s

17 A :

18 ? d1 d2 d3

19 ? . . .

20 C :

21 ? d4 d5 d6

22 ? . . .

23 B :

24 ? d7 d8 d9

25 ? . . .

26 D :

27 ? d10 d11 d12

28 ? . . .

29 # Constant s p e c i e s

30 automatic4 :

31 d2 d3 d13 d7 d14 d4 + d3∗ d2∗ d1∗

32 ( ( . . . . + ) ) .

33 automatic5 :

34 d13 d7 d8 d9 + d14 d4 d5 d6 + d4∗ d14∗ d7∗ d13∗ d3∗

35 ( ( . . + ( ( . . + ) ) ) ) .

36 automatic6 :

37 d5 d6 d15 d10 + d6∗ d5∗ d4∗

38 ( ( . . + ) ) .

39 automatic7 :

40 d15 d10 d11 d12 + d10∗ d15∗ d6∗

41 ( ( . . + ) ) .

Listing A.3: sample.dom ↑

In this section, we will investigate a full set of input and output codes to provide a broad picture

of the compilation process. In other words, we will look into how the “sample.dom” file above is

produced from “sample.crn” and “soloveichik.ts”.

First of all, all the formal species (A, B, C, and D in this case) are translated using the ‘formal’

function from the TS file. Note that the formal function is written such that we produce three new

unique domains for each formal species. Accordingly, the compiler obtains the following after this

translation. We can check that the length of each domain agrees with the specification from the

formal function. (Here, 5 and 15 are being used as default lengths for ‘short’ and ‘long’ domains.)

# Formal s p e c i e s
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A :

? d1 d2 d3

? . . .

C :

? d4 d5 d6

? . . .

B :

? d7 d8 d9

? . . .

D :

? d10 d11 d12

? . . .

Then, the compiler will run the ‘main’ function of the TS file, supplying the input CRN as the

argument. In this case, the argument crn will have the following value: [Reaction([A], [B, C],

False), Reaction([C], [D], False)]. (Reaction([A], [B, C], False) denotes a Reaction

object with reactant, products, and reversible data fields having values [A], [B, C], and False

respectively. A, B, C, and D here represent the Structure objects that were generated during the

first step of compilation using the formal function.)

f unc t i on main ( crn ) = sum(map( unimolecular , unirxn ( crn ) ) ) +

sum(map( bimolecu lar , b i rxn ( crn ) ) )

where

crn = i r r e v r e a c t i o n s ( crn )

First of all, since we have a where clause, we create a local binding crn which has the value

irrev reactions(crn). Since our input CRN does not contain any reversible reaction, the new

crn will be the same as the old crn. Also, note that crn only contains unimolecular reactions, so

when the above code computes unirxn(crn) and birxn(crn), the former will be the same as crn

itself and the latter will be an empty list. Therefore, the return value of our main function will be

sum(map(unimolecular, unirxn(crn))).

To compute this value, we need to apply the function unimolecular to each item in unirxn(crn)

and take the sum of the resulting values. Since unirxn(crn) is [Reaction([A], [B, C], False),

Reaction([C], [D], False)], we need to first compute unimolecular(Reaction([A], [B, C],

False)) and unimolecular(Reaction([C], [D], False)), and compute their sum. Now, we need

to study the unimolecular function.

f unc t i on unimolecu lar ( r ) = i n f t y ( g ) + i n f t y ( t )

where

[ g , t ] = ugate ( r . r e a c t a n t s [ 0 ] , r . products ) ;

Suppose the argument r was Reaction([A], [B, C], False). To compute the return value of

unimolecular(r), we first need to evaluate the value of g and t from the where clause. That is,
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we need to evaluate ugate(r.reactants[0], r.products) first. Clearly, r.reactants[0] is A and

r.products is [B, C] where A, B, and C are Structure objects. Thus, the code will call ugate(A,

[B, C]) and try to pattern match the result into [g, t].

f unc t i on ugate ( s , l )

= [ ” b c d + c∗ b∗ a∗” # G i

| ”( ( ˜ + ) ) . ” ,

”e + f c∗” # T i

| ”˜ + ˜ . ” ]

where {

a = s . a ;

b = s . b ;

c = s . c ;

[ d , e , g ] = f l i p (map(gmac , l ) , 3) ;

f = r e v e r s e ( g ) } ;

Note that the value of the first argument s is A, which is a Structure object created with

the formal function. If we look at the definition of formal, there are three domains that are

used to specify the structure: a, b, and c. Thus, when we write s.a, s.b, and s.c, we reference

the corresponding Domain objects, i.e., d1, d2, and d3, respectively. (If s were B, we would have

referenced d7, d8, and d9 instead.) Thus, a, b, and c in the where clause are d1, d2, and d3

respectively, but in order to evaluate d, e, f, and g, we need to call yet another function, gmac.

