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Undecidability and Nonperiodicity 
for Tilings of the Plane 

RAPHAEL M. ROBrNSOY (Berkeley) 

w 1. Introduction 

This paper is related to the work of Hao Wang and others growing 
out of a problem which he proposed in [8], w 4.1. Suppose that we are 
given a finite set of unit squares with colored edges, placed with their 
edges horizontal and vertical. We are interested in tiling the plane with 
copies of these tiles obtained by translation only. The tiles are to be 
placed with their vertices at lattice points, and abutting edges must 
have the same color. Wang raised the question whether there is a general 
method of deciding which finite sets of  colored squares can be used to 
tile the plane in this way. He also discussed the relation of this problem 
to the decision problem for certain classes of formulas of the predicate 
calculus, but we shall consider only the geometrical problem here. 

Suppose that we have a tiling of the plane of this type which has a 
horizontal period. That is, we assume that the tiling remains invariant 
under a certain horizontal translation. There will then be a vertical 
strip which can be repeated to cover the plane. This strip has only a 
finite number  of different horizontal cross sections, and hence has two 
which are alike. Thus the same tiles may be used to construct a tiling 
which has a vertical period as well as a horizontal period. 

A similar argument can be used even when the given period is not 
horizontal. That is, if a set of tiles permits a periodic tiling, then it also 
permits a doubly periodic tiling. In any such tiling, we can find equal 
horizontal and vertical periods, and hence can find a square of some 
size which repeats to cover the plane. 

Wang made the conjecture, since proved false, that any set of tiles 
which permits a tiling of the plane also permits a periodic tiling. He 
pointed out that if this conjecture were true, then we would have a 
decision method for an arbitrary set of tiles. Indeed, it would be sufficient 
to form all possible squares from the given set of tiles, starting with the 
smaller squares and working up, until we either reach a square which can 
be repeated periodically, or we find a square of a certain size which cannot 
be tiled at all. The latter will always happen if tiling of the whole plane 
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is impossible. Another formulation of the result just proved is that if the 
tiling problem is undecidable, then there must be finite sets of tiles 
which permit only nonperiodic tilings of the plane. 

In the preceding paragraph, we used the fact that if squares of all 
sizes can be covered with the given tiles, then the whole plane can be 
tiled. This is an easy application of a method used by K6nig [5]. Start 
with any tile which allows extension of the tiling arbitrarily far in all 
directions. Of the various tiles which we can adjoin to this tile along a 
prescribed edge, choose one for which the pair admits such extensions. 
Continue adding tiles one at a time in some convenient pattern, being 
sure at each step that the portion of the tiling thus formed admits extension 
in all directions as far as we please. In this way, we obtain a tiling of the 
whole plane. 

It follows in particular that a given set of tiles can be used to tile the 
whole plane if and only if it can be used to tile the first quadrant. 

Various constraints on the tiling of the first quadrant were considered, 
in which either the tile at the origin, the tiles along one axis, or the tiles 
along the diagonal were restricted. That is, only a certain tile was allowed 
at the origin, or only tiles from a certain subset were allowed along the 
axis or diagonal. The origin-constrained problem is the easiest to settle, 
and was proved undecidable by Wang, as explained in [9]. A closely 
related result was obtained independently by Btichi [2], and was applied 
to the decision problem for the predicate calculus. The result which was 
particularly needed in this connection, the undecidability of the diagonal- 
constrained problem, was proved by Kahr,  Moore, and Wang [4]. The 
proof of the undecidability of the row-constrained problem is similar, 
but slightly simpler. A description of the development of the subject 
from 1960 to 1962 is given by Wang [9]. 

It should perhaps be mentioned that with the constraint that a 
particular tile is to be used at the origin, it is no longer true that any set 
of tiles which can be used to tile the first quadrant can also be used to 
tile the whole plane. However, the proof that there is no decision method 
is similar in the two cases. 

The problem without any constraints is no doubt the one of greatest 
geometrical interest. It remained unsolved for several years, and was then 
proved undecidable by Robert Berger [1]. As noted earlier, this means 
that there must be some set of tiles which can cover the plane, but cannot 
cover the plane periodically. Actually, Berger found it necessary to 
construct such a set in the course of his proof. This set contains over 
twenty thousand tiles, though Berger points out how this number can 
be considerably reduced. 

After reading Berger's paper, I became interested in the problem of 
reducing this number as far as possible. How far this reduction can be 
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carried depends on exactly what rules are used. We first discuss some 
alternative rules, and then describe the results which were obtained. 

