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Abstract. The self-assembly process for bottom-up construction of nanostruc-
tures is of key importance to the emerging scientific discipline Nanoscience.
However, self-assembly at the molecular scale is prone to a quite high rate of
error. Such high error rate is a major barrier to large-scale experimental imple-
mentation of DNA tiling. The goals of this paper are to develop theoretical meth-
ods for compact error-resilient self-assembly and to analyze these methods by
stochastic analysis and computer simulation. Prior work by Winfree provided an
innovative approach to decrease tiling self-assembly errors without decreasing
the intrinsic error rate ε of assembling a single tile. However, his technique re-
sulted in a final structure that is four times the size of the original one. This paper
describes various compact error-resilient tiling methods that do not increase the
size of the tiling assembly. These methods apply to assembly of boolean arrays
which perform input sensitive computations (among other computations). Our
2-way (3-way) overlay redundancy construction drops the error rate from ε to
approximately ε2 (ε3), without increasing the size of the assembly. These results
were further validated using stochastic analysis and computer simulation.

1 Introduction

Self-assembly is a process in which simple objects associate into large (and complex)
structures. The self-assembly of DNA tiles can be used both as a powerful computa-
tional mechanism [4, 6, 10, 11, 14] and as a bottom-up nanofabrication technique [8].
Periodic 2D DNA lattices have been successfully constructed with a variety of DNA
tiles, for example, double-crossover (DX) DNA tiles [13], rhombus tiles [5], triple-
crossover (TX) tiles [3], and 4x4 tiles [15]. Two dimensional algorithmic self-assembly,
in contrast, is comparatively resistant to experimental demonstration, partially due to the
large number of errors in the assembled structure.

How to decrease such errors? There are primarily two kinds of approaches. The first
one is to decrease the intrinsic error rate ε by optimizing the physical environment in
which a fixed tile set assembles [11], by improving the design of the tile itself using
new molecular mechanism [2], or by using novel materials. The second approach is to
design new tile sets that can reduce the total number of errors in the final structure even
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with the same intrinsic error rate. A seminal work in this direction is the proofreading
tile set constructed by Winfree [12].

One desirable improvement on Winfree’s construction (which results in an assem-
bled structure with 4x size of the original one) is to make the design more compact.
Here we report construction schemes that achieve performance similar as or better than
Winfree’s tile set without scaling up the assembled structure. We will describe our work
primarily in the context of self-assembling Sierpinsky triangles and binary counters, but
note that the design principle can be applied to a more general setting. The basic idea of
our construction is to overlay redundant computations and hence force consistency in
the scheme. The idea of using redundancy to enhance reliability of a system constructed
from unreliable individual components goes back to von Neumann [9].

The rest of the paper is organized as follows. In Sect. 2, we introduce the assembly
problem. In Sect. 3, we describe a scheme that decreases the error rate from ε to 6ε2. In
Sect. 4, this scheme is further improved to 30ε3 using a three-way overlay redundancy
technique. Kinetic analysis is performed in Sect. 5 to show that the assembly speed
is not much decreased. Sect. 6 gives empirical study using computer simulation. We
conclude with discussions about future work in Sect. 7.

2 Assembly with o Error Corrections

2.1 Assembly Problems

A general assembly problem considered in this paper is the assembly of a Boolean
array. A Boolean array assembly is an N × M array, where the elements of each row
are indexed over {0, . . . , N − 1} from right to left and the elements of each column
are indexed over {0, . . . , M − 1} from bottom to top. The bottom row and right most
column both have some given values. Let V (i, j) be the value of the i-th (from the right)
bit on the j-th row (from the bottom) displayed at position (i, j) and communicated to
the position (i, j + 1). Let U(i, j) be a Boolean value communicated to the position
(i + 1, j). For i = 1, . . . , N − 1 and j = 1, . . . ,M − 1, we have V (i, j) = U(i −
1, j) OP1 V (i, j − 1) and U(i, j) = U(i − 1, j) OP2 V (i, j − 1), where OP1 and
OP2 are two Boolean functions, each with two Boolean arguments and one Boolean
output. See Figure 1 for an illustration.

