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Abstract

We describe how adiabatically rocked quantum electron ratchets can act as heat pumps.  In general,
ratchets may be described as non-equilibrium systems in which directed particle motion is generated using
spatial or temporal asymmetry. In a rocked ratchet, which may also be described as a non-linear rectifier,
an asymmetric potential is tilted symmetrically and periodically.  The potential deforms differently during
each half-cycle, producing a net current of particles when averaged over a full period of rocking.  Recently
it was found that in the quantum regime, where tunnelling contributes to transport, the net current may
change sign with temperature.  Here we show that a Landauer model of an experimental tunnelling ratchet
[Linke et. al., Science 286, 2314 (1999)] predicts the existence of a net heat current even when the net
particle current goes through zero. We quantify this heat current and define a coefficient of performance for
the ratchet as a heat pump, finding that more heat is deposited in each of the two electron reservoirs due to
the process of rocking  than is pumped from one reservoir to the other by the ratchet.

1 Introduction

In general, a ratchet may be described as a non-equilibrium system in which directed particle motion is
generated through the use of asymmetry [1-3].  Often, the non-equilibrium condition is achieved by varying
an asymmetric potential with time.  In this case the asymmetry defines a preferred direction, while the time
variation provides the source of energy necessary to create a net current of particles [3].  One such
example is a ‘rocked’ ratchet, in which an asymmetric potential is tilted symmetrically and periodically.  The
potential deforms differently during each half cycle of tilting, so that a net current is produced when the
current is averaged over a full period of rocking [4].  Throughout the present paper we will only discuss so-
called “adiabatically” rocked ratchets [5], in which symmetric tilting occurs on time scales much slower than
all other time scales of the system.  Such a system is essentially a non-linear rectifier. In the classical regime
a net current can only occur when the height of the potential barrier depends upon the tilt direction. In the
quantum regime however, where wave reflection and tunnelling can occur, not only the height, but also the
shape of the barrier becomes  important.  In particular, narrow barriers will transmit more tunnelling
particles than wide barriers, and smooth barriers, which cause less wave reflection than sharp barriers, will
allow more high energy particles to pass over the barriers. It then follows that a change in the shape of the
asymmetric barrier in a quantum ratchet as a result of  tilting is sufficient to produce a net current, even
when the barrier height remains constant. This quantum net current has been found to change direction with
temperature [5,6].  The origin of the temperature dependent behaviour is illustrated in Fig. 1, which shows
an asymmetric energy barrier between two-dimensional electron reservoirs.  A square-wave voltage of
amplitude V0 is applied to ‘rock’ the potential. When tilted in one direction, the asymmetric barrier deforms
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Fig 1:  A rocked electron ratchet.  The
solid lines are an estimation of the
confinement potential experienced by
electrons as they traverse the
experimental ratchet wave-guide
shown in Fig 2 (inset).  The Fermi
distribution of electrons as a function
of energy is indicated by the grey
regions, where lighter grey
corresponds to an occupation
probability of less than one.  The

boldness of the arrows is indicative of the relative strengths of the contributions of high and low energy electrons to the
current across the barrier under negative (a) and positive (b) voltages. The dashed lines indicate the spatial distribution
of the assumed voltage drop over the barrier, which is scaled with the local potential gradient of the barrier at zero
voltage.

to be thicker and smoother (Fig. 1a), suppressing tunnelling, but also reducing wave reflection of electrons,
so favouring transmission of electrons with high energies.  When it is tilted in the other direction however,
the potential deforms to be thinner and sharper (Fig. 1b), enhancing tunnelling but increasing wave
reflection, thus favouring the transmission of low energy electrons. In this way, the two contributions to the
net current, tunnelling through and excitation over the energy barrier, flow, on average, in opposite
directions.  By tuning the temperature, rocking voltage or Fermi energy such that one of these two
contributions exceeds the other, the net current direction can be chosen. In the present paper we point out
that at parameter values where the contributions of the two components of the net particle current are
equal and opposite (that is, where the net particle current goes through zero), a net energy current still
exists because the average energy transported in each direction is not the same.  In the following we briefly
describe the experimental results of [6] and introduce a Landauer model for this experiment which will
allow us to quantify the heat current generated by the ratchet.

