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Tile assembly model (TAM)

• Proposed by Erik Winfree developing on Wang tilings
• [Winfree: Simulations of Computing by Self-Assembly, 1998]

• Simple, yet powerful model 

• Refines Wang tiling

• Models crystal growth

• Also, Turing-complete

• Can be implemented using DNA molecules
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Abstract Tile Assembly Model:

Temperature: A positive integer. (Usually 1 or 2)
A set of tile types: Each tile is an oriented rectangle with glues on 
its corners. Each glue has a non-negative strength (0, 1 or 2).
An initial assembly (seed).

A tile can attach to an assembly
iff the combined strength of the
“matched glues” is greater or
equal than the temperature τ.

[Rothemund, Winfree, ’2000]

x y

x z

(Chen)

Tile Complexity

• Tile Complexity is the Number of tile types to construct a shape

• Need to minimize the tile complexity

• Implementation constraints

• There are only 4 bases to play with in DNA

• More number of tile types: longer DNA strands
• High cost and more errors



Linear Deterministic Tile Assemblies of length N
Using N tiles

1 2 N3 4• Linear sequence of N tiles

• Can be used in nanostructures as beam and struts

L-TAM Tiling Model for Linear Assemblies

• L-TAM is a simplified version of TAM Tiling Model for linear 
assemblies

• Linear assemblies have no co-operative binding

• Pads on only the East and West side of tiles

• Tiles bind iff their pads match CA B

CA B



Output of Deterministic Tiling systems
• Output of a tile system is the final shape assembled

• Answer to the instance of problem being solved

• For a system under TAM:

• Exactly one final shape is produced

• One output for an instance of a problem

• Reason: at any given position in a partial assembly, exactly one tile 
type can attach

• Deterministic constraint of TAM

Tile Complexity of Assembly of Given Size or 
Shape

Assume TAM model of Tiles
•Size  Problem:
•Given shape with defined size, assemble (with give size) 
using smallest number of tiles.

•Examples:
•Linear Assembly Problem: 
•given length N, assemble a 1 x N rectangle

•Square Assembly Problem: 
•given length N, assemble a N x N square

•Shape Problem:
•Given shape with defined size, assemble shape (of any size) 
with smallest number of tiles.



Results in Deterministic Tiling 
Assembly

• Efficiently assembling basic shapes with 
precisely controlled size and pattern:
– Constructing N X N squares with O(log n/log log n) 

tiles. [Adleman, Cheng, Goel, Huang,2001]

– Perform universal computation by simulating BCA. 
[Winfree 2099]

– Assemble arbitrary shape by O(Kolmogorov 
complexity) tiles with scaling. [Soloveichik, Winfree 2004]

Results for Deterministic Tiling Complexity
•Assume TAM model of Tiles (temperature τ)
•Deterministic Tile Set: 

• require that only one assembly be possible for given set of tiles

•Linear Assembly Problem: temperature τ=1
•given length N, uniquely assemble a 1 x N rectangle
•has tile complexity Θ(N)

•Square Assembly Problem: 
•given length N, uniquely assemble a N x N square

•Temperature τ=1
•Rothemund & Winfree: 

•has tile complexity: O(N2)

•Temperature τ=2
•Rothemund & Winfree: lower bound at least Ω(log(N)/loglog(N)).
•Rothemund & Winfree: upper bound at most O(log(N))
•Adelman: upper bound improved at most O(log(N))/loglog(N)))
•    => has tight bounds on  tile complexity: Θ(log(N))/loglog(N)))



Deterministic Temp τ=1 Tiling Complexity

•Linear Assembly Problem: temperature τ=1
•given length N, uniquely assemble a 1 x N rectangle
•has tile complexity Θ(N)

•Square Assembly Problem: 
•given length N, uniquely assemble a N x N square

•Temperature τ=1
•Rothemund & Winfree: 

•has exact  tile complexity: Θ(N2)

Deterministic Temp τ=1 Square Tiling 
Complexity
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[Rothemund & Winfree, 2000]

•Square Assembly Problem: 
•given length N, uniquely assemble a N x N square

•Temperature τ=1
•Rothemund & Winfree: Upper Bounds:

•has tile complexity at most O(N2)



Deterministic Temp τ=1 Square Tiling Complexity

Square Assembly Problem: 
•given length N, uniquely assemble a N x N square

•Temperature τ=1
•Rothemund & Winfree: Lower Bounds:

•has tile complexity at least Ω(N2)
•=> has exact  tile complexity: Θ(N2)
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[Rothemund & Winfree, 2000]

Deterministic Temp τ=2 Square Tiling Complexity

[Rothemund & Winfree, 2000]
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(Temp τ=2) Counter Assembly in 2D 
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• Assembling a Counter using 7 tiles [Rothemund & Winfree, 2000]

• Can use Counter Assembly  to count up to N using O(log N) tiles

Deterministic Temp τ=2 Square Tiling 
Complexity Results

•Temperature τ=2

•Rothemund & Winfree: at most O(log(N))

•Adelman: at most O(log(N))/loglog(N)))

•Rothemund & Winfree: at least Ω(log(N)/loglog(N))
•    => has tile complexity: O(log(N))/loglog(N)))



Deterministic Temp τ=2 Square Tiling Complexity

(Figure from Patitz, 2012)

•Rothemund & Winfree: tile complexity at most O(log(N)) for 
assembly of N x N square

42 M.J. Patitz

height (and width) of the counter, and to finally fill in below the diagonal to
finish the formation of the square.

Fig. 6. The high level schematic for building an n×n square using O(log n) tile types

In [2], the previous construction for squares was improved to requiring the

slightly fewer O
(

logn
log logn

)
tile types, which was also shown to be a matching

lower bound (for almost all n).

Finite Shapes. In order to build any given finite shape, it is trivial to define a
tile assembly system which will assemble it: simply create a unique tile type for
every point in the shape so that the glue between each tile and each neighbor
is unique to that pair in that location. Obviously, however, this is the worst
possible construction in terms of tile type complexity. In [41] it was shown that
the tile type complexity for a finite shape S is bounded above and below by the
Kolmogorov complexity of the shape, as long as the shape can be scaled up. For
the upper bound they provide a construction which uses, in each c × c square
which represents a single point in the original shape (where c is dependent upon
S), a Turing machine to read the compressed definition of the shape (from which
the tile complexity arises) and then form output sides to that c× c square which
initiate the growth of the necessary squares representing neighboring locations.

Computations. Beyond just the relatively simple simulation of a Turing ma-
chine on a single input, there have been additional results exploring the power
of computation within the aTAM. In [35] it was shown that a set of natural
numbers D ⊆ N is decidable if and only if D × {0} and Dc × {0} weakly self-
assemble. That is, the canonical representations of D and the complement of D

Deterministic Temp τ=2 Square Tiling Complexity
For Self Assembly of a N x N square using O(log(N)) tiles.

(Figure from Chandran, 2010)

Rothemund & Winfree: tile complexity at most O(log(N)) for assembly of N x N square

Figure 2: (i) N ×N Square using O(logN) tile types. (ii) Pads for N ×N Square using O(logN) tile types. (iii)
Increment and Copy Tiles for Base d. The border tiles are not shown. The number of tile types is Θ(d).

twenty three other tiles independent of the dimension. Recall that the thermodynamic parameter
τ is set to 2. The seed row tiles (input tiles), Θ(logN) in number, account for almost all of the
descriptional complexity of the shape. They initiate the assembly by encoding the binary number
to start counting from. The leftmost (rightmost) column of the counter is built using border tiles
with no binding attachments to other counter tiles on the West (East) side thus restricting the
counter to a finite width. A pair of rows of the counter encode the same binary number, where
the top row copies the bottom row. The copy row conserves the fixed width nature of the counter
while at the same time propagating the appropriate carry bit. This copying is achieved by two
copy tiles while the increment operation is implemented by four increment tiles analogous to
those in Fig. 1. The counter halts when the leftmost bit rolls over from 1 to 0, indicated by a tile
with a null pad (φ) on its North side. There are two pairs of diagonal building tiles which form
a staggered diagonal from the seed tile. The rest of the square is completed with two filler tiles
giving a N ×N square for any given N using O(logN) tile types. For more details see Rothemund
and Winfree (2000).