Recall that the value of the second argument l was [B, C], which is a list. Thus, when we call

map(gmac, l), we will apply gmac on B and C individually, and store the results in a list.

f unc t i on gmac( s )

= [ ” d a”

| ” . . ” ,

”d a b c +”

| ”( ( . . +”,

”a∗ d∗”

| ”) ) ” ]

where {

d = long ( ) ;

a = s . a ;

b = s . b ;

c = s . c } ;

Let us first evaluate gmac(B). We first need to evaluate the assignments in the where clause. Note

that we need to generate a new unique domain for d. Since we already assigned d1 through d12 to for-

mal species, we will assign d a new Domain object named d13. Also, since s is B here, as we discussed

above, s.a, s.b, and s.c are d7, d8, and d9 respectively. Thus, a, b, and c become d7, d8, and d9.

That is, gmac(B) has the value [Structure("d a", ". .", (d=d13, a=d7)), Structure("d a
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b c +", "( ( . . +", (a=d7, b=d8, c=d9, d=d13)), Structure("a* d*", ") )", (a=d7,

d=d13))]. Similarly, gmac(C) will have the value [Structure("d a", ". .", (d=d14, a=d4)),

Structure("d a b c +", "( ( . . +", (a=d4, b=d5, c=d6, d=d14)), Structure("a* d*",

") )", (a=d4, d=d14))].

Now, this means that back in the ugate function, the value of map(gmac, l) has the form

[[S.., S.., S..], [S.., S.., S..]]. Thus, if we compute flip(map(gmac, l), 3), it will

turn into the form of [[S.., S..], [S.., S..], [S.., S..]]. Now we can evaluate all bindings

that appear in the ugate function, which is shown in Fig. A.6.

a d1
b d2
c d3
d [Structure("d a", ". .", (d=d13, a=d7)), Structure("d a", ".

.", (d=d14, a=d4))]
e [Structure("d a b c +", "( ( . . +", (a=d7, b=d8, c=d9,

d=d13)), Structure("d a b c +", "( ( . . +", (a=d4, b=d5, c=d6,
d=d14))]

g [Structure("a* d*", ") )", (a=d7, d=d13)), Structure("a* d*", ")
)", (a=d4, d=d14))]

f [Structure("a* d*", ") )", (a=d4, d=d14)), Structure("a* d*", ")
)", (a=d7, d=d13))]

Figure A.6: The values of bindings in the where clause of ugate

Now, note that there are tilde (∼) signs in the definition of the two Structure objects that

appear in ugate. When a domain in a Structure definition has a tilde, that domain should have

a list of Structure objects as its value like d, e, and f in this case. When this happens, BioCRN

concatenates the structural specification given in that list and puts the resulting structure in the

place of that domain. For example, the two Structure objects being specified in the ugate function

now have the following structure (Fig. A.7).

Now, back in the unimolecular function, these two Structure objects computed in ugate are

put into the variables g and t respectively. Then, the return value of unimolecular is simply

infty(g) + infty(t), which is a Solution object that contains the two species described by g

and t.

We are finally back in the main function, but in order to compute the final return value, we need

to repeat the same procedure as above for the second reaction in crn. We will omit that second round

here because it would be too tedious and laborious to follow it step by step. However, it is clear

that the second round will also return a Solution object and thus the value of map(unimolecular,

unirxn(crn)) would be a list of Solution objects. Finally applying sum on that list, we will obtain

a Solution object that contains every molecule that appears at least once in any Solution object

in that list. The return value of main will be, as promised, a Solution object that contains all
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Figure A.7: Gi (above) and Ti (below) molecules from the ugate function. Figure generated using
Visual DSD.

auxiliary molecules needed to implement the reactions in the given CRN. The molecules contained

in this Solution object, along with the formal species structures that were produced using the

formal function, will constitute the final output of the compiler.

Note that this example does not reveal how the above translation scheme will deal with a bi-

molecular reaction. However, that should be fairly easy to figure out for those that have followed

the discussion above, and we leave it as an exercise for the reader.
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Appendix B

Input Data Used for Test Runs

B.1 Translation Schemes

1 #

2 # David So love i ch ik ’ s t r a n s l a t i o n scheme from ”DNA as a u n i v e r s a l s ub s t r a t e

3 # f o r chemica l k i n e t i c s ” , Proceed ings o f the Nat iona l Academy o f Sc i ences ,

4 # 107 : 5393−5398 , 2010 .