2 Experimental quantum ratchet

A scanning electron microscope (SEM) image of the experimental quantum ratchet device is shown in Fig.
2 (inset).  The darker areas are trenches which were defined by shallow wet etching and electron-beam
lithography in a two-dimensional electron gas (2DEG) AlGaAs/GaAs heterostructure.  This process
created an asymmetric one-dimensional (1D) wave-guide connecting 2D electron reservoirs.  The crucial
feature of the ratchet is the asymmetric point contact on the right, which can be adjusted in width by
applying a voltage to the 2DEG areas above and below the right point contact that serve as side gates
(marked SG in the SEM image). The side gate voltage tunes the energy of the 1D wave modes, effectively
creating an asymmetric energy barrier which is experienced by the electrons as they traverse the wave-
guide.  The left point contact, which is not influenced by the side gates, plays no significant role in
determining the behaviour of the device as a ratchet.  The dimensions of the device (~1 µm) were much
smaller than the length scales for elastic (6 µm) and inelastic (>10 µm) scattering at the temperatures and
voltages used in the experiment (kBT and eV0  ≤ 1 meV).

A low-frequency square-wave voltage of amplitude V0 was applied between the two electron reservoirs to
adiabatically rock the device, and the resulting net current, averaged over many periods of rocking, was
measured using phase locking techniques.  The direction of the net current was found to depend upon
temperature, rocking amplitude, and the applied gate voltage. In Fig. 2 we show measurements of the net
current versus the amplitude of the rocking voltage for various temperatures at constant side-gate voltage.
For small voltages all three curves display parabolic behaviour, as expected for a lowest order non-linear
effect, which at the lowest two temperatures (0.6 K and 2 K), turns over to reverse direction at a rocking



3

Fig. 2: Main: Measured net current as a function of rocking
amplitude at a number of temperatures as indicated.  Reversals in the
direction of the net current as a function of rocking amplitude, and
implicitly as a function of temperature, are observed.  Data taken
from [6].  Inset:  A scanning electron microscope image of the
ratchet device (top view).  The dark regions are etched trenches that
electrically deplete a two-dimensional electron gas located at the
AlGaAs/GaAs interface beneath the surface, forming a one-
dimensional wave-guide.  Due to quantum confinement inside the
waveguide, an electron moving from left to right will experience an
asymmetric potential barrier similar to that shown in Fig. 1. Note the
side gates (marked SG) which are used to tune the height of the
potential barrier which is experienced by electrons moving though

the ratchet.  The left point contact does not play a significant role in the behaviour of the device as a ratchet.

voltage amplitude of V0 ≈ 1 mV. These results may be interpreted by referring to Fig. 1, which illustrates
the idea that high energy electrons and tunnelling electrons travel, on average, in opposite directions. At low
rocking voltage and temperature a positive net electrical current is measured (corresponding to a current of
electrons from right to left in Fig. 1), indicating that tunnelling electrons dominate the net current. As either
the temperature or voltage is increased, the energy range of electrons which contribute to transport widens,
resulting in a greater contribution from electrons with energies higher than the barrier, leading to a negative
net current. When the two contributions are equal in magnitude, the net current undergoes a sign reversal.

3 The Landauer model

The Landauer equation expresses the current flowing through a mesoscopic device between two reservoirs
as a function of the Fermi distribution of electrons in the reservoirs and of the energy dependent probability
that an electron will be transmitted through the device [7].  It may be written as:
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are the Fermi distributions in the left and right reservoirs (the upper/lower symbol in ± in all equations
corresponds to the left (L) and right (R) reservoirs, respectively).  ε is the energy of the electrons, for
convenience chosen relative to the average of the chemical potentials on the left and right sides,
µav=(µL+µR)/2 (Fig. 1).  T is the temperature of the 2DEG, V is the applied bias voltage and e=+1.6 10-

19C.  Lastly, t(ε,V) is the probability that electrons are transmitted across the barrier at a given bias voltage.