Two Boolean arrays of particular interest are the Sierpinsky Triangle [1] and the
Binary counter. The Sierpinsky Triangle is an N × N Boolean binary array, where the
bottom row and right most column all have 1s; its OP1 and OP2 operators are both
XOR. Recall that XOR is exclusive OR, a binary operator that outputs bit 1 if the two
input bits are different and 0 otherwise. For an illustration, see Figure 2.

The binary counter is an N × 2N Boolean binary array. In a binary counter, the
bottom row has all 0s and the j-th row (from the bottom) is the binary representation
of counter value j, for j = 0, . . . , 2N − 1. Note that the i-th bit is i-th from the right
– this is in accordance with the usual left to right binary notation of lowest precision
bits to highest precision bits. V (i, j) represents the value of the i-th (from the right)
counter bit on the j-th row (from the bottom), and U(i, j) is the value of the carry
bit from the counter bit at position (i, j). In the binary counter, we have V (0, j) =
V (0, j − 1) XOR 1; V (i, j) = U(i − 1, j) XOR V (i, j − 1) for i = 1, . . . , N − 1;

N
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U(i,j) U(i−1,j)

V(i,j)

V(i,j−1)

T0(i − 1, j)

T0(i, j + 1)

T0(i, j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

T0(i + 1, j)

T0(i, j − 1)

Fig. 1. Tile T0(i, j) takes input U(i − 1, j) and V (i, j − 1); determines V (i, j) = U(i −
1, j) OP1 V (i, j − 1) and U(i, j) = U(i − 1, j) OP2 V (i, j − 1); displays V (i, j)
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Fig. 2. Sierpinsky triangle tiling assembly

U(i, j) = U(i− 1, j) AND V (i, j − 1). Hence OP1 is the XOR operation and OP2

is the AND operation.
We observe that OP1 is XOR both for the Sierpinsky Triangle and for the binary

counter and we will thus assume in our error-resilient constructions that OP1 is XOR.
Each assembly will be constructed with the 4 × 4 DNA tiles described in [15]. A 4 × 4
tile allows one pad per side (which can communicate a small constant number of bits).
Furthermore, we will assume that a “frame” is assembled first for each binary array,
consisting of a “bottom row” with N horizontally aligned tiles and a “right border”
linear assembly with M vertically aligned tiles.
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2.2 Assemblies with o Error Corrections

We first describe the naive assembly scheme without error correction. Note that such
assembly requires only 4 tile types in addition to 3 frame tiles, but results in rather
small scale error-free assemblies (with the actual size contingent on the probability of
single pad mismatch between adjacent tiles). We call this scheme version 0 assembly
and denote the tiles as T0(i, j).

The simplest way to construct such an assembly is to make each side of each tile
a binary valued pad. Since the values of the left and top pads depend on the values
of the right and bottom pads, the tile type depends on only 2 binary pads, and hence
only 22 = 4 tile types are required in addition to the 3 tiles for assembling the initial
frame.

The bottom, right, top, and left pads of tile T0(i, j) represent the values of V (i, j−1)
(as communicated from the tile below T0(i, j−1)), U(i−1, j) (as communicated from
the tile on its right T0(i−1, j)), V (i, j) ( as computed by V (i, j−1) OP1 U(i−1, j)),
and U(i, j) (as computed by V (i, j − 1) OP2 U(i − 1, j)), respectively. A determined
value V (i, j) = 1 can be displayed by the tile T0(i, j) using, for example, an extruding
stem loop of single strand DNA.