5 #

6 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

7 #

8

9 c l a s s formal ( s ) = ”? a b c”

10 | ”? . . . ”

11 where {

12 a = shor t ( ) ;

13 b = long ( ) ;

14 c = shor t ( ) } ;

15

16 c l a s s ugate ( s , l )

17 = [ ” b c d + c∗ b∗ a∗” # G i

18 | ”( ( ˜ + ) ) . ” ,

19 ”e + f c∗” # T i

20 | ”˜ + ˜ . ” ]

21 where {

22 a = s . a ;

23 b = s . b ;

24 c = s . c ;

25 [ d , e , g ] = f l i p (map(gmac , l ) , 3) ;

26 f = r e v e r s e ( g ) } ;

27

28 macro gmac( s )

29 = [ ” d a”

30 | ” . . ” ,
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31 ”d a b c +”

32 | ”( ( . . +”,

33 ”a∗ d∗”

34 | ”) ) ” ]

35 where {

36 d = long ( ) ;

37 a = s . a ;

38 b = s . b ;

39 c = s . c } ;

40

41 module un imolecu lar ( r ) = i n f t y ( g ) + i n f t y ( t )

42 where

43 [ g , t ] = ugate ( r . r e a c t a n t s [ 0 ] , r . products ) ;

44

45 c l a s s bgate ( s1 , s2 , l )

46 = [ ” b c d + e f g + f ∗ e∗ d∗ c∗ b∗ a∗” # L i

47 | ”( ( ( + ( ( ˜ + ) ) ) ) ) . ” ,

48 ”h + i f ∗” # T i

49 | ”˜ + ˜ . ” ,

50 ”b c d” # B i

51 | ” . . . ” ]

52 where {

53 a = s1 . a ;

54 b = s1 . b ;

55 c = s1 . c ;

56 d = s2 . a ;

57 e = s2 . b ;

58 f = s2 . c ;

59 [ g , h , j ] = f l i p (map(gmac , l ) , 3) ;

60 i = r e v e r s e ( j ) } ;

61

62 module b imo lecu la r ( r ) = i n f t y ( l ) + i n f t y ( t ) + i n f t y (b)

63 where

64 [ l , t , b ] = bgate ( r . r e a c t a n t s [ 0 ] , r . r e a c t a n t s [ 1 ] , r . products ) ;

65

66 module main ( crn ) = sum(map( unimolecular , unirxn ( crn ) ) ) +

67 sum(map( bimolecu lar , b i rxn ( crn ) ) )

68 where

69 crn = i r r e v r e a c t i o n s ( crn )

Listing B.1: soloveichik.ts ↑

1 #

2 # Lulu Qian ’ s t r a n s l a t i o n scheme from ” E f f i c i e n t Turing−u n i v e r s a l

3 # computation with DNA polymers ” , Lecture Notes in Computer Sc ience ,

4 # 6518 : 123−140 , 2011 .
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5 #

6 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

7 #

8

9 g l o b a l toeho ld = shor t ( ) ;

10

11 c l a s s formal ( s ) = ” h i s t th recog ”

12 | ” . . . ”

13 where {

14 h i s t = long ( ) ;

15 th = toeho ld ;

16 recog = long ( ) } ;

17

18 macro reac tant ( s )

19 = [ ” a b +” | ”( ( +”,

20 ”b∗ a∗” | ”) ) ” ,

21 ”a b” | ” . . ” ]

22 where {

23 a = s . recog ;

24 b = s . th } ;

25

26 macro product ( s )

27 = [ ” a b c +” | ”( ( . +”,

28 ”b∗ a∗” | ”) ) ” ]

29 where {

30 a = s . h i s t ;

31 b = s . th ;

32 c = s . recog } ;

33

34 c l a s s maingate ( r , p )

35 = [ [ ” a b f + f ∗ c d e∗”

36 | ”˜ ˜ ( + ) ˜ ˜ . ” ,

37 ”e f ”

38 | ” . . ” ] , ext ra ]

39 where {

40 [ a , temp , ext ra ] = f l i p (map( reactant , r ) , 3) ;

41 d = r e v e r s e ( temp ) ;

42 [ b , temp2 ] = f l i p (map( product , p ) , 2) ;

43 c = r e v e r s e ( temp2 ) ;

44 e = toeho ld ;

45 f = long ( ) } ;

46

47 c l a s s suppgate ( s )

48 = ”a b” | ” . . ”

49 where {
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50 a = s . th ;

51 b = s . h i s t } ;

52

53 module rxn ( r ) = i n f t y ( g ) + i n f t y (h) + sum(map( in f ty , map( suppgate , r . products ) ) ) +

sum(map( in f ty , ga te s ) )

54 where

55 [ [ g , h ] , ga te s ] = maingate ( r . r eac tant s , r . products ) ;

56

57 module main ( crn ) = sum(map( rxn , i r r e v r e a c t i o n s ( crn ) ) )

Listing B.2: qian.ts ↑

1 #

2 # Lulu Qian ’ s t r a n s l a t i o n scheme from ” E f f i c i e n t Turing−u n i v e r s a l

3 # computation with DNA polymers ” , Lecture Notes in Computer Sc ience ,

4 # 6518 : 123−140 , 2011 .

5 #

6 # Note : t h i s was a scheme that the authors o f the above paper d i s cove r ed

7 # whi le they were working on that paper , but i t was l a t e r shown to

8 # have a bug and was not inc luded in the publ i shed ve r s i on o f the

9 # paper . I t was reproduced here f o r demonstrat ive purposes .