Eqn. (1) assumes that no inelastic scattering occurs inside the device.  In addition, we require the applied
bias to be much smaller than the Fermi energy.  This means that the difference between the Fermi
distributions will be negligible at low energies, and allows us to use -µav = -0.5(µL+µR) as the lower limit of
integration, independent of the voltage sign. Non-linear effects, which form the basis of this particular
ratchet effect, have been taken into account by solving the 1D Schrödinger equation to find ( )Vt ,ε  for
each positive and negative bias voltage individually. In order to do this, the energy of the lowest mode of
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Fig. 3:  The bold curve (corresponding to the left vertical axis) is
the difference between the transmission probabilities for +0.5mV
and –0.5mV tilting voltages as a function of electron energy.  The
dotted and dashed curves (corresponding to the right vertical
axis) are the Fermi ‘windows’, ∆f (ε, V0 = 0.5 mV), centred on an
equilibrium Fermi energy, µ0 = 11.7meV, for temperatures of 0.3K
and 2K respectively.  As the temperature is changed from 0.3K to
2K, note that the integral of the product of ∆f and ∆t will make a
transition from positive to negative, leading to a reversal in the
direction of the net particle current (Eq. 4).  Small oscillations in ∆t
exist for ε > 1 meV.

the experimental wave guide (Fig. 2, inset) was estimated, resulting in the energy barrier shown in Fig. 1
(for more details see [6]).  The height of the barrier corresponds to the confinement energy for lowest
mode electrons at the narrowest point in the constriction.

To obtain the barrier shape at finite voltage, an assumption about the spatial distribution of the voltage drop
needs to be made.  Arguing that a smooth potential variation can be approximated by a series of
infinitesimally small steps, and that a step-like potential change may be assumed to cause a corresponding
step-like voltage drop [8], we distribute the voltage drop in proportion to the local derivative of the barrier
[9].  It is important to stress that the qualitative quantum behaviour of the ratchet does not depend upon the
details of the voltage drop.  The present choice, however, has the desirable side-effect that the barrier
height remains independent of the sign of the voltage, resulting in the suppression of the classical
contribution to the net current.

In the present model we include only contributions to transport from the lowest wave mode.  The
contribution from higher modes is qualitatively similar, and also negligibly small when the Fermi energy is
approximately equal to the height of the barrier.

The net current is defined as the time average of the current over one period of rocking with a square-wave
voltage of amplitude V0:
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This can also be written as:
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where ( ) ( ) ( )000 ,,, VfVfVf LR εεε −≡∆ , the ‘Fermi window’, is the difference between the Fermi
distributions on the right and left of the barrier, and gives the range of electron energies which will
contribute to the current. The Fermi window is centred on ε = 0 and has a width which depends upon the
bias voltage and the temperature of the 2DEG (Fig 3).  The term ( ) ( ) ( )000 ,,, VtVtVt −−≡∆ εεε , also
shown in Fig. 3, is the difference between the transmission probabilities for an electron with energy ε under
positive (Fig. 1b) and negative (Fig. 1a) voltages.  Electrons with energies under the barrier height are more
likely to flow from right to left when the barrier becomes thinner (under positive voltage, Fig. 1, right), than
from left to right when the barrier becomes thicker (under negative voltage, Fig. 1, left).  This results in ∆t
being negative in this energy range and then positive for energies above the barrier height where above
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situation is reversed.  As ∆f is adjusted (through changing T, V0 or Fermi energy, µ0) to sample the ∆t
curve where it is negative rather than positive, the net current will change sign from positive to negative.

4 Energy current

The heat change associated with the transfer of one electron to a reservoir with chemical potential µ is
given by [10]:

µ−∆=∆ UQ  (5)

The internal energy, ∆U, associated with the electron is taken with respect to the same global zero as the
chemical potential, which is assumed to be unchanged by the electron transfer.  The change in heat in the
two reservoirs upon transfer of one electron from the right to the left is then given by   ∆QL/R = ε +
(µL+µR)/2 - µL/R = ε ± eV/2. Note that the heat removed from one reservoir by an electron crossing the
barrier, differs from the heat it adds to the other reservoir by |eV|, as a result of the kinetic energy acquired
by the electron in the electric field driving the current.