2.3 Errors in Assemblies

All this is theoretically correct, but it has not taken into account the error rate of the
assembly of individual DNA tiles. A critical issue in 2D tiling assemblies is the pad
mismatch rate, which determines the size of the error-free assembly. Let ε be the prob-
ability of a single pad mismatch between adjacent assembling DNA tiles, and assume
that the likelihood of a pad mismatch error is independent for distinct pads as long
as they do not involve the binding of the same two tiles. As such, a pad mismatch
rate of ε = 5% would imply an error-free assembly with an expected size of only 20
tiles, which is disappointingly small. Thus, a key challenge in experimentally demon-
strating large scale algorithmic assemblies is to construct error-resilient tiles. Winfree’s
construction is an exciting step towards this goal [12]. However, to reduce the error
rate to ε2 (resp. ε3), his construction replaces each tile with a group of 2 × 2 = 4
(resp. 3 × 3 = 9) tiles and hence increases the size of the tiling assembly by a fac-
tor of 4 (resp. 9). Our construction described below, in contrast, reduces the tiling
error rate without scaling up the size of the final assembly. This would be an attrac-
tive feature in the attempt to obtain assemblies with large computational capacity. We
call our construction compact error resilient assemblies and describe them below in
detail.

3 Error-Resilient Assembly Using Two-Way Overlay Redundancy

3.1 Construction

To achieve the goals stated in previous section, we propose the following error resilient
tiling scheme. Our Error-Resilient Assembly I (using two-way overlay redundancy) uses
only 8 computational tile types plus the 4 frame tile types. This drops the probability of

N



Compact Error-Resilient Computational DNA Tiling Assemblies 297

assembly error to 6ε2, which is 1.5% for ε = 5%, potentially allowing for error-free
assemblies of expected size in the hundreds of tiles.

The construction is depicted in Figure 3. Tiles in this construction are denoted as
T1 tiles (for version 1). Each pad of each tile encodes a pair of bits. The basic idea
of this Error-Resilient assembly is the two-way overlay redundancy: each tile T1(i, j)
computes the outputs for its own position (i, j) and also for its right neighbor’s position
(i− 1, j); the redundant computation results obtained by T1(i, j) and its right neighbor
T1(i−1, j) are compared via an additional error checking portion on T1(i, j)’s right pad
(which is the same as T1(i− 1, j)’s left pad). Tile T1(i, j)’s right neighbor T1(i− 1, j)
is not likely to bind to T1(i, j) if these pad values are not consistent. Hence if only one
of T1(i, j) and T1(i − 1, j) is in error (incorrectly placed), the kinetics of the assembly
may allow the incorrectly placed tile to be ejected from the assembly.

The four pads of T1(i, j) are constructed as follows (Figure 3).

– The right and left portions of the bottom pad represent the value of V (i− 1, j − 1)
and V (i, j − 1) respectively as communicated from the tile T1(i, j − 1).

– The top portion of the right pad represents the value of U(i−2, j) as communicated
from the tile T1(i − 1, j). The bottom portion of the right pad represents the value
of V (i − 1, j) as determined by the tile T1(i, j). Note that the value V (i − 1, j) is
also redundantly determined by T1(i−1, j) and hence the bottom portion performs
comparison of the two values and is referred to as error checking portion, and
labeled with checked background in Figure 3.
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V(i−1,j)

V(i−1,j−1)V(i,j−1)

V(i,j)

U(i−1,j) U(i−2,j)

V(i,j) V(i−1,j)

T1(i − 1, j)

T1(i, j − 1)

T1(i + 1, j)

T1(i, j + 1)

T1(i, j)

V(i,j+1)

V(i-1,j)V(i,j)

V(i,j-1)

V(i+1,j)

Fig. 3. Construction of compact error-resilient assembly version I. Each pad has two portions.
A portion encoding an input (resp. output) value is indicated with a dark blue (resp. light pink)
colored arrow head. The error checking portion is depicted as a checked rectangle. Tile T1(i, j)

takes inputs U(i − 2, j), V (i − 1, j − 1), and V (i, j − 1); determines V (i − 1, j) = U(i −
2, j) OP1 V (i − 1, j − 1), U(i − 1, j) = U(i − 2, j) OP2 V (i − 1, j − 1), and V (i, j) =

U(i − 1, j) OP1 V (i, j − 1); displays V (i, j)
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– The top and bottom portions of the left pad represent the values of U(i − 1, j) and
V (i, j) respectively, as determined by the tile T1(i, j). Again, the bottom portion is
the error checking portion.