10 #

11 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

12 #

13

14 g l o b a l toeho ld = shor t ( ) ;

15

16 c l a s s formal ( s ) = ” h i s t th recog ”

17 | ” . . . ”

18 where {

19 h i s t = long ( ) ;

20 th = toeho ld ;

21 recog = long ( ) } ;

22

23 macro reac tant ( s )

24 = [ ” a b +” | ”( ( +”,

25 ”b∗ a∗” | ”) ) ” ,

26 ”a b” | ” . . ” ]

27 where {

28 a = s . recog ;

29 b = s . th } ;

30

31 macro product ( s )

32 = [ ” a b c +” | ”( ( . +”,

33 ”b∗ a∗” | ”) ) ” ]

34 where {
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35 a = s . h i s t ;

36 b = s . th ;

37 c = s . recog } ;

38

39 c l a s s maingate ( r , p )

40 = [ [ ” a b + c d e∗”

41 | ”˜ ˜ + ˜ ˜ . ” ] , ext ra ]

42 where {

43 [ a , temp , ext ra ] = f l i p (map( reactant , r ) , 3) ;

44 d = r e v e r s e ( temp ) ;

45 [ b , temp2 ] = f l i p (map( product , p ) , 2) ;

46 c = r e v e r s e ( temp2 ) ;

47 e = toeho ld ;

48 f = long ( ) } ;

49

50 c l a s s suppgate ( s )

51 = ”a b” | ” . . ”

52 where {

53 a = s . th ;

54 b = s . h i s t } ;

55

56 module rxn ( r ) = i n f t y ( g ) + sum(map( in f ty , map( suppgate , r e v e r s e ( t a i l ( r e v e r s e (p) ) ) ) ) )

+ i n f t y (” t b t ” | ” . . . ” ) + sum(map( in f ty , ga te s ) )

57 where {

58 p = i f l en ( r . products ) == 0 then [ formal (0 ) ] e l s e r . products ;

59 [ [ g ] , ga te s ] = maingate ( r . r eac tant s , p ) ;

60 t = toeho ld ;

61 b = (p [ l en (p) − 1 ] ) . h i s t } ;

62

63 module main ( crn ) = sum(map( rxn , i r r e v r e a c t i o n s ( crn ) ) )

Listing B.3: qian bug.ts ↑

1 #

2 # Luca Carde l l i ’ s t r a n s l a t i o n scheme from ” Strand Algebras f o r DNA

3 # Computing ” , Natural Computing , 10 : 407−428 , 2011 . Can be found at

4 # http :// l u c a c a r d e l l i . name/

5 #

6 # Note : t h i s implements the ‘ fork ’ and ‘ jo in ’ ga te s from the paper ,

7 # which are pointed out to be problemat ic in the paper . This

8 # implements the schemes shown in Figs 4−7.

9 #

10 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

11 #

12

13 c l a s s formal ( s ) = ”? t b”
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14 | ”? . . ”

15 where {

16 t = shor t ( ) ;

17 b = long ( ) } ;

18

19 c l a s s s i g n a l ( ) = ”? t b”

20 | ”? . . ”

21 where {

22 t = shor t ( ) ;

23 b = long ( ) } ;

24

25 c l a s s f o rkga t e (x , y , z )

26 = [ ”xb yt yb + a zt zb + zt ∗ a∗ yt∗ xb∗ xt ∗”

27 | ” ( ( . + ( ( . + ) ) ) ) . ” ,

28 ” yt a zt ”

29 | ” . . . ” ]

30 where {

31 xt = x . t ;

32 xb = x . b ;

33 yt = y . t ;

34 yb = y . b ;

35 zt = z . t ;

36 zb = z . b ;

37 a = long ( ) } ;

38

39 module fo rk2 (x , y , z ) = i n f t y ( gb ) + i n f t y ( gt )

40 where

41 [ gb , gt ] = fo rkga t e (x , y , z ) ;

42

43 c l a s s j o i n g a t e (x , y , z )

44 = [ ”xb yt + yb a + b zt zb + zt ∗ b∗ a∗ yb∗ yt∗ xb∗ xt ∗”

45 | ”( ( + ( ( + ( ( . + ) ) ) ) ) ) . ” ,

46 ”a b zt ”

47 | ” . . . ” ,

48 ”xb yt ”

49 | ” . . ” ,

50 ”yb a”

51 | ” . . ” ]

52 where {

53 xt = x . t ;

54 xb = x . b ;

55 yt = y . t ;

56 yb = y . b ;

57 zt = z . t ;

58 zb = z . b ;
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59 a = shor t ( ) ;

60 b = long ( ) } ;

61

62 module j o i n 2 (x , y , z ) = i n f t y ( gb ) + i n f t y ( gt ) + i n f t y ( r1 ) + i n f t y ( r2 )

63 where

64 [ gb , gt , r1 , r2 ] = j o i n g a t e (x , y , z ) ;

65

66 c l a s s t r ansga t e (x , y )

67 = [ ”xb yt yb + a + a∗ yt∗ xb∗ xt ∗”

68 | ” ( ( . + ( + ) ) ) . ” ,

69 ” yt a”

70 | ” . . ” ]