Wang imposed the condition that abutting tiles should have edges 
of the same color. An equivalent formulation is the following. Let all 
colors be arranged in complementary pairs, and insist that abutting 
edges should have complementary colors. The tiling problem with this 
condition is exactly equivalent to Wang's, since we need only replace 
the colors of the right and upper edges of each tile by the complementary 
colors. However, the two problems are no longer equivalent when 
rotation is allowed, and indeed the problem with matching colors 
becomes trivial, since copies of any one tile can be used to cover the 
plane, but the problem with complementary colors does not. 

The tiling problem with complementary colors remains undecidable 
when translation and rotation are allowed. Indeed, let any finite set of 
square tiles with colored edges be given with which we wish to tile the 
plane, using translation only and insisting on matching colors. We may 
suppose that the horizontal colors are different from the vertical colors. 
Change the right and upper edges to the complementary colors, where 
the complementary colors are new colors. Then the color of any edge 
identifies the position of the edge (left, right, bottom, top), so that rotation 
is useless. Hence the desired tiling is possible if and only if the plane can 
be tiled with these new tiles so that complementary colors abut, transla- 
tion and rotation being allowed. By Berger's theorem, there cannot be a 
decision method for this problem. 

Still another variant of Wang's problem is obtained if we notch the 
edges in such a way that the bumps and dents on an edge fit the dents 
and bumps on an abutting edge. Here we insist that the tiles should 
cover the plane without overlapping. The notches can be chosen so 
that they force alignment of the squares. Assuming that there are no 
bumps or dents at the corners, this problem is equivalent to the problem 
with matching colors or with complementary colors if only translation 
is used, or to the problem with complementary colors if translation and 
rotation are used. However, if reflection is also allowed, the problem 
with complementary colors is no longer the same as the problem with 
notches, since the latter allows an unsymmetrical edge whereas the 
former does not. 

The tiling problem with notched edges remains undecidable even 
when translation, rotation, and reflection are allowed. Indeed, let any 
set of square tiles with notched edges be given, and suppose that we 
want to tile the plane using translation only. It is easy to add notches 
which do not affect the fit of tiles obtained by translation, but which 
make rotation or reflection useless. Thus the undecidability of the new 
problem is reduced to Berger's theorem. A somewhat more elaborate 
13' 
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argument shows that the tiling problem with complementary colors also 
remains undecidable when translation, rotation, and reflection are allowed. 

In 1967, I found a set of seven square tiles with notched edges which 
permit only nonperiodic tilings of the plane when translation, rotation, 
and reflection of the tiles are allowed. This result was announced in [7]. 
Reflecting these seven tiles produces a set of 13 tiles which force non- 
periodicity when translation and rotation are used. Rotating these 
13 tiles produces a set of 52 tiles which force nonperiodicity when only 
translation is used. Thus the number of tiles needed for Berger's non- 
periodicity theorem was reduced to 52. 

In 1969, I found a set of six polygonal tiles which force nonperiodicity 
when translation, rotation, and reflection are used. These are shown in 
Fig. 1. They have both advantages and disadvantages as compared to 

V V 
Fig. 1. Six tikes which force nonperiodicity 

the previous set. As before, they are notched squares, but here corner 
bumps and dents are also used, which makes a transformation into tiles 
with colored edges difficult. In any case, this is the smallest set of tiles 
which I have been able to find which can tile the plane using translation, 
rotation, and reflection, but for which no such tiling is periodic, or 
admits a translation onto itself. It will also turn out that no such tiling 
admits a rotation onto itself. These six tiles will be studied in this paper. 

One fact may be noted at once. As is easily seen, if the plane is tiled 
with these notched squares, then the unnotched squares also tile the 
plane, the squares being arranged in rows and columns. 
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The two tiles in the first column of Fig. 1 are symmetric to a diagonal, 
and the two in the last column are symmetric to a vertical line. Thus if we 
adjoin the mirror images of the other two tiles, we obtain a set of eight 
tiles which force nonperiodicity when translation and rotation are used. 
These in turn lead to a set of 32 tiles which force nonperiodicity when 
only translation is used. However, because of the corner markings, these 
cannot be thought of as tiles of Wang's type. 

A closely related set of ten notched squares without any corner 
bumps or dents is also shown to force nonperiodicity when translation, 
rotation, and reflection are used. By reflection and rotation, these lead 
to a set of 56 tiles which can be thought of as squares with colored edges 
and which force nonperiodicity when only translation is used. Although 
this estimate is not quite as good as the one announced in [-7], it is all 
that will be proved in this paper about this problem. 