– The right and left portions of the top pad represent the values of V (i − 1, j) and
V (i, j) respectively, as determined by tile T1(i, j).

The above tile design allows the values V (i−1, j−1) and V (i, j−1) to be commu-
nicated to tile T1(i, j) from the tile T1(i, j−1) just below T1(i, j). The value U(i−2, j)
is communicated to tile T1(i, j) from its immediate right neighbour T1(i − 1, j). The
values V (i− 1, j) and U(i− 1, j) are determined by tile T1(i, j) from V (i− 1, j − 1)
and U(i − 2, j): V (i − 1, j) = U(i − 2, j) OP1 V (i − 1, j − 1) and U(i − 1, j) =
U(i− 2, j) OP2 V (i− 1, j − 1). The value V (i, j) is determined from V (i, j − 1) and
U(i−1, j): V (i, j) = U(i−1, j) OP1 V (i, j−1). If the determined value V (i, j) = 1,
then it is displayed by the tile T1(i, j).

In this construction, each pad encodes two bits. However, since the values of the left
pad, the top pad, and the bottom portion (V (i− 1, j)) of the right pad each depend only
on the values of the top portion (U(i − 2, j)) of the right pad and the bottom pads, the
tile type depends on only 3 input binary bits. Hence only 23 = 8 tile types are required.
In addition, 4 tiles are required to assemble the frame, as described in Sect. 6.

We emphasize that though a pad has two portions, it should be treated as a whole
unit. A value change in one portion of a pad changes the pad to a completely new pad.
If the pad is implemented as a single strand DNA, this means that the sequence of the
single strand DNA will be a complete new sequence. One potential confusion to be
avoided is mistakenly considering two pads encoding, say 00 and 01, as having the 0
portions identical or, in the context of single strand DNA, as having half of the DNA
sequences identical. To emphasize the unity of a pad, we put a box around each pad in
Figure 3.

3.2 Error Analysis

Recall that ε is the probability of a single pad mismatch between two adjacent DNA
tiles. We further assume that the likelihood of a pad mismatch error is independent for
distinct pads as long as they do not involve the binding of the same two tiles and that
OP1 is the function XOR.

Our intention is that the individual tiling assembly error rate (and hence the prop-
agation of these errors to further tile assemblies) is substantially decreased, due to co-
operative assembly of neighboring tiles, which redundantly compute the V (−,−) and
U(−,−) values at their positions and at their right neighbours.

Without loss of generality, we consider only the cases where the pad binding error
occurs on either the bottom pad or the right pad of a tile T1(i, j). Otherwise, if the
pad binding error occurs on the left (resp. top) pad of tile T1(i, j), then use the same
below argument for tile T1(i + 1, j) (resp. T1(i, j + 1)). We define the neighborhood
of tile T1(i, j) to be the set of 8 distinct tiles { T1(i′, j′) : |i′ − i| < 2, |j′ − j| <
2 } \ { T1(i, j) } with coordinates that differ from (i, j) by at most 1. A neighborhood
tile T1(i′, j′) is dependent on T1(i, j) if both its coordinates are equal to or greater
than those of T1(i, j); otherwise T1(i′, j′) is independent of T1(i, j). Note that a neigh-
borhood tile T1(i′, j′) is dependent on T1(i, j) if and only if the values V (i′, j′) and
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U(i′, j′) are determined at least partially from V (i, j) or U(i, j). More specifically,
the neighborhood tiles dependent on T1(i, j) are T1(i + 1, j + 1), T1(i + 1, j), and
T1(i, j + 1). The neighborhood tiles independent of T1(i, j) are T1(i + 1, j − 1),
T1(i, j − 1), T1(i − 1, j + 1), T1(i − 1, j), and T1(i − 1, j − 1).

Lemma 1. Suppose that the neighborhood tiles independent of tile T1(i, j) have cor-
rectly computed V (−,−) and U(−,−). If there is a single pad mismatch between tile
T1(i, j) and another tile just below T1(i, j) or to its immediate right, then there is at
least one further pad mismatch in the neighborhood of tile T1(i, j). Furthermore, given
the location of the initial mismatch, the location of the further pad mismatch can be
determined among at most three possible pad locations.