71 where {

72 xt = x . t ;

73 xb = x . b ;

74 yt = y . t ;

75 yb = y . b ;

76 a = long ( ) } ;

77

78 module t ransducer (x , y ) = i n f t y ( gb ) + i n f t y ( gt )

79 where

80 [ gb , gt ] = t ransga t e (x , y ) ;

81

82 c l a s s anhlgate ( x )

83 = ”xb + xb∗ xt ∗”

84 | ” ( + ) . ”

85 where {

86 xt = x . t ;

87 xb = x . b } ;

88

89 module a n n i h i l a t o r ( x ) = i n f t y ( g )

90 where

91 g = anhlgate ( x ) ;

92

93 module f o rk ( r , p ) =

94 i f l en (p) == 2 then

95 f o rk2 ( r , p [ 0 ] , p [ 1 ] )

96 e l s e

97 f o rk2 ( i , p [ 0 ] , p [ 1 ] ) + j o i n 2 (p [ 0 ] , p [ 1 ] , i ) +

98 f o rk ( r , t a i l ( t a i l (p ) ) + [ i ] )

99 where

100 i = s i g n a l ( ) ;

101

102 module j o i n ( r , p ) =

103 i f l en ( r ) == 2 then
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104 j o i n 2 ( r [ 0 ] , r [ 1 ] , p )

105 e l s e

106 f o rk2 ( i , r [ 0 ] , r [ 1 ] ) + j o i n 2 ( r [ 0 ] , r [ 1 ] , i ) +

107 j o i n ( t a i l ( t a i l ( r ) ) + [ i ] , p )

108 where

109 i = s i g n a l ( ) ;

110

111 module j o i n f o r k ( r , p ) =

112 i f l en (p) == 0 then

113 i f l en ( r ) == 1 then

114 a n n i h i l a t o r ( r [ 0 ] )

115 e l s e

116 f o rk ( r , i ) + a n n i h i l a t o r ( i )

117 where

118 i = s i g n a l ( )

119 e l s e i f l en ( r ) == 1 and l en (p) == 1 then

120 t ransducer ( r [ 0 ] , p [ 0 ] )

121 e l s e i f l en ( r ) == 1 then

122 f o rk ( r [ 0 ] , p )

123 e l s e i f l en (p) == 1 then

124 j o i n ( r , p [ 0 ] )

125 e l s e

126 j o i n ( r , i ) + fo rk ( i , p )

127 where

128 i = s i g n a l ( ) ;

129

130 module r e a c t i o n ( r ) = j o i n f o r k ( r . r eac tants , r . products ) ;

131

132 module main ( crn ) = sum(map( reac t i on , crn ) )

Listing B.4: cardelli fj.ts ↑

1 #

2 # Luca Carde l l i ’ s t r a n s l a t i o n scheme from ” Strand Algebras f o r DNA

3 # Computing ” , Natural Computing , 10 : 407−428 , 2011 . Can be found at

4 # http :// l u c a c a r d e l l i . name/

5 #

6 # Note : t h i s implements the scheme shown in Fig 9 . Note that the gate

7 # s p e c i e s at the bottom seems l i k e one molecule , but i t i s in

8 # f a c t two molecu le s because o f an arrowhead sepa ra t ing them .

9 #

10 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

11 #

12

13 c l a s s formal ( s ) = ”? t b”

14 | ”? . . ”
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15 where {

16 t = shor t ( ) ;

17 b = long ( ) } ;

18

19 c l a s s s i g n a l ( ) = ”? t b”

20 | ”? . . ”

21 where {

22 t = shor t ( ) ;

23 b = long ( ) } ;

24

25 macro input ( s )

26 = [ ” xt + xb”

27 | ”( + (” ,

28 ”xb∗ xt ∗”

29 | ”) ) ” ]

30 where {

31 xt = s . t ;

32 xb = s . b } ;

33

34 macro output ( s )

35 = [ ” yh yt yb +”

36 | ”( ( . +”,

37 ” yt∗ yh∗”

38 | ”) ) ” ,

39 ”yh yt ”

40 | ” . . ” ]

41 where {

42 yh = long ( ) ;

43 yt = s . t ;

44 yb = s . b } ;

45

46 macro gc ( s )

47 = [ ” xt cb + ct xb +”

48 | ” ( ( + ( ( +”,

49 ”xb∗ ct ∗ cb∗ xt ∗”

50 | ” ) ) ) ) ” ,

51 ”cb ct ”

52 | ” . . ” ,

53 ”cb + cb∗ xt ∗”

54 | ”( + ) . ” ,

55 ”xb + xb∗ ct ∗”

56 | ”( + ) . ” ]

57 where {

58 xt = s . t ;

59 xb = s . b ;
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60 cb = long ( ) ;

61 ct = shor t ( ) } ;

62

63 c l a s s nmgate ( r , p )

64 = [ ”x1b in1 t + out1 out2 t ∗ in2 x1b∗ x1t ∗”

