

Chemical Kinetics

Thermodynamics - does a reaction take place?
Kinetics - how fast does a reaction proceed?
Reaction rate is the change in the concentration of a reactant or a product with time (M / s).

$$
A \longrightarrow B
$$

$$
\begin{aligned}
\text { rate }=-\frac{D[A]}{D t} & D[A]=\begin{array}{l}
\text { change in concentration of } A \text { over } \\
\text { time period } D t
\end{array} \\
\text { rate }=\frac{D[B]}{D t} & D[B]=\begin{array}{c}
\text { change in concentration of } B \text { over } \\
\text { time period } D t
\end{array}
\end{aligned}
$$

Because $[\mathrm{A}]$ decreases with time, $\mathrm{D}[\mathrm{A}]$ is negative.

$$
\mathrm{Br}_{2}(a q)+\mathrm{HCOOH}(a q) \longrightarrow 2 \mathrm{Br}^{-}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{2}(g)
$$

average rate $=-\frac{\mathrm{D}\left[\mathrm{Br}_{2}\right]}{\mathrm{D} t}=-\frac{\left[\mathrm{Br}_{2}\right]_{\text {final }}-\left[\mathrm{Br}_{2}\right]_{\text {initial }}}{t_{\text {final }}-t_{\text {initial }}}$
instantaneous rate $=$ rate for specific instance in time

Factors that Affect Reaction Rate

1. Temperature

- Collision Theory: When two chemicals react, their molecules have to collide with each other with sufficient energy for the reaction to take place.
- Kinetic Theory: Increasing temperature means the molecules move faster.

2. Concentrations of reactants

- More reactants mean more collisions if enough energy is present

3. Catalysts

- Speed up reactions by lowering activation energy

4. Surface area of a solid reactant

- Bread and Butter theory: more area for reactants to be in contact

5. Pressure of gaseous reactants or products

- Increased number of collisions

The Rate Law

The rate law expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers.

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\text { Rate }=k[\mathrm{~A} \times \mathrm{p} \mathrm{~B}, \mathrm{D}]
\end{gathered}
$$

reaction is $\boldsymbol{x t h}$ order in A
reaction is y th order in B
reaction is $(x+y)$ th order overall

$$
\begin{aligned}
& \mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{ClO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{FClO}_{2}(\mathrm{~g}) \\
& \text { Table 13.2 Rate Data for the } \\
& \text { Reaction between } \mathrm{F}_{2} \text { and } \mathrm{ClO}_{2} \\
& \text { rate }=k\left[\mathrm{~F}_{2}\right]^{x}\left[\mathrm{ClO}_{2}\right]^{y}
\end{aligned}
$$

Double $\left[\mathrm{F}_{2}\right]$ with $\left[\mathrm{ClO}_{2}\right]$ constant
Rate doubles

$$
x=1
$$

Quadruple $\left[\mathrm{ClO}_{2}\right]$ with $\left[\mathrm{F}_{2}\right]$ constant
rate $=k\left[\mathrm{~F}_{2}\right]\left[\mathrm{ClO}_{2}\right]$
Rate quadruples

$$
y=1
$$

Run \#	Initial $[\mathrm{A}]$ $\left([\mathrm{A}]_{0}\right)$	Initial $[\mathrm{B}]$ $\left([\mathrm{B}]_{0}\right)$	Initial Rate $\left(\mathrm{v}_{0}\right)$
1	1.00 M	1.00 M	$1.25 \times 10^{-2} \mathrm{M} / \mathrm{s}$
2	1.00 M	2.00 M	$2.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
3	2.00 M	2.00 M	$2.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$

What is the order with respect to A ?
What is the order with respect to B ?
1
What is the overall order of the reaction?

$\left[\mathrm{NO}_{(\mathrm{g})}\right]\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$\left[\mathrm{Cl}_{2(\mathrm{~g})}\right]\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	Initial Rate $\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
0.250	0.250	1.43×10^{-6}
0.250	0.500	2.86×10^{-6}
0.500	0.500	1.14×10^{-5}

What is the order with respect to Cl_{2} ?
1
What is the order with respect to NO?
2
What is the overall order of the reaction?