Proof. Suppose that a pad binding error occurs on the bottom pad or the right pad
of tile T1(i, j) but no further pad mismatch occurs between two neighborhood tiles
which are independent of T1(i, j). We now consider a case analysis of possible pad
mismatches.

(1) First consider the case where the pad binding error occurs on the bottom pad of
tile T1(i, j). Recall that the right and left portions of the bottom pad represent the values
of V (i− 1, j − 1) and V (i, j − 1) respectively as communicated from tile T1(i, j − 1).
Observe that neighborhood tiles T1(i, j − 1), T1(i − 1, j − 1), and T1(i − 1, j) are all
independent of T1(i, j) and so all correctly compute V (−,−) and U(−,−) according
to the assumption of the lemma.

(1.1) Consider the case where the pad binding error is due to the incorrect value of
the right portion V (i − 1, j − 1) of the bottom pad of tile T1(i, j) as shown in Fig-
ure 4. Note that the left portion V (i, j − 1) of the bottom pad of tile T1(i, j) may also
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V(i−1,j)
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V(i,j)

Mismatch

V(i,j−1) V(i−1,j−1) V(i−2,j−1)V(i−1,j−1)

U(i−2,j−1)

U(i−1,j) U(i−2,j)

V(i,j) V(i−1,j)

T1(i, j)T1(i + 1, j)

T1(i, j − 1)
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V(i-1,j)

V(i-1,j-1)

T1(i − 1, j − 1)

T1(i − 1, j)

T1(i, j + 1)

Fig. 4. Case 1.1 in the proof of Lemma 1: error in right portion V (i− 1, j − 1) of the bottom pad
of tile T1(i, j) causes a further mismatch on the right pad of tile T1(i, j)
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Fig. 5. Case 1.2 in the proof of Lemma 1: a further mismatch is caused by an error in the
V (i, j − 1) portion of the bottom pad of tile T1(i, j)

be incorrect. In case (i), T1(i, j) has an incorrect value for the U(i − 2, j) portion of
its right pad and hence there is a further pad mismatch on the right pad of T1(i, j). In
case (ii), T1(i, j) has a correct value for the U(i − 2, j) portion of its right pad. Since
T1(i, j) uses the formula V (i − 1, j) = U(i − 2, j) OP1 V (i − 1, j − 1) to compute
V (i−1, j) and OP1 is assumed to be the XOR function, it will determine an incorrect
value for V (i−1, j), which is distinct from the correct value of V (i−1, j) determined
by its (independent) right neighbor tile T1(i − 1, j). This again implies a further pad
mismatch on the right pad of tile T1(i, j).

(1.2) Next consider the case in Figure 5 where the pad binding error is due to
the wrong value of the left portion V (i, j − 1) of the bottom pad of tile T1(i, j).
However, there is a correct match in the right portion V (i − 1, j − 1) of the bot-
tom pad of tile T1(i, j). In case (i), T1(i, j) has an incorrect value for the top portion
U(i − 2, j) of its right pad, then there will be a mismatch on the right pad of T1(i, j).
In case (ii), T1(i, j) has a correct value for the top portion U(i − 2, j) of its right pad,
then it will further determine a correct value for U(i − 1, j), since U(i − 1, j) =
U(i − 2, j) OP2 V (i − 1, j − 1) and both U(i − 2, j) and V (i − 1, j − 1) have
correct values. Since V (i, j) = U(i − 1, j) OP1 V (i, j − 1), U(i − 1, j) is correct
and V (i, j − 1) is incorrect, T1(i, j) will determine an incorrect value for V (i, j).