The tile complexity for assembling an N × N square was reduced to O( logN
log logN ) by Adleman

et al. (2001), asymptotically matching the information theoretic almost always lower bound of
Ω( logN

log logN ). Analogous to the Rothemund and Winfree (2000) construction, a counter is used to
assemble a thin rectangle that is extended to a square. The difference being, counting is now
performed in a higher base which reduces the number of tile types required to form the seed row.
Recall that the seed row needs to be composed of distinct tile types which accounts for most of
the tile complexity of the system. Fig. 2 (iii) illustrates Θ(d) tile types for fixed width counting
in base d, apart from the seed row. By choosing d = ⌈ logN

log logN ⌉ we can assemble N × N squares
for any given N using O( logN

log logN ) tile types. For more details see Adleman et al. (2001). We shall
use this basic construction in the next section for building squares of dimension close to a given
target N using exponentially lower number of tile types.

5 Constructing ϵ-Approximate Squares
Optimally concise tile sets for self-assembly of squares of exact size N have been well studied
and the lower bound achieved, leaving no more room for improvement beyond constant factors.

6



[Rothemund & Winfree, 2000]
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Rothemund & Winfree: Construction of assembly of N x N square with tile complexity 
at most O(log(N)).
• The counter assembly (in grey on upper left of N x N square) has height N-n and width n = log(N). 
• The diagonal continues distance n below the counter assembly, to form square assembly of total width 

and height (N-n)+n=N.

Let n= ceiling(log N)

Deterministic Temp τ=2 Square Tiling Complexity
For Self Assembly of a N x N square using O(log(N)) tiles.

Theorem [Adleman] Assembly of Temp τ=2 Square 
Tiling set requires at most O(log(N)/loglog(N)) tiles
Proof idea:
• Given N, need to construct tile set that uniquely assembles to 

an N x N square. Let n=log(N).
• Use n/log(n) = log(N)/loglog(N) tiles to encode number N-n by 

using base b=log(log(N)/loglog(N)) encoding of number N-n.
• Form N x N square assembly in 3 stages:

• “Unpack” these log(N)/loglog(N)) tiles : Do base conversion from base 
log(N) encoding of number N-n to binary encoding.

• Again: use Binary Counter construction to go from binary encoding of N-n 
to unary encoding of length N-n. The counter assembly (in grey on 
upper left of N x N square) has height N-n and width n = log(N). 

• The diagonal continues distance n below the counter assembly, to form 
square assembly of total width and height (N-n)+n=N.

Deterministic Temp τ=2 Square Tiling Complexity
For Self Assembly of a N x N square using O(log(N)/loglog(N)) tiles.



“Unpack” encoding of number N to length N assembly
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(C) Convert 031 in base 4 to 001101 in base 2.
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Deterministic Temp τ=2 Square Tiling Complexity
For Self Assembly of a N x N square using O(log(N)/loglog(N)) tiles.

Assembly communication through  diagonal to convert rectangle to square
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Deterministic Temp τ=2 Square Tiling Complexity
For Self Assembly of a N x N square using O(log(N)/loglog(N)) tiles.



Lower Bounds on Tile 
Complexity

• Consider assembling a line of length n
– Need at least n different tiles (high design complexity)

• Suppose tiles B and F are the same.Then we can “pump” the line 
segment BCDE into an infinite line

• Are we doomed? No. Can assemble thicker rectangles more 
efficiently

• Consider assembling an n x n square
– The average Kolmogorov complexity (the smallest program size to 

produce a desired output) is log n bits
• Thus, k log k = W(log n), or k = W(log n/log log n)

B C D E F G H IA B C D EB C D EB C D E

Lower Bounds on Tile complexity for 
Deterministic  linear assemblies of length N

• Lower bound in L-TAM is Ω(N) tile types

• Reason: if a tile repeats, the sequence between the two tiles is 
pumped infinitely

• Can we modify TAM to get linear assemblies of length N using less 
than N tile types?

Repeats



The Kolmogorov complexity K(N) of an integer N with respect to a Turing 
Machine (TM) is the smallest length TM that encodes N.

•Known result by Kolmogorov:  K(N) = Θ(log(N)/loglog(N))
•Proof uses base log(N) encoding of number N

Theorem [Rothemund & Winfree] Temp τ=2 Assembly of Square Tiling 
requires at least Ω(log(N)/loglog(N)) tiles almost always
          => so Temp τ=2 Square Tiling has tight bounds on tile complexity:
    Θ(log(N))/loglog(N)))
Proof by contradiction:
Given a tile set S claimed for assembly of N x N square:
 can construct unique assembly of an N x N square
 => so can determine N
Suppose:
Temp τ=2 Square  Tiling Complexity is |S| <  c log(N)/loglog(N)) for any 
constant c.
=> Then can encode N by less than K(N) = Θ(log(N)/loglog(N)), a 
contradiction. QED