By a more detailed analysis of the tiles studied in this paper, I have 
succeeded in reducing the number of tiles needed for Berger's non- 
periodicity theorem to 35. This analysis also justifies the seven tiles 
announced in [7], and has led to another set of six polygonal tiles which 
force nonperiodicity. In this case, five of the six tiles are notched squares, 
and the sixth is small, being chosen so that it can fill in the gap when 
two abutting notched squares both have dents. In a different direction, 
I have shown how Berger's undecidability theorem may be used to prove 
that there is no decision method for the problem of tiling the plane with 
copies of an arbitrary finite set of convex hexagons or convex pentagons 
whose vertices lie at lattice points, even when translation, rotation, and 
reflection are allowed. I hope to publish these various results later. 

A problem which I do not know how to solve is whether similar 
results can be found for the hyperbolic plane. Is there a general method 
of deciding whether a set of polygonal tiles can be used to tile the hyper- 
bolic plane, using arbitrary motions (or motions and reflections)? Can 
we find a set of polygonal tiles which can tile the hyperbolic plane, but 
for which no such tiling admits a translation onto itself? It is also not 
clear that there is any longer a connection between the two questions. 

This paper does not assume any knowledge of tiling problems. The 
undecidability proofs require some knowledge of Turing machines, but 
the portions of the paper concerned with nonperiodicity do not. The 
three main objectives of the paper, and the relevant sections, are as follows. 

(a) Proof  that the six polygonal tiles of Fig. 1 allow only nonperiodic 
tilings of the plane (w167 2, 3). The same result is obtained for the closely 
related set of ten tiles mentioned above. 

(b) Proof  that there is a set of 36 square tiles with colored edges for 
which the completion problem is undecidable, translation only being 
used (w167 5, 6). By the completion problem is meant the problem of 
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deciding whether an arbitrary finite partial tiling of the plane can be 
completed. 

(c) Simplified proof of Berger's theorem that the plane tiling problem 
is undecidable (w167 2, 3, 4, 7). 

Notice that (a) and (b) are completely independent, but that (c) 
uses (a) and part of (b). Some supplementary information on the tilings 
is given in w In particular, the first part ofw gives a description of all 
possible tilings using the tiles of Fig. 1, and may be read immediately 
after w 

w 2, The Five Basic Tiles and Their Modifications 

We shall show how the six tiles of Fig. l, and another set of ten 
tiles which were previously mentioned and will be important in later 
sections, can both be obtained as modifications of a certain basic set 
of five tiles. These are obtained by deleting the corner markings from 
the tiles in Fig. 1, thus making all of the corners square. The two tiles 
in the first column then become identical, and we obtain the five basic tiles. 

We shall study tilings of the plane by copies of the five basic tiles 
obtained by translation, rotation, and reflection, subject to certain 
constraints. As was the case for the six tiles of Fig. 1, any tiling of the 
plane by these notched squares forces alignment of the unnotched 
squares. We may also note that three of the basic tiles have an axis of 
symmetry. Hence the tiles which can be obtained from the five basic 
tiles by translation, rotation, and reflection, can be obtained from just 
seven tiles by translation and rotation, or from 28 tiles by translation 
alone. 

The five basic tiles may be represented symbolically as in Fig. 2, 
where the arrow heads represent bumps and the tails represent dents. 

t ....... --  
Fig. 2. The five basic tiles 
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In fitting the tiles together, a r row heads must  meet arrow tails. Notice 
that  the symmetrical  bumps  and dents are represented by central arrows. 
The unsymmetrical  bumps  and dents are represented by double arrows, 
one central and one to the side. Alternatively, we could use just the side 
arrow, but  the double  a r row proves more  convenient. 

The first tile in Fig. 2, which has a r row heads on all four sides, will 
be called a cross. As drawn, the cross is said to face up and to the right. 
The other  basic tiles will be called arms. Every a rm has a principal 
arrow, the central a r row which runs across the tile f rom one side to the 
opposite side. A n  arm is said to point  in the direction of  its principal 
arrow. Every arm also has central in arrows at right angles to the principal 
arrow. If  there are side in arrows as well, then they are toward the head 
of  the principal arrow. This fact will be essential for determining the 
orientat ion of arms. 

The abbreviated symbolism of Fig. 3 will also be used. The first 
square represents a cross with unspecified orientation. The second 
square represents any a rm whose principal ar row is as shown. 