Note that the neighborhood tiles T1(i−1, j−1), T1(i, j−1), and T1(i+1, j−1) are
independent of T1(i, j) and so both correctly compute V (−,−) and U(−,−). However,
T1(i, j)’s immediate left neighbour T1(i+1, j) is dependent both on the incorrect value
communicated by the pad of T1(i, j) and the correct values communicated by the pad
of T1(i+1, j−1). So in case (ii) there must be a further pad mismatch at tile T1(i+1, j)
as argued below. In case (iia) there is pad mismatch on the right pad of T1(i+1, j) either
due to a mismatch on the portion of U(i− 1, j) or on the portion of V (i, j). Otherwise,
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in case (iib) there is no mismatch on either the U(i − 1, j) or the V (i, j) portion of the
pad between T1(i, j) and T1(i+1, j). This implies that V (i, j) is incorrectly computed
by T1(i + 1, j) (since T1(i, j) has incorrectly computed V (i, j)), but T1(i + 1, j) has
a correct value of U(i − 1, j). However, V (i, j) = U(i − 1, j) OP1 V (i, j − 1) and
OP1 is XOR, this implies that the right portion V (i, j−1) of the bottom pad of T1(i+
1, j) has an incorrect value, and hence there is a mismatch between T1(i + 1, j) and
T1(i + 1, j − 1).

(2) Next consider the case where the pad binding error occurs on the right pad of
tile T1(i, j), but there is no error on the bottom pad of T1(i, j). We first note that the
value of the top portion U(i − 2, j) of the right pad of T1(i, j) must have an incorrect
value. Assume the opposite case where U(i − 2, j) is correct. But the V (i − 1, j − 1)
portion of T1(i, j)’s bottom pad must also have a correct value (no mismatch on the bot-
tom pad), this results in a further correct value for the V (i − 1, j) portion of T1(i, j)’s
right pad. Thus both U(i − 2, j) and V (i − 1, j) portions of T1(i, j)’s right pad are
correct and there must be no mismatch on the right pad. A contradiction. Therefore,
U(i − 2, j) must have an incorrect value, and hence we only need to consider this
case.

(2.1) Now consider the case where the pad binding error is due to the incorrect value
of the top portion U(i − 2, j) of the right pad of tile T1(i, j) as shown in Figure 6. We
note that T1(i, j) will compute an incorrect value for the right portion V (i− 1, j) of its
top pad, according to the formula V (i− 1, j) = U(i− 2, j) OP1 V (i− 1, j − 1). Note
that T1(i, j +1) is dependent on T1(i, j). In case (i), tile T1(i, j +1) has a correct value
of V (i − 1, j). There must be a pad mismatch on V (i − 1, j) between T1(i, j + 1) and
T1(i, j), since the value of V (i − 1, j) determined by T1(i, j) is incorrect. In case (ii),
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Fig. 6. Case 2.1 in the proof of Lemma 1: a further mismatch is caused by an error in theU(i−2, j)

portion of the right pad of tile T1(i, j)
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tile T1(i, j + 1) has an incorrect value of V (i− 1, j), using similar argument as in case
1.1, we can show that there must be a pad mismatch on the U(i − 2, j + 1) portion of
T1(i, j + 1)’s right pad.

Hence we conclude that in each case, there is a further pad mismatch between a pair
of adjacent tiles in the neighborhood of tile T1(i, j). Furthermore, we have shown in
each case that given the location of the initial mismatch, the location of the further pad
mismatch can be determined among at most three possible pad locations. ��

Recall that we have let ε be the probability of a single pad mismatch between adja-
cent assembling tiles. This implies that 1−ε is the probability of no single pad mismatch
between a given pair of adjacent tiles. So the probability that there is no pad mismatch
between tile T1(i, j) and another tile just below or to its immediate right is (1 − ε)2.
Hence the probability that there is a pad mismatch between tile T1(i, j) and another tile
just below or to its immediate right is 1−(1−ε)2 = 2ε−ε2, which is at most 2ε. But by
Lemma 1, if there is a pad mismatch between tile T1(i, j) and another tile just below or
to its immediate right, then there is a further pad mismatch between a pair of adjacent
tiles in the immediate neighborhood of tile T1(i, j), and the location of the further pad
mismatch can be determined among at most three possible pad locations. The probabil-
ity that there is such a further pad mismatch between tiles at most three possible pad
locations is at most 1−(1−ε)3, which is at most 3ε. This implies that with probability at
most (3ε)(2ε) = 6ε2, there is both (i) a pad mismatch between tile T1(i, j) and another
tile just below or to its immediate right; and (ii) furthermore, there is also a further pad
mismatch between tiles in the immediate neighborhood of tile T1(i, j) as considered in
the case analysis in the proof of Lemma 1. Hence we have shown:

Theorem 1. Suppose that the neighborhood tiles independent of tile T1(i, j) have cor-
rectly computed V (−,−) and U(−,−). Then the assembly error probability for tile
T1(i, j) is at most 6ε2, where ε is the probability of a single pad mismatch.

4 Error-Resilient Assembly Using Three-Way Overlay
Redundancy

4.1 Construction

We next extend the design of our scheme to a 3-way overlay scheme. The Error-Resilient
Assembly II (using 3-way overlay redundancy) uses 16 computational tile types and 5
frame tile types. One mismatch on a tile forces two more mismatches in its neighbor-
hood. This property further lowers the assembly error.

The basic construction is shown in Figure 7. In this construction, each pad encodes a
tuple of 3 bits and hence is an 8-valued pad. The basic idea of this error-resilient assem-
bly is to have each tile T2(i, j) compute error checking values for positions (i − 1, j),
(i, j−1), (i+1, j), and (i, j+1), which are compared with corresponding error checking
values computed by T2(i, j)’s four neighbors. The neighbors are unlikely to bind with
T2(i, j) if such error checking values are inconsistent, and the kinetics of the assembly
will allow these tiles to dissociate from each other, as in version 1 (2-way overlay re-
dundancy). However, instead of introducing just one additional mismatch in T2(i, j)’s
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Fig. 7. Tile T2 takes inputs U(i − 2, j), U(i − 2, j − 1), V (i − 1, j − 2), and V (i, j − 2);
determines V (i − 1, j − 1) = U(i − 2, j − 1) OP1 V (i − 1, j − 2), U(i − 1, j − 1) =

U(i − 2, j − 1) OP2 V (i − 1, j − 2), V (i, j − 1) = U(i − 1, j − 1) OP1 V (i, j − 2),
U(i − 1, j) = U(i − 2, j) OP2 V (i − 1, j − 1), V (i, j) = U(i − 1, j) OP1 V (i, j − 1), and
V (i − 1, j) = U(i − 2, j) OP1 V (i − 1, j − 1); displays V (i, j)

neighborhood, the 3-way overlay redundancy (version 2) forces two mismatches, and
hence we have a further lowered error rate.

4.2 Error Analysis

For error analysis, in addition to the assumptions made in Sect. 3.2, we require that
OP2 can detect incorrect value of input 1 regardless of the correctness of input 2. This
property seems essential to guarantee two further mismatches in a tile’s neighborhood
when there is an initial mismatch on one of the tile’s four pads.

Using a similar but more involved analysis as in Lemma 1 and Theorem 1, we can
show

Lemma 2. Suppose that the neighborhood tiles independent of tile T2(i, j) have cor-
rectly computed V (−,−) and U(−,−). If there is a single pad mismatch between tile
T2(i, j) and another tile just below or to its immediate right, then there are at least two
further pad mismatches between pairs of adjacent tiles in the immediate neighborhood
of tile T2(i, j). Furthermore, given the location of the initial mismatch, the location of
the second mismatch can be determined among at most three locations in the neigh-
borhood of T2(i, j); given the location of the initial and the second mismatches, the
location of the third mismatch can be determined among at most five locations.

Theorem 2. Suppose that the neighborhood tiles independent of tile T2(i, j) have cor-
rectly computed V (−,−) and U(−,−). Then the assembly error probability for tile
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T2(i, j) is at most 2ε × 3ε × 5ε = 30ε3, where ε is the probability of a single pad
mismatch.

For detailed analysis, see [7]. It is also easy to see that this schemes requires 24 = 16
computational tile types and 5 frame tile types.