Lower Bounds for Deterministic Tiling Complexity
Temp τ=2 Square For Self Assembly of a N x N square:

Matching Lower Bounds

Theorem [Chandran, Gopalkrishnan, Reif] Approx Temp τ=2 Assembly of Square Tiling size 
(1+ε)N x  (1+ε)N using O(d+(loglog(εN)/logloglog(εN)) tiles where d=(log(1/ε)/loglog(1/ε)
     

Approximate Assembly Technique: Assemble instead a L x L square where L 
drops last n-k bits of accuracy:
 Will be ε-approximation of an N x N square, where (1-ε)N < L < (1+ε)N 
Given input N, let
 N1 = floor((N- (floor(logdN))/2) = bnbn-2…b0  base d encoding 
   where n=(logdN1)+1 (note is about ½ of N)
 N2  = bnbn-2…bn-k0n-k base d encoding with last n-k symbols= 0
  and k = floor(logd(1/ε))+1
 N3 =1 0n-k - N2 = cn-1 cn-2 … cn-k  0n-k with last n-k symbols = 0
 m= ceiling(log(n-k)/loglog(n-k))

Then Assemble a L x L square where L is just over size (2N2+n)

Harish Chandrann Nikhil Gopalkrishnan and John Reif, Tile Complexity of 
Approximate Squares and Lower Bounds for Arbitrary Shapes, Algorithmica, 
Volume 66, Issue 1 (2013), Page 1-17 (2013)

Deterministic Temp τ=2 Square Tiling Complexity
For Self Assembly of squate of Approximate Size N x N



Approximate Deterministic Temp τ=2 Square  Tiling

However, if we are allowed some error in side length, say by an additive fractional factor ϵ (±ϵN ),
we can design significantly more concise tile sets for squares. We describe such tile sets in
this section. Our tile sets satisfy exactly the rules of the Tile Assembly Model of Rothemund
and Winfree (2000). In particular, each tile set is diagonal and produces a unique terminal
configuration in the shape of a square. Thus, the improved tile complexity we achieve can be
compared with the optimal tile set for exactly sized self-assembled squares and the difference
attributed precisely to the notion of approximation introduced by us.

5.1 Construction

Figure 3: Components of the construction: (i) Seed column for the major counter. (ii) L-shaped seed assem-
bly. (iii) Assembly of the minor counter. (iv) Completing the seed column using the 0 tile type. (v) Assembly
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Figure [Chandran, Gopalkrishnan, Reif] Assembly of Minor Counter 
from L-shaped seed assembly: using m tile types
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An L × L square is called an ϵ-approximation of an N × N square iff (1 − ϵ)N ≤ L ≤ (1 + ϵ)N .
Since the size of any self-assembled square is integral, the error term ϵN vanishes for N < 1

ϵ and
hence we only consider N ≥ 1

ϵ . We now describe our construction for an ϵ-approximation of an

N ×N square using O
(

log 1
ϵ

log log 1
ϵ
+ log log ϵN

log log log ϵN

)
tile types. Let d be a carefully chosen integer that we

shall use as a base for a counter assembly described later. Given a number N , we construct a
square of size L with (1−ϵ)N ≤ L ≤ (1+ϵ)N for all sufficiently large N . Let N1 = ⌊(N−⌊logd N⌋)/2⌋.

7

Approximate Deterministic Temp τ=2 Square  Tiling

[Chandran, Gopalkrishnan, Reif] Assembly of Major Counter:
Is n x 2N2 rectangle

Uses column representing d-ary encoding of 
N3 =1 0n - N2 = cn-1 cn-2 … cn-k  0n to count up to 1 0n (with n 0s) in base d

However, if we are allowed some error in side length, say by an additive fractional factor ϵ (±ϵN ),
we can design significantly more concise tile sets for squares. We describe such tile sets in
this section. Our tile sets satisfy exactly the rules of the Tile Assembly Model of Rothemund
and Winfree (2000). In particular, each tile set is diagonal and produces a unique terminal
configuration in the shape of a square. Thus, the improved tile complexity we achieve can be
compared with the optimal tile set for exactly sized self-assembled squares and the difference
attributed precisely to the notion of approximation introduced by us.