Fig. 3. Abbreviated notation for cross and arm 

On the other  hand, starting with the six tiles of Fig. 1, and deleting 
the side markings,  we obtain just the two polygons in Fig. 4, which we 
may describe as a bumpy  square and a dented square. If  the plane is 

Fig. 4. Bumpy and dented squares 

tiled with these squares, then one b u m p y  square and three dented 
squares must  meet  at each corner. N o  other  restriction is imposed. One 
possibility is that  we have a completely regular pattern, with the bumpy  
squares lying in alternate co lumns  and in alternate rows. If  the columns 
and rows are suitably numbered,  then these will be the odd-numbered  
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columns and rows, or what we may call the odd-odd positions. Besides 
the regular pattern, there is the possibility of shifting some of the rows 
containing bumpy squares one unit to the right. This gives a possible 
pattern in every case. In a similar way, some of the columns could be 
shifted, instead of some of the rows. Is there any other possibility? 

Notice that if one of two adjacent rows of squares consists of alternate 
bumpy and dented squares, then the other must consist solely of dented 
squares, and vice versa. Thus if we have any row consisting of alternate 
bumpy and dented squares, then alternate rows must  be of this type. 
There are two choices for the position of each of these rows. Similarly, 
one column in which bumpy squares occur in alternate positions force 
bumpy squares to occur in alternate positions in alternate columns. 

Suppose now that we have any pattern which is not the completely 
regular pattern first mentioned. We can then find three consecutive 
squares in some row or column of which the first is bumpy and the other 
two dented. Let these three squares be placed in the center column of 
Fig. 5, with the bumpy square at the bottom. Then the two bumpy 

Fig. 5. A pattern of bumpy and dented squares 

squares at the top are forced, and these in turn force the outer bumpy 
squares at the bot tom, and so forth. Thus bumpy squares must occur 
in alternate positions in both the bo t tom and top rows. As noticed 
earlier, this forces bumpy  squares to occur in alternate positions in 
alternate rows throughout the plane. There is no other possibility, 
except to interchange rows and columns. 

If these corner markings are combined with the five basic tiles, then 
the effect is to force the cross to occur in alternate positions in alternate 
rows, or in alternate positions in alternate columns. The cross may 
occur in other positions as well. Thus tiling the plane with the six tiles 
of Fig. 1 is equivalent to tiling the plane with the five basic tiles subject 
to this constraint. 
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An alternative to the corner markings is furnished by the parity 
markings shown in Fig.6. The arrows here are in a different position 
than for the basic tiles. They may be understood as a symbolic notation 
for bumps and dents at new locations. All of the parity tiles are symmetric 
to vertical and horizontal axes. The tile at the upper left can be obtained 
from the tile at the lower right by rotating through 90 ~ , or by reflection 
in a diagonal. Thus there are really just three different parity tiles. 

4 

Fig. 6. Parity tiles 

If the plane is tiled with parity tiles, then these must alternate both 
horizontally and vertically in the order shown in Fig. 6. By a suitable 
numbering of the columns and rows, the lower left tile will occur in just 
the odd-odd positions. 

Parity markings will be added to the five basic tiles as follows. The 
cross will be combined with the parity tile at the lower left in Fig. 6. 
Vertical arms will be combined with the parity tile at the lower right. 
Equivalently, horizontal arms will be combined with the parity tile at 
the upper left. All of the basic tiles will be combined with the parity tile 
at the upper right. This gives a total of ten basic tiles with parity markings. 

Use of these ten tiles forces the cross to occur in alternate columns 
and in alternate rows, say in the odd-odd positions. No further restriction 
is imposed, since if the odd-odd positions are filled with crosses, then 
the even-odd positions must be filled with vertical arms and the odd- 
even positions with horizontal arms, and suitable parity markings 
were allowed for this. Also, the parity markings allow all of the five 
basic tiles in the even-even positions, no matter what the orientation. 

These ten tiles act just like the six tiles of  Fig. 1, except for a slightly 
stronger restriction on the occurrence of crosses. The advantage is that 
no corner markings are used. Since the ten tiles retain all of the symmetry 
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of the five basic tiles, they give rise to just 14 tiles by reflection, or 56 by 
reflection and rotation. The results of w show that these 56 tiles force 
nonperiodicity for tilings obtained by translation alone. This yields the 
estimate 56 for the number  of tiles needed in Berger's nonperiodicity 
theorem. 

w 3. Nonperiodic Tilings 
We shall show in this section that copies of the five basic tiles obtained 

by translation, rotation, and reflection can be used to tile the plane in 
such a way that the cross appears in alternate positions in alternate rows, 
and perhaps elsewhere, but that no such tiling is periodic. This establishes 
at the same time the nonperiodicity of tilings by the six tiles with corner 
markings and by the ten tiles with parity markings. 