5 Kinetic Analysis

Our kinetic analysis is based upon the analysis done by Winfree [12]. Two parameters,
Gse and Gmc, are defined in [12]. Gmc measures the entropic cost of fixing the location
of a monomer unit and Gse measures the free energy cost of breaking a single sticky-
end bond. A non-rigorous condition for good self-assembly is given as Gmc ≈ 2Gse

and the growth rate of assembly r is approximately αe−Gmc .
For the construction with no error-correction, the equilibrium error rate δ0 for an

assembly is approximately k0e
−Gse , which yields an assembly rate r0 ≈ αe−Gmc ≈

αe−2Gse ≈ (α/k2
0)δ

2
0 [12]. For our version 1 error-resilient construction, it can be

shown that δ1 ≈ k1e
−2Gse , which further yields r1 ≈ αe−Gmc ≈ αe−2Gse ≈ (α/k1)δ1.

For our version 2 error resilient scheme, it can be shown that the error rate is approx-
imately δ2 ≈ k2e

−3Gse , which yields r2 ≈ αe−Gmc ≈ αe−2Gse ≈ (α/k2)δ
(2/3)
2 .

k0, k1 and k2 are constants. See [7] for details. The above analysis shows that while
the error rates δ1 and δ2 are significantly reduced in our error resilient assemblies, the
aggregation speeds r1 and r2 stay approximately the same as r0.

6 Computer Simulation

We first give below the construction of a Sierpinsky Triangle using our error resilient
assembly version 1, and then perform empirical study of the error rates using computer
simulation of assembly of the Sierpinsky Triangle and compare the results with that of
Winfree’s [12].

Figure 8 illustrates the construction of a Sierpinsky triangle, using 8 computational
tiles and 4 frame tiles. We would like to again emphasize that although we give the
construction of the tiles in previous sections with each pad having two or three distinct
portions, a mismatch on any portion of a pad results in a total mismatch of the whole
pad instead of a partial mismatch of only that portion. Hence, in Figure 8, we use a
distinct label for each pad, emphasizing the wholeness of the pad.

For the simulation study, we used the Xgrow simulator by Winfree [12] and simu-
lated the assembly of Sierpinsky triangles for the following cases:

– assembly without any error correction,
– assembly using Winfree’s 2 × 2 proofreading tile set,
– assembly using Winfree’s 3 × 3 proofreading tile set,
– assembly using our error resilient scheme version 1, T1 (construction in Figure 8),
– assembly using our error resilient scheme version 2, T2 (construction not shown).

We performed simulations of the assembly process of a target aggregate of 512×512
tiles. A variable N is defined as the number of tiles assembled without any permanent
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error in the assembly in 50% cases. The variations in the value of N are measured as
we increase value of the probability of a single mismatch in pads (ε) by changing the
values of Gmc and Gse, where Gmc and Gse are the free energies [12]. We used the
fact mentioned by Winfree [12] that ε ≈ 2e−Gse and for a good assembly we need to
have Gmc ≈ 2Gse.

Figure 9 shows the variation in N with loge ε. From the figure it can be seen that
the performance of our version 1 (T1) construction is comparable to Winfree’s 2 × 2
proofreading tile set construction, while our version 2 (T2) performs comparably to
Winfree’s 3 × 3 proofreading tile set construction.
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7 Discussion

In the proof of this paper, we require OP1 to be XOR, for concreteness. However, note
that our constructions apply to more general boolean arrays in which OP1 is an input
sensitive operator, i.e. the output changes with the change of exactly one input.

Note that OP1 and OP2 are both the function XOR for the example assemblies
for the Sierpinsky Triangle but this is not true for the assembly for a binary counter of
N bits, since OP2 is the logical AND in that example. It is an open question whether
our above error-resilient constructions can be further simplified in the case of special
computations, such as the Sierpinsky Triangle, where the OP1 and OP2 are the same
function such as XOR.

Another open question is to extend the construction into a more general construction
such that the error probability can be decreased to εk for any given k, or alternatively,
prove an upper bound for k.
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