65 | ” ( ˜ ( + ˜ ˜ ) ˜ ) . ” ,

66 ” t out3 ”

67 | ” . ˜” ,

68 ”x1b + gc1 t ∗ gc2 x1b∗”

69 | ” ( + ˜ . ˜ ) ” ,

70 small ,

71 big1 ,

72 big2 ]

73 where {

74 x1b = ( r [ 0 ] ) . b ;

75 x1t = ( r [ 0 ] ) . t ;

76 t = shor t ( ) ;

77 [ in1 , i n2 r ] = f l i p (map( input , t a i l ( r ) ) , 2) ;

78 [ out1 , out2r , out3 ] = f l i p (map( output , p ) , 3) ;

79 in2 = r e v e r s e ( i n2 r ) ;

80 out2 = r e v e r s e ( out2r ) ;

81 [ gc1 , gc2r , small , big1 , b ig2 ] = f l i p (map( gc , t a i l ( r ) ) , 5) ;

82 gc2 = r e v e r s e ( gc2r ) } ;

83

84 module nmmodule ( r , p ) = i n f t y ( gb ) + i n f t y ( gt ) + i n f t y ( gc1 ) + sum(map( in f ty , gc2 ) ) +

sum(map( in f ty , gc3 ) ) + sum(map( in f ty , gc4 ) )

85 where

86 [ gb , gt , gc1 , gc2 , gc3 , gc4 ] = nmgate ( r , p ) ;

87

88 module r e a c t i o n ( r ) =

89 i f l en ( r . products ) == 0 then

90 nmmodule ( r . r eac tant s , [ i ] )

91 where

92 i = s i g n a l ( )

93 e l s e

94 nmmodule ( r . r eac tant s , r . products ) ;

95

96 module main ( crn ) = sum(map( reac t i on , i r r e v r e a c t i o n s ( crn ) ) )

Listing B.5: cardelli c.ts ↑

1 #

2 # Luca Carde l l i ’ s t r a n s l a t i o n scheme from ”Two−Domain DNA Strand

3 # Displacement ” , Mathematical S t ruc tu r e s in Computer Sc i ence .

4 # Can be found at http :// l u c a c a r d e l l i . name/

5 #
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6 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

7 #

8

9 g l o b a l toeho ld = shor t ( ) ;

10

11 c l a s s formal ( s ) = ” t x”

12 | ” . . ”

13 where {

14 t = toeho ld ;

15 x = long ( ) } ;

16

17 c l a s s s i g n a l ( ) = ” t x”

18 | ” . . ”

19 where {

20 t = toeho ld ;

21 x = long ( ) } ;

22

23 macro output ( s )

24 = [ ” t x +”

25 | ”( ( +”,

26 ”x∗ t ∗”

27 | ”) ) ” ,

28 ”x t ”

29 | ” . . ” ]

30 where {

31 t = toeho ld ;

32 x = s . x } ;

33

34 c l a s s outgate ( r , p , a )

35 = [ ”x + out1 t a + t ∗ a∗ t ∗ out2 x∗”

36 | ”( + ˜ ( ( + . ) ) ˜ ) ” ] + l

37 where {

38 x = ( r [ 0 ] ) . x ;

39 [ out1 , out2r , l ] = f l i p (map( output , p ) , 3) ;

40 out2 = r e v e r s e ( out2r ) ;

41 t = toeho ld } ;

42

43 c l a s s oneinput ( r , p )

44 = [ ”x t + a t + a + a∗ t ∗ a∗ t ∗ x∗ t ∗”

45 | ”( ( + ( ( + ( + ) ) ) ) ) . ” ,

46 ” t a”

47 | ” . . ” ] + outgate ( r , p , a )

48 where {

49 a = long ( ) ;

50 x = ( r [ 0 ] ) . x ;
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51 t = toeho ld } ;

52

53 c l a s s twoinput ( r , p )

54 = [ ”x t + y t + a t + a + a∗ t ∗ a∗ t ∗ y∗ t ∗ x∗ t ∗”

55 | ”( ( + ( ( + ( ( + ( + ) ) ) ) ) ) ) . ” ,

56 ” t a”

57 | ” . . ” ,

58 ”b y + t ∗ y∗ b∗ t ∗”

59 | ”( ( + . ) ) . ” ] + outgate ( r , [ bs ] + p , a )

60 where {

61 x = ( r [ 0 ] ) . x ;

62 y = ( r [ 1 ] ) . x ;

63 t = toeho ld ;

64 a = long ( ) ;

65 bs = s i g n a l ( ) ;

66 b = bs . x } ;

67

68 module r e a c t i o n ( r ) =

69 i f l en ( r . r e a c t a n t s ) == 1 then

70 sum(map( in f ty , oneinput ( r . r eac tant s , r . products ) ) )

71 e l s e

72 sum(map( in f ty , twoinput ( r . r eac tants , r . products ) ) ) ;

73

74 module main ( crn ) = sum(map( reac t i on , crn ) )

Listing B.6: cardelli 2d.ts ↑

1 #

2 # Luca Carde l l i ’ s t r a n s l a t i o n scheme from ” Strand Algebras f o r DNA

3 # Computing ” , Natural Computing , 10 : 407−428 , 2011 . Can be found at

4 # http :// l u c a c a r d e l l i . name/

5 #

6 # Note : t h i s implements the scheme shown in Fig 9 , without the garbage

7 # c o l l e c t i o n module . Note that the gate s p e c i e s at the bottom

8 # seems l i k e one molecule , but i t i s in f a c t two molecu le s

9 # because o f an arrowhead s epa ra t ing them .