5.1 Construction

Figure 3: Components of the construction: (i) Seed column for the major counter. (ii) L-shaped seed assem-
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of the major counter.
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[Chandran, Gopalkrishnan, Reif] 
Diagonal and filler tiles complete approximate square of length L = 2N2+m+n

  

All the East pads on the vertical column (except the top two) are identical and match the
corresponding pads on the filler tiles. All the North pads on the Northern boundary of the
major counter are identical (except the Eastern most) and match the corresponding pads
on the filler tiles. The vertical column to the East of the major counter can be achieved with
just three tile types, two for the top two tiles and one for the rest. Both the parts of the AB
diagonals require two tile types each. Two types of filler tile types are required, one fills the
area above the diagonal and another fills the area below. Thus, the number of tile types
used in this component is 10.

5.2 Analysis

Figure 4: Diagonal and filler tiles complete the approx-
imate square of length L = 2N2 +m+ n.

We will first argue that our construction yields
a unique terminal assembly in the shape of a
square. Then we will show that an appropri-
ate choice of the base d for the major counter
gives us a construction of the claimed size and
number of tile types. The first component, the
L-shaped assembly, clearly uniquely assem-
bles into the shape illustrated in Fig. 3. The
minor counter and the major counter are im-
plemented exactly as described in Fig. 2(iii),
apart from some blunt pads on the bound-
ary being changed to distinct pads that do
not have any binding with any other pads in-
volved in the assembly of the counter. The cor-
rectness of these counters have already been
proved previously (see Rothemund and Win-
free (2000); Adleman et al. (2001)). By using
distinct pad types for the two counters, and
the L-shaped seed assembly, we ensure they
do not have any undesired interactions. Fi-
nally, the diagonal and filler tiles are few in
number (only 10) and their correctness can be
verified by the reader.

Lemma 1. The construction described in section 5.1 produces a unique terminal L× L square.

The choice of the base d affects the number of tile types in the vertical arm of the L-shaped
seed assembly and also the number of tile types used in the major counter. A bigger value for d
reduces the number of tile types used for the vertical arm, but increases the number of tile types
in the major counter, while a smaller value does the opposite. We balance these two factors by
choosing d = ⌈ log 1

ϵ

log log 1
ϵ
⌉. Note that this value, and hence the number of tile types for the major

counter, is independent of N .

Theorem 1. For the construction described above, for all ϵ ∈ (0, 1
4 ] and sufficiently large N , a choice

of d =
⌈

log 1
ϵ

log log 1
ϵ

⌉
produces a unique terminal L × L square where (1 − ϵ)N ≤ L ≤ (1 + ϵ)N and uses

O
(

log 1
ϵ

log log 1
ϵ
+ log log ϵN

log log log ϵN

)
tile types.

Proof. Recall that L = m + 2N2 + n; d =
⌈

log 1
ϵ

log log 1
ϵ

⌉
; N1 =

⌊
N−⌊logd N⌋

2

⌋
; m =

⌈
log(n−k)

log log(n−k)

⌉
; n =

⌊logd N1⌋+ 1 and k =
⌈
logd

1
ϵ

⌉
+ 1. Also, n− k = ⌊logd N1⌋+ 1−

⌈
logd

1
ϵ

⌉
− 1 ≤ logd(ϵN1)

Claim 1: For all ϵ ∈ (0, 1
4 ] and all sufficiently large N , L ≤ (1 + ϵ)N .

We first upper bound n, m and 2N2:
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Theorem [Chandran, Gopalkrishnan, Reif] Approx Temp τ=2 
Assembly of Square Tiling size (1+ε)N x  (1+ε)N requires Ω 
(d+(loglog(εN)/logloglog(εN)) tiles almost always, where 
d=(log(1/ε)/loglog(1/ε)

Case 1: ε > 1/4: Lower bound is within constant factor of exact case

Case 1: ε < 1/4: use Kolmogorov complexity lower bound argument

Proof by contradiction:

Given a tile set S claimed for ε-approximate assembly of N x N square:
 
Can construct unique assembly of an L x L square
 Which is ε-approximation of an N x N square, where (1-ε)N < L < (1+ε)N 
 So can determine first n=floor(L)+1 > floor(log(N)) bits of N
=>Can show violates Kolmogorov complexity lower bound for encoding n bit number.
QED

Approximate Deterministic Temp τ=2 Square  Tiling



Randomized  Tile Complexity 
of Linear Assemblies

Harish Chandran, Nikhil Gopalkrishnan, John Reif

Harish Chandran, Nikhil Gopalkrishnan, and John Reif, The Tile Complexity of Linear 
Assemblies, SIAM Journal of Computation (SICOMP), Society for Industrial 
Mathematics, Vol. 41, No, 4, pp. 1051-1073, (2012).

