
On the Computational Power of DNA Annealing and Ligation�May 25, 1995Erik WinfreeyComputation and Neural SystemsCalifornia Institute of TechnologyPasadena, California 91125, USAemail: winfree@hope.caltech.eduAbstractIn [Winfree] it was shown that the DNA primitives of Separate, Merge, and Amplify were not su�cientlypowerful to invert functions de�ned by circuits in linear time. Dan Boneh et al [Boneh] show that theaddition of a ligation primitive, Append, provides the missing power. The question becomes, \How powerfulis ligation? Are Separate, Merge, and Amplify necessary at all?" This paper proposes to informally explorethe power of annealing and ligation for DNA computation. We conclude, in fact, that annealing and ligationalone are theoretically capable of universal computation.1 IntroductionWhen Len Adleman introduced the paradigm of using DNA to solve combinatorial problems [Adleman], hiscomputational scheme involved two distinct phases. To solve the directed Hamiltonian path problem, he�rst mixed together in a test tube a carefully designed set of DNA oligonucleotide \building blocks", whichanneal to each other and are ligated to create long strands of DNA representing paths through the givengraph. After this ligation phase, there ensue n steps of a�nity puri�cation, whereby exactly the strandsrepresenting Hamiltonian paths are separated into a test tube (\the answer").Richard Lipton [Lipton] subsequently re�ned the formalism for DNA-based computation. He did away withAdleman's �rst phase, ligation, and replaced it by starting all computations with a �xed set of DNA strandsrepresenting all n-bit strings. Lipton expanded on Adleman's second phase, separation, where he showedhow all solutions to a given boolean formula f can be separated into a test tube (\the answer"). Thecost for the generality of this method is indicated by considering solving the Hamiltonian path problem: astraightforward method1 takes about n3 separation steps using Lipton's approach, compared to the n stepsused by Adleman.�To appear in the Princeton DIMACS Technical Report on the April 4, 1995 workshop on DNA-based computers.yThis work is supported in part by National Institute for Mental Health (NIMH) Training Grant # 5 T32 MH 19138-05;also by General Motors' Technology Research Partnerships program.1Let the graph have n vertices and e edges; e � n2. The best boolean circuit I could devise uses O(en logn) gates to verifya Hamiltonian path. Another issue is that Adleman's ligation phase requires the synthesis of about O(n+ e) oligonucleotides,which is O(n2) if e = O(n2); whereas Lipton needs only about 4n log n oligonucleotides to create his standard initial test tubeof DNA. However, technology is becoming readily available for synthesizing many oligonucleotides in parallel very quickly (seee.g. [Chetverin]); the same cannot be said for the a�nity puri�cation steps, which will likely remain expensive. Comparingvolume for a graph with n=2 edges out of each vertex, Adleman's method uses volume roughly proportional to (n2 )n, whileLipton's method uses a volume of 2n log n, since it takes n log n input variable bits to specify a potential path.1