1 have made a complete analysis of tilings using the five basic tiles, 
but this cannot be included in this paper. In particular, it turns out that 
without any constraint on the appearances of the cross, periodic tilings 
are possible. 

A few results about  the five basic tiles without constraints will be 
proved here. Consider any tiling of the plane by the five basic tiles. It is 
important  to analyze what happens in some direction from a cross, say 
to the right, before another cross is reached. We have a sequence of 
arms, of which at most one can be vertical, since a vertical arm forces 
the tiles to its left and right, if arms, to point toward it. Thus, in general, 
the cross will be followed by a finite sequence of right arms, a vertical 
arm, a finite sequence of left arms, and then the next cross. Either of the 
finite sequences may be empty. An exception to this pattern would occur 
if either of the sequences were infinite; in this case, the subsequent 
portion would be missing. 

We can see that two consecutive crosses in the same row or column 
must either face each other or be back to back. Suppose, for example, 
that we are looking at two consecutive crosses in the same row, and 
that the first cross faces up and to the right. Then the next vertical arm 
must point down, since there cannot  be in arrows near the tail of the 
principal arrow, and the next cross must face up and to the left. A possible 
pattern is shown in Fig. 7. In any case, two facing crosses must be mirror 
images. If the two crosses are not face to face, then they must be back 
to back. In this case, the vertical arm may point either up or down, and 

1 

Fig. 7. Facing crosses 
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the second cross may  be the mirror  image of  the first, or  it may  be 
inverted. A possible pat tern is shown in Fig. 8. 

i 

Fig. 8. Back-to-back crosses 

In the last two figures, we have used a symbolism intermediate be- 
tween the complete nota t ion of  Fig. 2 and the abbreviated notat ion of 
Fig. 3, all horizontal  ar rows having been drawn. Notice that if the arms 
had been drawn in the abbreviated form, the extra arrows could have 
been supplied mentally. 

We can show that  the distance between facing crosses, measured 
center to center, must  be even. Suppose, for example, that  the crosses are 
in the same row, and face up. Between them, there are horizontal  arms 
and one down arm. Since these tiles have a r row tails at the top, the tiles 
immediately above them must  have arrow heads at the bot tom.  Hence 
they must  be alternately crosses and down arms. But a similar a rgument  
applies to columns, so we must  begin and end with a cross, as in Fig. 9. 
In particular, a cross facing up and to the right forces another  cross to 
its upper  right. The evenness of  the distance between facing crosses is 
now apparent.  However,  if the crosses are back to back, we cannot  prove 
that the distance between them must  be even. 

Fig. 9. Pattern forced by facing crosses 

We shall now impose on the five basic tiles the constraint  that crosses 
appear  in alternate posit ions in alternate rows. These crosses are the 
bumpy  crosses or  the odd-odd  crosses, depending on whether we are 
using corner markings or parity markings.  Any  such cross will be called 
a 1-square. 

If we start with any 1-square, then it will face another  cross two 
units to its right or left. This pair of  crosses and the intermediate arm 
will consti tute the bo t tom or top row of Fig. 10. The central cross is 
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Fig. 10. A 3-square 

forced, and prevents slippage of the last row, so the 3-square shown in 
Fig. 10 must be completed. The orientation of the central cross is unknown. 
The 3-square is determined by the 1-square in any one of its four corners. 

We can extend any 3-square in the directions faced by its central 
cross. Suppose, for example, that the central cross faces up and to the 
right. The 3-square may be taken at the lower left of Fig. 11. The central 

l 3. 

Fig. I [. A 7-square 
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cross of this 3-square forces the arms extending to the left and down 
from the central cross of the 7-square, and these in turn force the central 
cross of the 7-square to be there. This cross prevents any slippage of the 
row above;  that is, the crosses must occur in the positions shown. We 
then see that the crosses to the upper left, upper  right, and lower right 
of the central cross of the 7-square must have the orientations shown. 
Each of these crosses forces a 3-square, so the 7-square must be com- 
pleted. It is determined, except for the orientation of the central cross, 
by the 3-square in any one of its four corners. 

In a similar way, any 7-square can be extended in the directions faced 
by its central cross to a 15-square, consisting of a central cross, four lines 
of arms radiating from it, and 7-squares in the four corners whose central 
crosses face each other. Of the arms flanking the given 7-square and 
radiating from the central cross of the 15-square, the place to start the 
argument is with the third arms out. These are forced by the central 
cross of the 7-square. They in turn force the second arms, then the first 
arms, and finally the central cross of the 15-square. This cross prevents 
slippage of the row above. The central cross of the 15-square is thus 
surrounded diagonally by crosses, which must all be back to back. 
Each of the three new crosses forces a 7-square, so the 15-square must 
be completed. The 15-square, in turn, can be extended in the directions 
faced by its central cross to a 31-square, and so forth. 