10 #

11 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

12 #

13

14 c l a s s formal ( s ) = ”? t b”

15 | ”? . . ”

16 where {

17 t = shor t ( ) ;

18 b = long ( ) } ;

19
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20 c l a s s s i g n a l ( ) = ”? t b”

21 | ”? . . ”

22 where {

23 t = shor t ( ) ;

24 b = long ( ) } ;

25

26 macro input ( s )

27 = [ ” xt + xb”

28 | ”( + (” ,

29 ”xb∗ xt ∗”

30 | ”) ) ” ]

31 where {

32 xt = s . t ;

33 xb = s . b } ;

34

35 macro output ( s )

36 = [ ” yh yt yb +”

37 | ”( ( . +”,

38 ” yt∗ yh∗”

39 | ”) ) ” ,

40 ”yh yt ”

41 | ” . . ” ]

42 where {

43 yh = long ( ) ;

44 yt = s . t ;

45 yb = s . b } ;

46

47 c l a s s he lpe r ( r ) =

48 i f l en ( r ) < 2 then

49 [ ]

50 e l s e

51 [ ” b t ” | ” . . ” ] + he lpe r ( t a i l ( r ) )

52 where {

53 b = ( r [ 0 ] ) . b ;

54 t = ( r [ 1 ] ) . t } ;

55

56 c l a s s nmgate ( r , p )

57 = [ ”x1b in1 t + out1 out2 t ∗ in2 x1b∗ x1t ∗”

58 | ” ( ˜ ( + ˜ ˜ ) ˜ ) . ” ,

59 ” t out3 ”

60 | ” . ˜” ,

61 ” l t ”

62 | ” . . ” ] + i n f

63 where {

64 x1b = ( r [ 0 ] ) . b ;
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65 x1t = ( r [ 0 ] ) . t ;

66 t = shor t ( ) ;

67 [ in1 , i n2 r ] = f l i p (map( input , t a i l ( r ) ) , 2) ;

68 i n f = he lpe r ( r ) ;

69 l = ( ( r e v e r s e ( r ) ) [ 0 ] ) . b ;

70 [ out1 , out2r , out3 ] = f l i p (map( output , p ) , 3) ;

71 in2 = r e v e r s e ( i n2 r ) ;

72 out2 = r e v e r s e ( out2r ) } ;

73

74 module nmmodule ( r , p ) = sum(map( in f ty , sp ) )

75 where

76 sp = nmgate ( r , p ) ;

77

78 module r e a c t i o n ( r ) =

79 i f l en ( r . products ) == 0 then

80 nmmodule ( r . r eac tant s , [ i ] )

81 where

82 i = s i g n a l ( )

83 e l s e

84 nmmodule ( r . r eac tant s , r . products ) ;

85

86 module main ( crn ) = sum(map( reac t i on , crn ) )

Listing B.7: cardelli c nogc.ts ↑

1 #

2 # Luca Carde l l i ’ s t r a n s l a t i o n scheme from ”Two−Domain DNA Strand

3 # Displacement ” , Mathematical S t ruc tu r e s in Computer Sc i ence .

4 # Can be found at http :// l u c a c a r d e l l i . name/

5 #

6 # NOTE : The garbage c o l l e c t i o n module was omitted in t h i s implementation .

7 #

8 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

9 #

10

11 g l o b a l toeho ld = shor t ( ) ;

12

13 c l a s s formal ( s ) = ” t x”

14 | ” . . ”

15 where {

16 t = toeho ld ;

17 x = long ( ) } ;

18

19 c l a s s s i g n a l ( ) = ” t x”

20 | ” . . ”

21 where {
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22 t = toeho ld ;

23 x = long ( ) } ;

24

25 macro output ( s )

26 = [ ” t x +”

27 | ”( ( +”,

28 ”x∗ t ∗”

29 | ”) ) ” ,

30 ”x t ”

31 | ” . . ” ]

32 where {

33 t = toeho ld ;

34 x = s . x } ;

35

36 c l a s s outgate ( r , p , a )

37 = [ ”x + out1 t a + t ∗ a∗ t ∗ out2 x∗”

38 | ”( + ˜ ( ( + . ) ) ˜ ) ” ] + l

39 where {

40 x = ( r [ 0 ] ) . x ;

41 [ out1 , out2r , l ] = f l i p (map( output , p ) , 3) ;

42 out2 = r e v e r s e ( out2r ) ;