We can conclude from this circumstantial evidence that much of the physical computational power Adlemanwas exploiting was in his �rst phase, where annealing and ligation were used. Lipton has explored the powerof generalizing Adleman's second phase; we would like now to explore the power of generalizing Adleman's�rst phase.An immediate stumbling block is that the chemistry of annealing is not fully understood. At best we can tryto de�ne some conditions under which the reactions are predictable, or at least under which it is reasonableto expect that the reactions could be made to be predictable.2 Some Basic Annealing ReactionsThe fundamental chemistry of DNA is based on the double helix and the principle of complementarity.Each strand of DNA is a covalently linked polymer, where each unit consists of a constant part (the sugar-phosphate \backbone") and one of either adenine, thymine, cytosine, or guanine (the bases A, T, C, G).Each strand is oriented; it has a 3' and a 5' end. When DNA forms a double-stranded helix, the strands mustbe anti-parallel, and complementary bases align (A with T, C with G); such strands are called Watson-Crickcomplementary sequences. DNA also takes on more complicated con�gurations, including triple helix, quadhelix, super-coiled, and branched.A surprising number of possibilities are available, some of which one may want, and many of which one maynot want. DNA is a particularly easy molecule to work with, because it has evolved to be stable, typicallyunreactive, yet manipulable. RNA and protein, which have evolved to serve many enzymatic functions, arefar more reactive, and thus it is less easy to predict how novel designs will behave in an experiment.I will now comment on some reactions we may wish to exploit, presented in cartoon fashion (Figure 1).I will have to be more detailed with the reactions involved in the main thrust of this paper, where theircomputation-universality is demonstrated.(A) This is the canonical annealing reaction for DNA. Two strands with complementary subsequences willform hydrogen bonds and hybridize at the matching base pairs. The rate constants for this reaction,which is reversible, depend on the temperature and salt concentrations, among other things. Themelting temperature, above which the complex is not stable, depends upon the number of matchingbase pairs.(B) A special case of the above, where the matched region occurs at the ends. Note that the two \stickyends" (unmatched sequences) are available for further reactions with more DNA.(C) The above reaction can be used to join two double-stranded DNA molecules with complementary stickyends. If ligase is present in the solution, the nicks in the backbone of the product will be repaired bythe formation of a covalent bond, resulting in two continuous strands.(D) If mismatches occur 
anked by matching regions, the unmatched DNA can bubble out.(E) As above, except that the mismatch occurs here on both sides. Whether this structure is stabledepends critically on the temperature and concentration of salts. For example, a rule of thumb isthat the di�erence in melting temperature between a perfectly matched structure and an imperfectlymatched structure is 1 degree per 1% mismatch [Wetmur].(F) This is the simplest DNA branched junction. The assembly of these structures consists of course ofsequential steps; only the end product is shown. This 3-armed junction is probably 
oppy. However,how 
oppy it is depends upon the exact sequence of base pairs in the oligonucleotides.(G) This 4-armed junction is commonly known as a Holliday junction. The two horizontal strands tendnot to be parallel, but skew. If the sequences along both strands are homologous, then a phenomenoncalled branch migration can occur, in which the crossover point drifts right or left.2



(H) This is the most complicated structure we will consider. We will put it to good use later. It hasbeen found to be fairly rigid and planar [Fu1]. Note the sticky ends. Other related double-crossoverjunctions are possible, depending upon the number of half-turns present in the helical regions. NedSeeman calls this molecule \DAE" for double-crossover, antiparallel helical strands, even number ofhalf-turns between crossovers. \DAO", with an odd number of half-turns between the crossovers, hasan interesting topological di�erence: It consists of only 4 strands.Figure 1. Some basic types of annealing reaction.(A)
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Figure 1: Curves represent single strands of DNA oligonucleotide. The half arrow-head represents the 3' end ofthe strand. Small lines between strands represent hydrogen bonds joining the strands. The helical structure of theDNA is not represented visually. Letters signify sequence motifs. A bar above a letter signi�es the Watson-Crickcomplement of the motif.All of the structures above have been made in the lab and their structures veri�ed (see, for example, [Fu1]).We would ultimately like a theory which could tell us, given a set of oligos, a temperature, and salt concen-trations, what stable structures will form, as well as the kinetics. But this is a very complex task!3