In any tiling of the plane by the five basic tiles subject to the con- 
straint which we imposed, every 1-square uniquely determines the 
3-square, 7-square, 15-square, 31-square, etc., in which it lies. The union 
of this expanding sequence of squares is either a quarter plane, a half 
plane, or the whole plane, depending on the successive orientations of 
the central crosses. No two of these union figures can overlap. In any 
tiling, the union figures so obtained must consist of either (a) the whole 
plane, (b) two half planes, (c) a half plane and two quarter planes, or (d) 
four quarter planes. Adjacent half or quarter planes must be separated 
by a corridor consisting of a single row or column of arms. The corridor 
separating two half planes may be a fault; that is, the two half planes 
need not be symmetric to it. However, if one or both of the half planes 
are divided into quarter planes, no additional fault is possible. 

Since (2" -  1)-squares can be constructed for every n, it follows that 
the plane can be tiled. (A description of all possible tilings is given in w 
In finding this description, no use is made of w167 However, no such 
tiling is periodic, since, for every positive integer n, there exist crosses 
which face other crosses at the distance 2", namely the central crosses of 
(2" -  D-squares. 

In a certain sense, the tilings are almost periodic. Indeed, ignoring 
fault lines, the 1-squares repeat horizontally and vertically with period 4, 
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the 3-squares with period 8, the 7-squares with period 16, etc. Thus at 
least [(2 " -  1)/2"] 2 of the tiles repeat horizontally and vertically with 
the period 2 n+l. Hence we can choose a period large enough so that an 
arbitrarily small fraction of the tiles fail to repeat. 

w Turing Machines and Tiling 
The next three sections are independent of the last two. However, 

w167 2-3 as well as this section are needed in w 7. We return now to Wang's 
tiling problem, using squares whose colored edges must match, and 
using translation only. 

The undecidability of the tiling problem is proved in w 7. Here we 
consider the easier completion problem. Suppose that a finite portion 
of the tiling is given. Can the tiling be completed? The completion 
problem does not seem to have been studied previously, except for the 
case where just one tile has been laid down. In this case, we simply 
impose the constraint that a particular tile must be used at least once. 
This makes the proof of undecidability much simpler. It was essentially 
this problem, the origin-constrained problem, which was first solved 
by Wang, as explained in [9]. The problem is considered there for a 
quadrant, but the method is the same in either case. We shall present 
the proof in full here, since it is needed for the further development. 

The undecidability of this problem is based on the undecidability 
of the halting problem for Turing machines. We shall use the following 
description of Turing machines. The tape will be infinite in both direc- 
tions. There will be a finite number of states qo, ql . . . . .  of which q0 is the 
initial state, and a finite number of symbols So, s~ . . . . .  of which s o is the 
blank. At any instant, the reading and writing head is scanning one 
square of the tape. The action of the machine will be determined by some 
quintuples of the forms 

qisjskLql, q~SjSkRqt, 

which indicate that if the machine is in state qi and scanning symbol s j, 
it will overprint Sk, move left or right, and go into state qt. No two 
quintuples start with the same qi sj. If the machine is in state q~ and 
scanning symbol Si, and there is no quintuple starting qi s j, then the 
machine halts. This formulation of Turing machines is almost that 
originally used by Turing, and agrees with that used by Minsky [6-]. In 
some other accounts, the tape is finite to the left, or overprinting and left 
or right moves are done separately. 

We shall use two undecidable halting problems, both discussed by 
Minsky [6], Chapter 8. (a) There is no method for deciding whether a 
given universal Turing machine will halt when started on an arbitrary 
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tape. (b) There is no method for deciding whether an arbitrary Turing 
machine will halt when started on a blank tape. 

We must describe how the operation of a Turing machine will be 
related to tilings of the plane. The tape of the Turing machine will be 
represented horizontally and time vertically, increasing upward. The 
complete configuration (tape with scanned square, and state) of the 
Turing machine at two consecutive instants will be represented on the 
lower and upper edges of a row of tiles. In this, we follow Berger [1], 
except that there time increased downward. In contrast, Wang [9] 
represented the complete configurations by rows of tiles. However, 
Berger's method seems simpler. 

The coloring of the edges of the tiles will be indicated by labelled 
arrows. The colors will be associated with the label and with the direction 
of the arrow (rather than with the heads or tails), so that matching colors 
are indicated by an arrow head abutting a tail with the same label. The 
arrows will point up, left, or right. The tiles may be thought of as trans- 
mitting signals in the indicated direction. 