43 t = toeho ld } ;

44

45 c l a s s oneinput ( r , p )

46 = [ ”x t + a t + a + a∗ t ∗ a∗ t ∗ x∗ t ∗”

47 | ”( ( + ( ( + ( + ) ) ) ) ) . ” ,

48 ”x t ”

49 | ” . . ” ,

50 ” t a”

51 | ” . . ” ] + outgate ( r , p , a )

52 where {

53 a = long ( ) ;

54 x = ( r [ 0 ] ) . x ;

55 t = toeho ld } ;

56

57 c l a s s twoinput ( r , p )

58 = [ ”x t + y t + a t + a + a∗ t ∗ a∗ t ∗ y∗ t ∗ x∗ t ∗”

59 | ”( ( + ( ( + ( ( + ( + ) ) ) ) ) ) ) . ” ,

60 ” t a”

61 | ” . . ” ,

62 ”x t ”

63 | ” . . ” ,

64 ”y t ”

65 | ” . . ” ] + outgate ( r , p , a )

66 where {
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67 x = ( r [ 0 ] ) . x ;

68 y = ( r [ 1 ] ) . x ;

69 t = toeho ld ;

70 a = long ( ) } ;

71

72 module r e a c t i o n ( r ) =

73 i f l en ( r . r e a c t a n t s ) == 1 then

74 sum(map( in f ty , oneinput ( r . r eac tant s , r . products ) ) )

75 e l s e

76 sum(map( in f ty , twoinput ( r . r eac tant s , r . products ) ) ) ;

77

78 module main ( crn ) = sum(map( reac t i on , crn ) )

Listing B.8: cardelli 2d nogc.ts ↑

1 #

2 # Lulu Qian ’ s t r a n s l a t i o n scheme from ” E f f i c i e n t Turing−u n i v e r s a l

3 # computation with DNA polymers ” , Lecture Notes in Computer Sc ience ,

4 # 6518 : 123−140 , 2011 .

5 #

6 # NOTE : This i s the c o r r e c t e d v e r s i o n o f the scheme in the above paper

7 # which was provided to us by the authors o f that paper .

8 #

9 # Coded by Seung Woo Shin ( lagnared@gmail . com) .

10 #

11

12 g l o b a l toeho ld = shor t ( ) ;

13

14 c l a s s formal ( s ) = ” h i s t th recog ”

15 | ” . . . ”

16 where {

17 h i s t = long ( ) ;

18 th = toeho ld ;

19 recog = long ( ) } ;

20

21 macro reac tant ( s )

22 = [ ” a b +” | ”( ( +”,

23 ”b∗ a∗” | ”) ) ” ,

24 ”a b” | ” . . ” ]

25 where {

26 a = s . recog ;

27 b = s . th } ;

28

29 macro product ( s )

30 = [ ” a b c +” | ”( ( . +”,

31 ”b∗ a∗” | ”) ) ” ]
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32 where {

33 a = s . h i s t ;

34 b = s . th ;

35 c = s . recog } ;

36

37 c l a s s maingate ( r , p )

38 = [ [ ” a f + g e + b + f + f ∗ c e∗ g∗ f ∗ d e∗”

39 | ”˜ ( + ( ( + ˜ + ( + ) ˜ ) ) ) ˜ . ” ,

40 ”e f g”

41 | ” . . . ” ] , ext ra ]

42 where {

43 [ a , temp , ext ra ] = f l i p (map( reactant , r ) , 3) ;

44 d = r e v e r s e ( temp ) ;

45 [ b , temp2 ] = f l i p (map( product , p ) , 2) ;

46 c = r e v e r s e ( temp2 ) ;

47 e = toeho ld ;

48 f = long ( ) ;

49 g = long ( ) } ;

50

51 c l a s s suppgate ( s )

52 = ”a b” | ” . . ”

53 where {

54 a = s . th ;

55 b = s . h i s t } ;

56

57 module rxn ( r ) = i n f t y ( g ) + i n f t y (h) + sum(map( in f ty , map( suppgate , r . products ) ) ) +

sum(map( in f ty , ga te s ) )

58 where

59 [ [ g , h ] , ga te s ] = maingate ( r . r eac tant s , r . products ) ;

60

61 module main ( crn ) = sum(map( rxn , crn ) )

Listing B.9: qian fixed.ts ↑

B.2 CRNs

1 A −> B

2 B + B −> A

3 B −>

Listing B.10: crn1.crn ↑

1 X3 + X4 −> X5

2 X5 −> X1
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3 X1 + X2 −> X3

Listing B.11: crn2.crn ↑

1 X3 + X4 −> X5

2 X5 −> X1

3 X1 + X2 −> X3

4 X2 + X6 −> X7

5 X1 + X5 −> X9

6 X3 + X7 −> X9 + X10 + X2 + X4

7 X1 −> X2 + X2

Listing B.12: crn3.crn ↑

1 A + B −> B + B

2 B + C −> C + C

3 C + A −> A + A

Listing B.13: crn4.crn ↑