3 Operations using linear DNAWe will �rst brie
y consider what computations can be performed using annealing and ligation of strictlylinear DNA molecules. Many of the possibilities have already been discussed by other authors. For exam-ple, the techniques used by Adleman [Adleman] allow for the construction of all DNA representing stringsaccepted by a �nite-state automata (also known as a regular language), using the annealing reactions (B)and (C) above. This is important, because it allows us to create a well-de�ned, somewhat interesting set ofinputs on which to compute in parallel. Beaver has discussed how, in conjunction with polymerase, reactions(D) and (E) can be used to make copies of DNA with context-sensitive insertion, deletion, and replacementof substrings. In light of these powerful operations, it seems plausible that a \one-pot" linear DNA reactioncould be designed which performs universal computation.4 Operations using branched DNAThere are many possibilities for computation using branched DNA. However, since the general chemistry isnot well understood, we will try to avoid ungrounded speculation by focusing on one concrete possibility.The rest of this section2 will concentrate on how to assemble a large \weave" of branched DNA3 whichsimulates the operation of a one-dimensional cellular automaton.4.1 Background: Blocked Cellular AutomataThis section develops a formal model of computation called blocked cellular automata4 (BCA). We will latershow how BCA can be simulated by DNA.The operation of a BCA is diagrammed in Figure 2. As in the Turing Machine model, information is storedin an in�nite one-dimensional tape, where each cell contains one of a �nite set of symbols. The computationproceeds in steps, where in each step the entire tape is translated, according to a given rule table, into a newtape. The translation occurs locally and in parallel; pairs of two cells are read, and which two symbols arewritten is governed by look-up in a rule table5. It is of critical importance that the reading frame (whichcells are paired together) strictly alternates from step to step.The set of entries f(x; y) ! (u; v)g is called the rule table, or the program, of the BCA. By appropriatelydesigning the rule table, the BCA can be made to perform useful computation. In fact, BCA are computa-tionally universal. A BCA with k+3s symbols can simulate in linear time the operation of a Turing Machinewith k tape symbols and s head states { the proof is analogous to that in [Lindgren]. Thus we can concludethat a BCA can be used to answer any question which can be phrased in terms of a computer program.Small BCA have been designed which sort lists of integers, compute primes, and many other tasks.A few more comments are in order concerning the abstract model of blocked cellular automata. First weconsider the �nite-size case. In any attempted implementation of a BCA, we cannot actually construct anin�nite tape. Thus boundary conditions become important. We consider the following cases:(a) No update of boundaries. We start with a �nite tape of length 2n; at each step the tape become 2cells shorter; and after n steps the computation can proceed no further. This case is not universal.(b) Inactive boundary conditions. Whenever there is an unpaired cell at either end of the tape, it is copiedverbatim onto the new tape. The tape remains always the same size (n cells), and thus there areonly kn possible tapes. As the computation must begin to cycle after kn steps, this case is also notuniversal.2The inspiration for this approach comes from the proof of the undecidability of the Tiling Problem (see [Grunbaum],Chapter 11).3This is, clearly, highly speculative, but we hope not ungrounded.4Blocked cellular automata are a 1D version of what To�oli and Margolus call partitioning cellular automata in 2D [To�oli].5If the table contains multiple entries for a given pair of read symbols, then the BCA is said to be nondeterministic.4



Figure 2. Operation of a blocked cellular automaton.
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Figure 2: The tape of a BCA, divided into cells, is shown at the bottom right. Each cell contains one of threesymbols: blank, black dot, or white dot. The tapes at successive time steps are stacked vertically above the initialtape. The inset, left, details the form of a rule table entry, which governs how new tapes are created.(c) Periodic initial conditions. On either side of the input cells we specify a repeating pattern of symbols.Starting with just one copy of the periodic block on either side of the input, computation proceeds asin (a), but if the tape gets too short, we add another copy of the periodic block to either side of theinput tape and start the computation anew6. This case is universal.(d) Self-regulated boundary conditions. Depending upon what symbol is in the boundary cell, the newtape will either shrink (as in (a)) or expand by appending a new cell to the end of the tape. This caseis also universal.Finally, a word on how an answer is obtained from the BCA. This is a matter of convention. Typically, whenthe computation is done, the answer is written on the �nal tape. But how is it known when the computationis done? One possibility is that the tape stops changing; the system has reached a �xed-point. However inthis paper we will consider that a computation is done when a special symbol, called the halting symbol, hasbeen written for the �rst time anywhere on the tape.4.2 Simulation of BCA by DNAWe will now show how to use DNA to construct a BCA. In this section we will optimistically show whatchemical reactions we hope will occur; in the following section we consider potential di�culties in �ndingconditions such that they will in fact occur as we have described.The DNA representation of the BCA tape is a little counter-intuitive, so we will explain by example. Figure 3shows part of the DNA molecule encoding the initial tape (the input to the computation). To each tapesymbol corresponds a short oligonucleotide sequence, which appears in the initial molecule as a sticky endoverhang in the appropriate positions. The rest of the DNA in each segment does not vary with content,and is chosen to maximize structural stability. Note that the reading frame is implicit in the structural formof the DNA. Although Figure 3 is schematic, the 2D picture is meant to imply that the whole DNA complexis roughly planar. This is critical, and luckily, it is physically plausible.There are a variety of ways to make the initial molecule. Note that the initial molecule can be thoughtof as consisting of several double crossover junctions (from Figure 1H, with the modi�cation that the topand bottom strands are made to be an odd number of half-turns in length { see Figure 6 for detail) linkedtogether by pieces of linear helical DNA. The sticky ends can be designed such that only this unique moleculewill self-assemble7. Ligase can be added to make the segments of the initial molecule covalently bonded.6By memorizing boundary cells, we can avoid re-computing any cells and make the computation more e�cient.7It is easy to see that sticky end sequences can be chosen, using the same techniques as Adleman (see Section 3) , suchthat a periodic initial molecule will form, creating periodic initial conditions as mentioned in section 4.1 (c) above. Similarly,a regular language of inputs could be made in parallel. 5