Rate Laws

- Rate laws are always determined experimentally.
- Reaction order is always defined in terms of reactant (not product) concentrations.
- The order of a reactant is not related to the stoichiometric coefficient of the reactant in the balanced chemical equation.

$$
\begin{gathered}
\mathrm{F}_{2}(g)+2 \mathrm{ClO}_{2}(g) \longrightarrow 2 \mathrm{FClO}_{2}(g) \\
\text { rate }=k\left[\mathrm{~F}_{2}\right]\left[\mathrm{ClO}_{2} \mathrm{H}\right.
\end{gathered}
$$

Determine the rate law and calculate the rate constant for the following reaction from the following data:

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(a q)+3 \mathrm{I}^{-}(a q) \longrightarrow 2 \mathrm{SO}_{4}^{2-}(a q)+\mathrm{I}_{3}^{-}(a q)
$$

Experiment	$\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$	$[I-]$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.08	0.034	2.2×10^{-4}
2	0.08	0.017	1.1×10^{-4} rate $=k\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2}-\right]^{x}[I-]^{y}$ $y=1$ $x=1$
3	0.16	0.017	2.2×10^{-4}

Double [$[1]$, rate doubles (experiment $1 \& 2$)
Double $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$, rate doubles (experiment $2 \& 3$)

$$
k=\frac{\text { rate }}{\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[I^{-}\right]}=\frac{2.2 \times 10^{-4} \mathrm{M} / \mathrm{s}}{(0.08 \mathrm{M})(0.034 \mathrm{M})}=0.08 / \mathrm{M} \cdot \mathrm{~s}
$$

First-Order Reactions

$$
\text { rate }=-\frac{\mathrm{D}[\mathrm{~A}]}{\mathrm{D} t}
$$

rate $=k[\mathrm{~A}]$
$[A]=[A]_{0} e^{-k t}$

$$
\ln [\mathrm{A}]-\ln [\mathrm{A}]_{0}=-k t
$$

[A] is the concentration of A at any time t
$[\mathrm{A}]_{0}$ is the concentration of A at time $t=0$

Decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$

The reaction $2 A \longrightarrow B$ is first order in A with a rate constant of $2.8 \times 10^{-2} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$. How long will it take for A to decrease from 0.88 M to 0.14 M ?
$[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-k t}$

$$
\ln [\mathrm{A}]-\ln [\mathrm{A}]_{0}=-k t
$$

$$
\begin{aligned}
& {[\mathrm{A}]_{0}=0.88 \mathrm{M}} \\
& {[\mathrm{~A}]=0.14 \mathrm{M}}
\end{aligned}
$$

$$
\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]=k t
$$

$$
t=\frac{\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]}{k}=\frac{\ln \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}}{k}=\frac{\ln \frac{0.88 M T}{0.14 M T}}{2.8 \times 10^{-2} \mathrm{~s}^{-1}}=66 \mathrm{~s}
$$

First-Order Reactions

The half-life, $\boldsymbol{t}_{1 / 2}$, is the time required for the concentration of a reactant to decrease to half of its initial concentration.

$$
t_{1 / 2}=t \text { when }[\mathrm{A}]=[\mathrm{A}]_{0} / 2
$$

$$
t_{1 / 2}=\frac{\ln \frac{[A]_{0}}{[A]_{0} / 2}}{k}=\frac{\operatorname{Ln} 2}{k}=\frac{0.693}{k}
$$

What is the half-life of $\mathrm{N}_{2} \mathrm{O}_{5}$ if it decomposes with a rate constant of $5.7 \times 10^{-4} \mathrm{~s}^{-1}$?

$$
t_{1 / 2}=\frac{\operatorname{Ln} 2}{k}=\frac{0.693}{5.7 \times 10^{-4} \mathrm{~s}^{-1}}=1200 \mathrm{~s}=20 \text { minutes }
$$

How do you know decomposition is first order?