• We extend TAM to incorporate stochastic behavior
• We study linear assemblies in this new model:
      The Probabilistic Tile Assembly Model (PTAM)

Multiple Possible Outputs of tiling systems
For Randomized Assemblies

• We relax this constraint

• Result: many final shapes can be produced

• Many outputs for an instance of a problem



Probabilistic Tile Assembly Model (PTAM)

• Make	tile	attachments	non-deterministic

•Multiple tile types can attach to a given position in a partial 
assembly

•  We allow the tile set to be a multiset, i.e., each tile type can occur 
multiple times
• Example: {A,B,C,C,C,C,D}

• The multiplicity of each tile type indicates the tile type’s 
concentration    
• Example: {1:1:4:1}

Probabilistic Tile Assembly Model (PTAM)



• At each stage of the assembly and at each growth position, a tile is 
chosen from the multiset with replacement

• If the tile can bind at that site, it does, else another tile is chosen 
until no tile can be added

• Output of a tiling system is a set of shapes

• For linear assemblies, we define the output of a tiling system as 
the expected length of linear assemblies it produces

Probabilistic Tile Assembly Model (PTAM)

How does this affect the lower
bound of linear assemblies?

• More than one tile can attach at a given spot
• So repeats can occur, yet the system can halt

• Notation: Arrows indicate probabilistic tile attachment with equal 
probability

Repeats
Halt

Both the tiles can attach to the red tile, 
probability of attachment depends on relative 

concentration

Repeats

Halt



Example: a three tile PTAM system for 
linear assemblies of expected length N

Tile Multiset for 
the above system:

CONC: 1/(N-1)

G
S

H

Growth

Halt

CONC:  (N-2)/(N-1)

CONC:       1/(N-1)

More on tile multisets
• By making the tileset a multiset, we implicitly encode information 
about the concentration of tile types

• Cardinality of a tile multiset is a true indicator of the information the 
tile set encodes

• Cardinality of a tile multiset is the descriptional complexity of the 
shape

• Though the previous example had only 3 tile types, the tile multiset 
had N tiles in it

• No improvement from deterministic scenario



Linear assemblies of expected length N in PTAM
• We first show a construction using O(log2 N) tile types

• Then we show a more complex construction using O(log N) tile 
types

• Next we show a matching lower bound Ω(log N) tile types are	
required	to	build	linear	assemblies	of	expected	N

•Methods	for	constructing	linear	assemblies	of	length	N	with	
high	probability	using	O(log3	N)	tile	types	for	infinitely	many	
N

Linear assemblies of expected length N using 
O(log2 N) tile types

• We show how to construct linear assemblies of expected length N 
using O(log N) tile types for any N that is an exact power of 2

• We then describe a method to extend this construction to all N 
using O(log2 N) tile types



Powers of two construction

• Restarts with addition of  BiTi tile complex after TiB

• Goes forward with addition of  T(i+1)AT(i+1)B tile complex after TiB

• Each happens with equal probability

• Process akin to tossing a fair coin till we see n-2 consecutive heads

•Probabilistic branching system shown above using tile multiset of 
cardinality O(n) has: Expected length = 2n

Linear assemblies of expected length N using 
O(log2 N) tile types

• We extend this to any N by:

• Considering the binary representation of N = b020+b121+b222+…bn2n, 
where n = floor(log(N)).

• Constructing assemblies of expected length equal to numbers 
represented by each 1 in the binary representation of N
• Each of these is a ‘powers of two’ construction

• Deterministically concatenating these assemblies

• Each subassembly requires O(log N) tile types and there are a 
maximum of O(log N) of these

• Thus total number of tile types = O(log2 N) 



Linear assemblies of expected length N using 
O(log N) tile types

• Key idea: E[# Tk-1 appears] = ½ E[#Tk appears]

• Restart bridge Bk-1 appears other half of the time

• We use this property and make some links deterministic

• Observation: Every time we branch, expected number of times the 
next tile appears is halved, if we don’t branch, the expectation remains 
the same

Linear assemblies of expected length N using 
O(log N) tile types

• Key idea: Any number N can be written in an alternate binary 
encoding using {1,2} instead of {0,1}

• For example 45 = (101101){0,1} = (12221){1,2}

• 1x25 + 0x24 + 1x23 + 1x22 + 0x21 + 1x20 = 45
• 1x24 + 2x23 + 2x22 + 2x21 + 1x20 = 45
 
• Observation: The number of bits in this new encoding of N is at 
most log N.