Figure 3. Encoding the initial tape in a DNA molecule.
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B AFigure 3: The sequence of sticky ends in the initial molecule encodes the initial tape of the BCA. Thus `A' denotesa symbol in the BCA diagram, whereas in the DNA diagram it denotes the unique sequence of bases associated withthat symbol.We will now explain how the program, that is the rule table, of the BCA is represented in DNA. For eachrule, e.g. (x; y)! (u; v), we create a double crossover molecule whose sticky ends on one helix are x and y,and on the other helix u and v8 (see Figure 6). All such rule molecules are added to the solution containingthe initial molecule. As shown in Figure 4, what is required for computation is that rule molecules willanneal into position if and only if both sticky ends match.Figure 4. Rule table molecules assemble into the lattice.
A

B C

B C

B

B C

A A C

C B

A C AC A

A

C B

BC

B

CA

A C

C B

A A

AA

Figure 4: We see free-
oating rule table molecules above and the initial molecule at the bottom (both correspond tothe BCA in Figure 2). A rule table molecule, with sticky ends B and C, is about to anneal to the initial molecule. Atthe left, a rule molecule which matches only at A will ultimately not stick. Note that the rule molecule with stickyends A and A will also not stick, because the orientation of its strands is wrong; this rule molecule will be useful onalternate levels of the lattice.Eventually, a triangular lattice of linked DNA will form, simulating a triangular region of a BCA correspond-ing to boundary conditions (a) or (c) in Section 4.1 above (see Figure 5). Boundary conditions (b) and (d)can be simulated by using special rule molecules for the edge of the lattice; the details are not presentedhere. Note that each level of the lattice has a single strand of DNA which travels the entire length of thelattice at that level, and where the coded symbols occur in the sequence in in which they occur in the BCAat time t.Finally we ask, how can we access the output of the computation? This breaks down into two questions:How do we know when the computation is done? And what is on the tape at that point? There are many8The lengths of all parts of the rule molecules are chosen to be constant for simplicity, but it is conceivable that by usingvariable length as well as sequence to encode symbols, greater speci�city could be achieved.6