First-order reaction
$A \longrightarrow$ product

$\#$ of half-lives	
1	$\frac{[\mathrm{~A}]=[\mathrm{A}]_{0} / n}{2}$
2	4
3	8
4	16

Second-Order Reactions

$$
\text { rate }=-\frac{\mathrm{D}[\mathrm{~A}]}{\mathrm{D} t} \quad \text { rate }=k[\mathrm{~A}]^{2} \quad \begin{aligned}
& {[\mathrm{A}] \text { is the concentration of } \mathrm{A} \text { at any time } t} \\
& {[\mathrm{~A}]_{0} \text { is the concentration of } \mathrm{A} \text { at time } t=0}
\end{aligned}
$$

$$
\frac{1}{[\mathrm{~A}]}-\frac{1}{[\mathrm{~A}]_{0}}=k t
$$

Half life for second order

$$
\begin{gathered}
t_{1 / 2}=t \text { when }[\mathrm{A}]=[\mathrm{A}]_{0} / 2 \\
t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
\end{gathered}
$$

13.3

Zero-Order Reactions

$$
\begin{gathered}
\text { rate }=-\frac{\mathrm{D}[\mathrm{~A}]}{\mathrm{Dt}} \\
{[\mathrm{~A}]-[\mathrm{A}]_{0}=k t}
\end{gathered}
$$

$$
\text { rate }=k[\mathrm{~A}]^{0}=k
$$

[A] is the concentration of A at any time t $[\mathrm{A}]_{0}$ is the concentration of A at time $t=0$

Half life for zero order

$$
t_{1 / 2}=t \text { when }[\mathrm{A}]=[\mathrm{A}]_{0} / 2
$$

$$
t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}
$$

Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions

Concentration-Time

Order Rate Law
Equation Half-Life

$$
\begin{array}{llll}
0 & \text { rate }=k & {[\mathrm{~A}]-[\mathrm{A}]_{0}=-k t} & t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k} \\
1 & \text { rate }=k[\mathrm{~A}] & \ln [\mathrm{A}]-\ln [\mathrm{A}]_{0}=-k t & t_{1 / 2}=\frac{\operatorname{Ln} 2}{k} \\
2 & \text { rate }=k[\mathrm{~A}]^{2} & \frac{1}{[\mathrm{~A}]}-\frac{1}{[\mathrm{~A}]_{0}}=k t & t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
\end{array}
$$

$$
A+B \longrightarrow C+D
$$

Exothermic Reaction

Reaction progress

Endothermic Reaction

Reaction progress

The activation energy (E_{a}) is the minimum amount of energy required to initiate a chemical reaction.

Temperature Dependence of the Rate Constant

Temperature

$$
\begin{aligned}
& k=A \cdot \exp \left(-E_{d} / R T\right) \\
& \text { (Arrhenius equation) }
\end{aligned}
$$

E_{a} is the activation energy ($\mathrm{J} / \mathrm{mol}$)
R is the gas constant ($8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$)
T is the absolute temperature
A is the frequency factor

$$
\operatorname{Ln} k=\frac{-E_{a}}{R} \frac{1}{T}+\ln A
$$

Reaction Mechanisms

The overall progress of a chemical reaction can be represented at the molecular level by a series of simple elementary steps or elementary reactions.

The sequence of elementary steps that leads to product formation is the reaction mechanism.

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$\mathrm{N}_{2} \mathrm{O}_{2}$ is detected during the reaction!
Elementary step: $\quad \mathrm{NO}+\mathrm{NO} \longrightarrow \mathrm{N}_{2} \sigma_{2}$

+ Elementary step: $\quad \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$

Reaction Intermediates

Intermediates are species that appear in a reaction mechanism but not in the overall balanced equation.

An intermediate is always formed in an early elementary step and consumed in a later elementary step.