The heat current entering the left and right reservoirs associated with the particle current generated by a
voltage V across the device is then obtained from the equation for the electrical current (Eq. 1). This is
done by replacing the electron charge, –e, by a factor of ∆QL/R inside the integral.  The heat current can
then be written as
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The net heat current into the left and right reservoirs over a full cycle of square-wave rocking,
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To obtain an intuitive understanding of the action of the ratchet as a heat pump at parameter values where
the net particle current goes through zero, it is helpful to rewrite Eq. (7) as:
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Here ( ) ( ) ( )[ ]( )000 ,,21, VtVtV −++= εεετ  is the average transmission probability for an electron under

positive and negative bias voltage. net
R

net
L qqE −=∆  is the heat pumped from the left to the right sides of

the device due to the energy sorting properties of the ratchet, and can be non-zero only for asymmetric
barriers. ( ) ( ) ( )[ ]000 2 VIVIV −++=Ω  is the ohmic heating, averaged over one cycle of rocking.  ∆E

can be interpreted as the heat pumping power of the ratchet, averaged over a period of rocking, while
net
R

net
L qq +=Ω  is the electrical power input, averaged over a period of rocking. We therefore define a

coefficient of performance for the ratchet as a heat pump as:
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Fig. 4:  The heat-pumping coefficient of performance of the
ratchet model shown in Fig. 1, plotted as a function of
rocking voltage and temperature.  Each point on the surface
corresponds to a set of values of rocking voltage,
temperature and Fermi energy for which the net particle
current goes through zero.

It is important to note that ∆E will be trivially non-zero when the net particle current is non-zero because
each electron carries heat.  This definition of χ therefore only makes sense for parameter values where the
net particle current is zero.

To evaluate our model potential (Fig. 1) in terms of a heat pump, we have calculated χ for parameter sets
where the net current goes through zero (Fig. 4).  As required, the heat pumping power goes to zero for
small bias and temperature, corresponding to the linear response limit where, by definition, the ratchet
cannot work.  The positive coefficient of performance indicates that heat is always pumped from left to
right for the range of parameters used in the calculation.  Small oscillations in ∆t at energies higher than the
barrier exist and placing ∆f around these would result in heat being pumped from right to left.  The fact that
χ is small means that the total heat deposited in each reservoir due to ohmic heating is much larger than the
heat pumped from the left to the right sides of the device.  This means that, despite the heat pumping action
of the ratchet, the internal energy of both reservoirs increases, but one reservoir is heated slightly less than
the other. The experimental quantum ratchet may therefore be viewed as a poorly designed refrigerator,
where half of the waste heat is deposited inside instead of outside the refrigerated region.  For one
reservoir to be cooled using the ratchet effect, ∆E would need to be larger than Ω (χ > 1), so that more
heat was pumped out of one reservoir than was deposited there as a result of ohmic heating. The low
coefficient of performance of the ratchet of [6] as a heat pump is a result of the fact that the potential
barrier studied here transmits electrons with a wide range of energies in both rocking directions (all of
which contribute to heating), while the ratio ∆t/τ is less than 1%.  Thus ohmic heating of each reservoir
greatly exceeds the heat pumped from one side to the other.  The heat pumping coefficient of performance
of the ratchet would be enhanced by designing a potential which only transmitted electrons with energies
higher than the equilibrium Fermi energy in one direction, and only transmitted electrons with energies lower
than equilibrium Fermi energy in the other direction, so that ∆t/τ ≅1.  One way of achieving this may be to
employ resonant tunnelling as a means of energy filtering.  Resonant tunnelling barriers have in fact been
predicted to be able to cool a reservoir when operated in DC mode [11].  An adaptation of this idea to
rocked ratchets is currently under investigation.
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