Figure 5. The DNA lattice resulting from a �nite initial molecule.
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Figure 5: At the chosen annealing temperature, which is above the melting temperature for s base-pair annealing butbelow the melting temperature for 2s base-pair annealing, no more rule molecules can stably attach to this structure.However, if the bottom level (the initial molecule) were extended, then a larger triangle could form. s is the lengthof the sticky ends in the rule molecules.possible approaches to take; here we will merely sketch one. As mentioned above, we will consider thecomputation to be done when a special halting symbol is written on the tape9. In DNA, this corresponds tothe special sticky end motif being incorporated into the lattice. When this occurs, the motif will be presentas a double-stranded molecule for the �rst time, and this site can be be chosen as the recognition domain fora binding protein10, which could, for example, subsequently catalyze a phosphorescent reaction, turning thesolution blue. To determine what is \on the tape" at this point, it is necessary to extract the single strandof DNA corresponding to the �nal level of the BCA. To do this, �rst add ligase to covalently bond all theannealed segments11. Then add resolvase to break all the crossover junctions12. Finally, heat to separatethe strands, and use a�nity puri�cation to extract the strand containing the halting motif. Amplify andsequence that strand however you desire (e.g. via PCR and standard sequencing gels).To summarize the model suggested here, a computation would proceed as follows.1. First, express your problem via computer program. Convert that program into a (possibly nondeter-ministic) blocked cellular automaton.2. Create small molecules (H-shaped and linear) which self-assemble to create the initial molecule (orinitial molecules, if search over a FSA-generated set of strings is desired). Add ligase to strengthen themolecule.3. Create small H-shaped molecules encoding the rule table for your program.4. Mix the molecules created in steps 2 and 3 together in a test tube, and keep under precise conditions(temperature, salt concentrations) as the DNA lattice crystallizes.5. When the solution turns blue, ligate, cut the crossovers, and extract the strand with the halting symbol.6. Sequence the answer.9At this point other parts of the tape will typically \not know" that the computation is done, so the lattice will continue togrow. However, it is also possible to design the cellular automaton such that all cells go into a special state to halt computationat the same time (the Firing Squad Problem, see e.g. [Yunes]), thereby allowing us to design linear pieces of DNA which �t intothe gaps at the �nal level of the lattice, so that it cannot grow further. This may make extraction of the �nal tape con�gurationeasier.10The protein must have an active bound form, and inactive unbound form. Furthermore, we must be sure it doesn't bindto rule molecules in the solution.11It is a valid concern that ligase may not be able to bind to any but the outermost strands in a lattice. It may be better toreverse the order of the ligase and resolvase steps.12Although a resolvase has been shown to cut crossovers in double-crossover molecules [Fu2], it is unknown whether theenzyme will be functional on the inner strands in the lattice. However, the enzyme may be able to, at diminished speed, workfrom the edges in.
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4.3 Analysis and Estimates. Will it work?Let's begin the analysis optimistically. The above construction is just one implementation possible in ageneral class that might be called \crystal computation"13. In this class, we design a system where we cantailor-make the energy (and hence free energy) as a function of the con�guration. We design it such that thelowest energy state (or in our case, the lowest free-energy state at a given temperature) uniquely representsthe answer to our computation. This is closely related to the approach taken by J. J. Hop�eld [Hop�eld]in his seminal work on neural networks. In our case the lowest energy con�guration is one where every rulemolecule has all four sticky ends bound. Given the presence of the initial molecule, this can only occur ifthe computation proceeds as desired.The above analysis is a simpli�cation that fails to take into consideration many aspects of the proposedimplementation. For example, it completely ignores the dynamics involved; one simply anneals at a slowenough schedule, the argument goes, and the crystal is the result. Whereas in fact the crystallization proceedsat the edges only, according to kinetics that signi�cantly in
uence the result.Can a temperature be found such that two sticky ends bound is stable, while one sticky end bound isunstable? In other words, let T0, T1, and T2 be the melting temperatures for a rule molecule �tting into alattice slot where respectively 0, 1, and 2 of the sticky end pairings match. We want to keep the test tubeat a temperature T such that T0 < T1 < T < T2. This should be possible, but how large is the di�erencebetween T1 and T2? Although this is unknown for the particular molecules we use, we can get some idea bylooking at what's known about linear DNA annealing. For example, under standard conditions 20 base-pairoligonucleotides (representing rule molecules with two length 10 sticky ends bound) melt at 70� C, while14 base-pair oligonucleotides (representing rule molecules with only one length 10 sticky end bound, andthe other matching partially) melt at 58� C [Wetmur]. T = 65� C would then discriminate the two cases.However, the analogy of rule molecules with two separate binding domains to variable-length oligonucleotideswith continuous binding domains is questionable.A de�nitive answer to \But will it work?" requires a chemist's knowledge and actual experiments. But wecan immediately bring some more concerns to light. Since I do not have answers to them, I will merelymention them in passing. First, to read out an answer of more than one bit, our implementation requiresligating the rule molecules and cutting them with resolvase. It is not at all clear that, in the crowded con�nesof the DNA lattice, either ligase or resolvase will have room enough to perform its job14. Second, it is possiblethat, at a low rate, incorrect rules will be incorporated into the lattice. If this occurs, the computation isruined. It is thus not clear at this time what yields of correct computation are to be expected, and whethera means could be devised to separate the good from the bad. It is additionally conceivable that stablestructures form in the solution unconnected to the initial molecule. For example, four rules molecules couldconnect in a stable \diamond"; we might think that these complexes will only rarely be formed, because theintermediate steps are unstable (only one sticky end joins molecules), and for similar reasons they wouldgrow slowly. However, they and other types of spurious connections and tangles could form, ruining thecomputation. A �nal concern is that there may be some systematic molecular stress or strain that comesinto play when building a large crystal, and that beyond a certain size tearing would result. All these issues,and surely others, deserve more attention and study.If for the moment we suppose that the implementation operates correctly, let us consider what advantagewould be derived. Take the following with a bucket of salt: First, a small rule molecule (see Figure 6 fora close-up) consists of 50 base-pairs of DNA, su�cient for sticky ends of length 5, which gives us � 10symbols15. That's 33 K Dalton / rule molecule, with a size probably less than 20 x 44 x 85 Angstroms, for3 bits / rule molecule.13It has been suggested that we shouldn't use the term \crystal", because it has a well-de�ned special meaning. At best, ourconstructions yield \pseudo-crystals", because any useful computation is aperiodic. We beg the reader to give us slack in usingthis term.14If there is an angle between the plane of the lattice and a rule molecule which has just �t in place, then in our construction,an opposite angle is formed when a rule molecule �ts into the subsequent layer. Consequently, the 2D lattice, rather than beingperfectly planar, folds back and forth like a paper fan, which we call a \corrugated" lattice. The corrugated lattice exposesmore of the double helix strands in each rule molecule, possibly making the strands more accessible to ligase but making the8