Rate Laws and Rate Determining Steps

Writing plausible reaction mechanisms:

- The sum of the elementary steps must give the overall balanced equation for the reaction.
- The rate-determining step should predict the same rate law that is determined experimentally.

The rate-determining step is the slowest step in the sequence of steps leading to product formation.

Rate Laws and Elementary Steps

Unimolecular reaction $A \longrightarrow$ products \quad rate $=k[A]$
Bimolecular reaction $\mathrm{A}+\mathrm{B} \longrightarrow$ products rate $=k[\mathrm{~A}][\mathrm{B}]$
Bimolecular reaction $\mathrm{A}+\mathrm{A} \longrightarrow$ products rate $=k[\mathrm{~A}]^{2}$

A catalyst is a substance that increases the rate of a chemical reaction without itself being consumed.

$$
E_{a} \downarrow k \uparrow
$$

Energy Diagrams

Exothermic

Endothermic
(a) Activation energy (Ea) for the forward reaction
(b) Activation energy (Ea) for the reverse reaction
(c) Delta H

$50 \mathrm{~kJ} / \mathrm{mol}$	$300 \mathrm{~kJ} / \mathrm{mol}$
$150 \mathrm{~kJ} / \mathrm{mol}$	$100 \mathrm{~kJ} / \mathrm{mol}$
$-100 \mathrm{~kJ} / \mathrm{mol}$	$+200 \mathrm{~kJ} / \mathrm{mol}$

The experimental rate law for the reaction between NO_{2} and CO to produce NO and CO_{2} is rate $=k\left[\mathrm{NO}_{2}\right]^{2}$. The reaction is believed to occur via two steps:

What is the equation for the overall reaction?

$$
\mathrm{NO}_{2}+\mathrm{CO} \longrightarrow \mathrm{NO}+\mathrm{CO}_{2}
$$

What is the intermediate? Catalyst?

$$
\mathrm{NO}_{3} \quad \mathrm{NO}_{2}
$$

What can you say about the relative rates of steps 1 and 2 ?
rate $=k\left[\mathrm{NO}_{2}\right]^{2}$ is the rate law for step 1 so step 1 must be slower than step 2

Proposed Mechanism:

$$
\begin{aligned}
& \text { (1) } \mathrm{HBr}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{k_{1}>} \mathrm{HOOBr}(\mathrm{~g}) \\
& \text { (2) } \mathrm{HOOBr}(\mathrm{~g})+\mathrm{HBr}(\mathrm{~g}) \xrightarrow[2]{k_{2}>} 2 \mathrm{HOBr}(\mathrm{~g}) \\
& \text { (Slow) } \\
& \text { (Fast) } \\
& \text { (3) } \mathrm{HOBr}(\mathrm{~g})+\mathrm{HBr}(\mathrm{~g}) \xrightarrow[3]{ }>\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \text { (Fast) } \\
& \text { (4) } \mathrm{HOBr}(\mathrm{~g})+\mathrm{HBr}(\mathrm{~g}) \xrightarrow[4]{k_{4}>} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \\
& \text { (Fast) }
\end{aligned}
$$

Write the rate law for this reaction.
List all intermediates in this reaction.
List all catalysts in this reaction.

Rate $=\mathrm{k}[\mathrm{HBr}]\left[\mathrm{O}_{2}\right]$
HOOBr, HOBr
None

Ostwald Process

$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { Pt catalyst }} 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)
$$

$2 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{HNO}_{2}(a q)+\mathrm{HNO}_{3}(a q)$

Pt-Rh catalysts used in Ostwald process

Hot Pt wire over NH_{3} solution 13.6

Catalytic Converters

Air compressor: source of secondary air

$\mathrm{CO}+$ Unburned Hydrocarbons $+\mathrm{O}_{2} \xrightarrow[\text { converter }]{\text { catalytic }} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
2 \mathrm{NO}+2 \mathrm{NO}_{2} \xrightarrow[\text { converter }]{\text { catalytic }} 2 \mathrm{~N}_{2}+3 \mathrm{O}_{2}
$$

Enzyme Catalysis