The operation of the machine will be represented by tiles of several 
sorts. The alphabet tile in Fig. 12 transmits the symbol s k unchanged. It 
is used for all k. The merging tiles in Fig. 13 combine a state q~ with a 
symbol sj.. They may be allowed for all values of i and j, though some 
may not be needed. The first or second action tile in Fig. 14 is used only 
if the quintuple qi s j s  k L q t or q~ sjs k R q~ is present. 

s k 

Sk 

Fig, 12. Alphabet tile 

sj q,lsj 

sj sj 

Fig, 13. Merging tiles 

ql ~ 

Sk Sk 

q~ sj q~ Sl 
Fig. 14. Ac t ion  tiles 

Suppose that we are given a row of tiles whose upper edges represent 
the complete configuration of the Turing machine at time t. One edge 
will have an up arrow labelled qi s j, and the others will have up arrows 
with labels of the form s k. If we use tiles of the types shown in Figs. 12-14, 
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then the row of tiles above the given row will be uniquely determined, 
and its upper edge will represent the complete configuration at time 
t +  1. Of course, the tiling will be impossible if the machine halts at 
time t. If all the merging tiles are provided, then this is the only excep- 
tional case. However, if we wish to use as few merging tiles as possible, 
then we will omit the ones leading to a halting state-symbol pair qi s j, 
and the tiling of the next row will also be impossible if the machine 
halts at time t + 1. 

Assume that the Turing machine is started on a blank tape. We may 
use the three tiles in Fig. 15 to represent the starting configuration. The 
second tile is the one which is to be laid down initially. It forces an 

So qoSo s O 

I J -  
Fig. 15. Starting tiles for blank tape 

infinite sequence of copies of the first tile to appear at its left, and an 
infinite sequence of copies of the third tile to appear at its right. The upper 
edge of this row of tiles represents the complete configuration of the 
machine starting on a blank tape. In addition, a blank tile is provided 
with which the lower half plane can be tiled. (It must be noted that the 
blank symbol on the tape is not represented by the blank edge of a tile.) 

We see that the tiling of the plane can be completed with the tiles 
mentioned, after the initial tile has been laid down, if and only if the 
Turing machine never halts. Thus there is no method of deciding whether 
an arbitrary set of tiles can be used to tile the plane, when the constraint 
is imposed that a particular tile must be used at least once. A similar 
argument can be given for a quadrant, using a Turing machine with a 
tape infinite only to the right. As mentioned above, this was done by 
Wang. 

In this problem, we cannot put any bound on the number of different 
tiles used, since to do so would allow only a finite number of different 
sets of tiles, except for renaming the colors, and hence decidability would 
be trivial. But for the general completion problem, this is not the case. 
Indeed, we shall find in w 6 a set of 36 tiles for which the completion 
problem is undecidable, even when we restrict the given portion of the 
tiling to consist of a finite number of tiles arranged in a horizontal row. 

We shall limit ourselves here to pro~ing the existence of a fixed 
finite set of tiles for which the completion problem is undecidable. Let 
any universal Turing machine be given. There will be some symbol s h 



Undecidability and Nonperiodicity for Tilings of the Plane 193 

such that there is no method of deciding whether the machine will halt 
when started on a tape which is arbitrary except that the scanned symbol 
is s h. Besides the tiles of Figs. 12-14 which correspond to this machine, 
we allow a blank tile and the five tiles of Fig. 16. 

So so qo Sh So So 

Fig. 16. General starting tiles 

Corresponding to any initial tape of the Turing machine with s h in 
the scanned square, the given portion of the tiling is determined as 
follows. A segment of the initial tape containing all of the printed squares 
is chosen, the corresponding alphabet tiles are lined up, the tile corre- 
sponding to the scanned square is replaced by the third tile in Fig. 16, 
and the second and fourth tiles in Fig. 16 are placed at the left and right 
ends of the row. 

The leftmost tile then forces an infinite sequence of copies of the 
first tile in Fig. 16 to appear to its left, and the rightmost tile forces an 
infinite sequence of copies of the fifth tile in Fig. 16 to appear to its right. 
The upper edge of this row of tiles represents the initial complete con- 
figuration of the Turing machine. The tiling of the upper half plane can 
be completed if and only if the Turing machine never halts. The tiling 
of the lower half plane is trivially possible, using only blank tiles and 
alphabet tiles. Thus we have found a finite set of tiles for which the 
completion problem is undecidable, even if we use only a finite row of 
tiles as the initial position. 

w 5. A Generalized Turing Machine 

In this section, we shall discuss a type of generalized Turing machine. 
A particular machine of this type will be constructed, and will be applied 
in w 6 to estimate the number of tiles needed to make the completion 
problem be undecidable. The results of these two sections will not be 
used elsewhere in the paper, so the reader may proceed directly to w 7 
if he prefers. 