Figure 6. Detail of a small rule molecule.
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Figure 6: This is the smallest DAE/even style rule molecule possible. It has sticky ends of length 5, and internalregion of length 10. Every base pair is shown.Assessing speed is even more speculative. Suppose we perform a computation of a 10000-cell BCA withinactive boundary conditions, and compute for 10000 time steps. Suppose it takes 1 second for a rule to�t in when its slot is exposed. Since the 5000 slots are simultaneously exposed, all should be �lled inapproximately 1 second on average. This leads to a rough estimate of 3 hours for computing the 100002 celllattice. Using 1kg of DNA, we could assemble 1019 rule molecules, that is, 1011 such calculations in parallel.That leads to a total of 1015 operations per second16. There is no lab work to be done during this the majorstage in the computation. Of course time would also be required in the input and output stages.4.4 Open questions, extensions, and other speculation.In addition to the essential question of whether the ideas above can be made to work in the lab, there aremany other issues to be investigated.How energy-e�cient is crystal computation? It is interesting to note that what might be calledthe computation proper (crystallizing the DNA lattice) theoretically requires no energy at all; in fact,crystallization must be exothermic. Of course, a great deal of energy may be used to heat the mixture up,or to pulse the temperature to dissolve defects. Furthermore, the input and output stages require synthesisand analysis of DNA molecules, and thus also much energy. Our proposal is possibly the most nearlyimplementable example of the principle that computation is free, but input and ouput are costly [Bennett].Why use the DAE structure for rule molecules? Clearly the particular choice of molecule is not ofintrinsic importance to the idea of this construction. The logical essence is to have an \H"-shaped moleculewith four designable sticky ends. At its simplest, one could imagine making the \H" out of two chemicallycross-linked strands of DNA (Figure 7a). Another alternative is the slightly larger single crossover Hollidayjunction. However, it is important for the construction of the lattice that the two linear pieces in the \H" beplanar; Holliday junctions have been shown to prefer a (
exible) 60� skew angle [Eis]. The chemically linkedstrands imagined above have not yet been characterized. The reason we propose the large double crossovercrossovers less accessible to resolvase.15We optimistically require only 2 mismatches between sequences representing di�ering symbols. We also require the com-plement of a symbol's sequence does not code for a symbol, and that every code sequence has 3 C-G bonds and 2 A-T bonds,for more consistent melting temperatures.16This compares to 300 GFLOPS (� 1014 basic operations per second) attainable by the best modern supercomputers, e.g.a 7000 processor Intel Paragon. Of course, the \operations" we compare are apples and oranges.9