• We illustrate this technique using an example



Example: Linear assemblies of expected length 91

Number of tile types required : O(log N)

• To get 91, we find the alternate encoding of floor(91/2) =45
• 45 = (12221){1,2}

• For the bits that are 2, we construct complexes of size 4
• Deterministic links, expectation stays same

• For bits that are 1 we construct complexes of size 2
• Probabilistic links, expectation is halved

• We add a prefix tile if N was odd to compensate for the floor 

Lower bounds for linear assemblies

• Can we do better than O(log N)?
• NO!

• Proof sketch:

• Split each run of a tile set with n tile types into
• Intermediates
• Prefix

• Simulate each segment using fewer number of tiles

• Can show through a recursive argument on each of these segments 
that maximum length is O(2n)



Lower bounds for linear assemblies

• Thus, for each N, the cardinality of tile multiset to construct a linear 
assembly of expected length N is Ω(log N)

 
• Notice that this bound is true for all N

• Stronger than the usual Kolmogorov complexity based lower bounds 
that holds only for almost all N

A B

k-pad Tiles
• A simple extension to PTAM is the k-pad PTAM system

• Each tile now has k-pads on each side

• Possible implementation via DDX or origami

• This allows more choices for binding with a tile

• Tiles bind if at least one of their corresponding pads match

•Note that the descriptional complexity in 2-pad PTAM is still the 
cardinality of the tile multiset
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Linear assemblies of expected length N using 
Oi.o( log N/ log log N) k-pad tile types 

• The system shown below is akin to tossing a biased coin     (Head : 
Tail :: 1 : n) till we get n successive heads

• Expected number of tosses for this : n2n

• We can get linear assemblies of expected length N using  a tile 
multiset of cardinality O(log N/ log log N) 2-pad tiles for infinitely 
many N

Lower bounds for k-pad systems
• Can we do better than O

i.o
( log N/ log log N)?

• NO!

• Proof sketch:

• Convert any k-pad tile system into a graph
•Tiles -> vertices      
•Possible attachments -> edges

• Self-assembly is a random walk on the graph

• Expected length of the assembly is the expected time T to first 
arrival to the vertex for the halting tile

• This can be solved as a system of linear equations

• Bound first arrival time T by a ratio of determinants of size NO(logN)



Lower bounds for k-pad systems

• Thus, for each N, the cardinality of tile multiset to construct a linear 
assembly of expected length N using k-pad tiles for any given k is 
Ω(log N/ log log N)

 
• As before, this bound is true for all N
• Stronger than the usual Kolmogorov complexity based lower 
bounds that holds only for almost all N

Distribution and tail bounds
• We constructed linear assemblies of given length in expectation
• What about the distribution of lengths?

• We can concatenate k assemblies each of expected length N/k 
deterministically to improve tail bounds

• By central limit theorem, as k grows large, the distribution approaches 
the standard normal distribution

• We get an exponentially dropping tail for a multiplicative increase in 
the tile set cardinality

• If k = N, we get a deterministic assembly (degenerate distribution)

• This is illustrated in the following examples



Example: 5 consecutive heads

Avg = 62

Example: 10 consecutive heads

Avg = 2063



Example: 8 concatenations of 7 consecutive 
heads (similar to 10 consecutive heads)

Avg = 1989

Example: 32 concatenations of 20 consecutive 
heads (similar to 25 consecutive heads)

Avg = 66,821,038



Summary
• Introduced the Probabilistic Tile Assembly Model
• k-pad systems 

• Studied the tile complexity of linear assemblies

• Showed how to construct linear assemblies of expected length N 
using O(log N) tile type

• Proved that this is the best one can do by deriving a matching 
lower bound

• Proved analogous results for k-pad systems

• Provided a method to improve tail bounds

Future directions

• Tightened tail bounds

• Running time analysis of all the systems described earlier

• Error correction in PTAM systems for linear assemblies 

• Experimental Implementation of the DNA tile assemblies in the 
laboratory