Figure 7. Alternative Topologies for 2D Lattice.
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Figure 7: (a) Rule molecules based on cross-linked DNA. (b) DAE rule molecules with odd-length spacing. (c) DAErule molecules with even-length spacing. (d) DAO rule molecules with odd-length spacing. (e) DAO rule moleculeswith even-length spacing.
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molecules17 is that they have already been characterized in the lab and are thought to be rigid (which mayhelp prevent tangled lattices) and planar [Fu1]. We chose DAE in preference to other topological variantsof double crossover molecules, such as DAO, because the topology of the rule molecule leads to a di�erent\weave" of DNA strands in the lattice (Figure 7bcde). We prefer to have a single strand which, if covalentlylinked, runs along an entire level of the lattice, thus encoding the BCA state for that time step.Why keep around the entire history of the computation? Only the most recent level is necessaryfor the next step of the computation. Open question18: Can condition be found such that the bottom of thelattice is dissolving while the top of the lattice is growing? Rule molecules which dissolve at the (hotter?)bottom of the lattice could later be re-used at the (colder?) top.Automatic programming by evolving rule molecules. Suppose we are interested in �nding a smallBCA program which generates a particular string, or set of strings. Speculatively, we might begin with anondeterministic set of all possible rule molecules of a particular size, including some molecules for non-deterministically constructing initial molecules. We grow some 1018 lattices, and somehow extract thosewhich compute the desired string. The rule molecules present in these lattices are known to be su�cient tocompute the string, but they probably do not contain all possible rules. We now dissolve the \good" latticesand somehow amplify the rule molecules present. Letting lattices grow again, and selecting again for thedesired string, we further reduce the nondeterminism of the rule molecules present. We can also consideradding a tiny amount of ligase, thus occasionally creating larger rule molecules from smaller ones { a form of\compiling". Perhaps after a few iterations we look and see what rule molecules are present, or { presumingthere is still some nondeterminism { look at what other strings they form. This process is closely related touniversal search and can be used, for example, for Kolmogorov complexity based induction[Solomono�].Why a 1D BCA? Why not build a 3D lattice to simulate a 2D BCA? We started with 1D BCAbecause they can be immediately explored used existing DNA technology. Two dimensions o�ers severaladvantages, however, such easier design of e�cient computations. Perhaps more importantly, in higherdimensions it becomes easier to design error-tolerant rules [Gacs]; intuitively, point defects in 2D can be�lled-in from adjacent correctly-computed cells, while in 1D a point defect severs communication between theleft and right side. Open question: Can the DNA rule molecules be modi�ed so as to build 3D DNA lattices?Speculatively, one could propose a variant of the double crossover Holliday junction, the \multiple stranddouble crossover junction" (Figure 8), as a means to implement the read-4, write-4 operation required by 2Dblocked cellular automata (see e.g [To�oli], Ch. 12). Unfortunately, the proposed building-block moleculehas not yet been synthesized.Figure 8. A possible 3D lattice of DNA for simulating 2D BCA.
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Figure 8: Four DNA double helices may be bound together by crossover junctions (left). Sticky ends determine 2DBCA rules as the rule molecules assemble in an alternative cubic lattice (right).Potential uses in nano-technology. This paper has suggested an approach to molecular computationvia programmable self-assembly. Programmable self-assembly may have other applications. Open question:Can cellular automata generated lattices be used to de�ne ultra-high resolution electronic circuits? One17Ned Seeman suggested we consider double crossover molecules as an improvement over the more awkward branched junctionconstructions we were originally considering.18Suggested by Len Adleman, private communication. 11



possibility, along the lines investigated by Robinson and Seeman [Robinson], would be to conjugate nano-wire onto individual rule molecules, such that when the rule molecules �t together, an electrical circuit isformed. This proposal di�ers from Robinson and Seeman's suggestion in that whereas they envisioned aperiodic lattice of identical memory cells, we suggest that cellular automata rules could be used to buildmore complicated circuits, either in 2D or 3D.Why use DNA at all? The principle of computing via crystallization is not restricted to DNA. Openquestion19: Can non-DNA-based molecules could be used to design desired computations carried out on thesurface of a growing crystal?5 Comparison with other approachesPerhaps the most practical suggestion for universal computation via DNA is that of Boneh, Dunworth, Lip-ton, and Sgall [Boneh]. Their approach makes straightforward use of well understood laboratory techniquesfor manipulating DNA. They are able to simulate nondeterministic boolean circuits, which seems very ef-�cient for some calculations, and which gives them universal computational ability. Because circuits allownon-local interactions of variable, circuits can be very compact. However, it should be pointed out that thecomputation requires a lab technician to sequence operations on multiple test tubes; the logic of the programbeing computed is external to the DNA, which is used as a memory. Small scale computations could beimmediately attempted with reasonable chance for success; however due to the weakness of single-strandedDNA and other factors, it is not clear how this approach will scale.Other authors have proposed DNA implementations of Turing Machines directly (e.g. [Beaver], [Smith],[Rothemund]). The approaches vary from using PCR to relying on restriction enzymes. These approachesshow promise, although the reliability and e�ciency of the steps is unclear. Furthermore, single-tape,single-head Turing Machines are particularly cumbersome logically; circuits will typically compute the samefunction in many fewer steps (and single steps take comparable time in both systems { on the order ofhours!). In short, although they are of theoretical interest, it is unlikely that anyone will actually go intothe lab and solve problems this way.Our hypothetical cellular automaton implementation di�ers in a number of ways: First and foremost, ourproposal is a \one-pot" reaction. Dump in the rule molecules encoding your problem, and all the logic ofthe computation is carried out autonomously. No lab work is involved. Furthermore, in addition to runninga massive number of computations in parallel, each cellular automaton performs its own computation inparallel { thus fully exploiting the parallelism available. The major and signi�cant drawback of our proposalis that it makes use of chemistry which is not yet fully understood, and thus going into the lab to do acomputation this way would be a real technical challenge.The main conclusion of this paper is that annealing and ligation alone may be su�cient for universal \one-pot" DNA computation. Whether the particular scheme envisioned here can be made to work in the lab is amatter for further research. In any case, it is clear that better experimental characterization of the chemistryof annealing is required, and may open up new possibilities for DNA based computation.6 AcknowledgmentsI would like to thank Paul W. K. Rothemund and Sam Roweis for their stimulating discussion. I am indebtedto Ned Seeman for many excellent suggestions, as well as fundamental research on the biochemistry thisproposal hopes to exploit; and to Len Adleman for inspiration and great discussions. John Baldeschwieler,Tom Theriault, Marc Unger, Sanjoy Mahajan, Carlos Brody, Dave Kewley, Pam Reinagel, Al Barr, andStuart Kau�man gave many useful suggestions. Thanks to my advisor John Hop�eld for his support andencouragement.19Suggested by Stuart Kau�man, private communication. 12
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