A Turing machine is usually considered to require one unit of time 
to complete each move. It will be more convenient for us to use instant 
action instead. By this, we mean that all action of the Turing machine 
which consists of motion of the head in one direction along the tape is 
to happen instantaneously. On the other hand, whenever there is a 
change in direction, one unit of time is needed. This does not affect the 
14 lnventiones math.. Vol. 12 



194 R.M. Robinson: 

manner  in which the machine operates, but merely means that we are 
keeping time with a peculiar clock. If the head ultimately makes an 
infinite sequence of moves in the same direction, then with instant 
action the operation of the machine is completed in a finite time, even 
though the machine does not halt. 

We shall now introduce a type of generalized Turing machine with 
several heads, each acting independently. Furthermore,  we agree that 
a head, when in a certain state and scanning a certain symbol, may 
disappear, or may split into two heads, one of which moves to the left 
and the other to the right. We also agree that each head uses instant 
action. With this degree of generality, some convention about  colliding 
heads would be needed. However, the machine which we actually 
construct will be much more special. There will be just one permanent  
head. From time to time, it will split, but one of the resulting heads will 
be transient; that is, it will perform a certain instant action and then 
disappear instantaneously. Thus collision of heads will be impossible. 

In describing the machine, it will be convenient to agree that each 
state can be entered only by a right move, or only by a left move. Thus 
the states can be classified as right states R0, R 1 . . . .  , and left states 
L0, L1 . . . . .  Naming the new state will automatically tell the direction 
of motion on the move. We shall construct such a machine with an 
undecidable halting problem. This machine will use four symbols and 
seven states, of which four are right states and three left states, It bears 
a strong resemblance to the 4-symbol 7-state universal Turing machine 
constructed by Minsky. A description of that machine may be found 
in [6], w 14.8. 

Our machine, like Minsky's, will represent the action of a system 
of Post tag with deletion number 2. In such a tag system, we are given a 
finite alphabet, and a finite number  of Post normal  productions of a 
special kind. For  each production, the transform of any word of two or 
more letters which starts with a prescribed letter is obtained by deleting 
the first two letters, and adding certain letters at the end. There is at 
most one production for each initial letter. For this type of production, 
we shall use the abbreviated notation 

a ~ a 1 a 2 . . .  a n 

to indicate that if the first letter of a word is a, then we may apply this 
production to the word, and it will have the effect of deleting the first 
two letters and adjoining a 1 a2... a,  at the end. For  example, the pro- 
duction a--, a applied to a b c  yields ca. 

Suppose that any word of the tag alphabet is given. We apply the 
given productions as long as possible. We must stop if the initial letter 
of the word is a halting letter, that is, a letter to which no production 
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corresponds, or if the length of the word is less than 2. The last word so 
obtained is considered as the answer. If the productions may be applied 
indefinitely, then no answer is obtained. 

It was shown by Cocke and Minsky [3] that the action of a Turing 
machine using two symbols may be translated into the action of a Post 
tag system with deletion number  2. The proof  may also be found in 
Minsky [6], {}14.6. The number  of letters added at the end varies from 
l to 4. In their construction, the tag word always has length at least 4, 
so that halting can be caused only by halting letters. The number of 
halting letters may be reduced to one, if we like. If we start with a universal 
Turing machine, we obtain a universal tag system. Minsky's  4-symbol 
7-state universal Turing machine was obtained by a retranslation of 
this tag system. 

It is easily seen that we may modify the tag system so as to eliminate 
the halting letters by adding some new productions, and that this may 
be done in such a way that the halting problem remains undecidable. 
That is, there will be no way of deciding whether the process will terminate 
when we apply the productions to an arbitrary tag word. Indeed, in the 
Cocke-Minsky proof, each complete configuration of the given Turing 
machine is made to correspond to a word in a four-letter alphabet, 
a different alphabet being used for each state-symbol pair q~ sj. Suppose 
that a certain qi sj causes the Turing machine to halt. Let the corresponding 
alphabet for tag words be A, a, B, b. Adjoin the four productions A -+ A, 
a - * a ,  B--*B, b--+ b. Successive applications of these productions will 
reduce the tag word to length 1, producing a halt. If four such productions 
are added for each qi sj which causes the Turing machine to halt, then, 
even without using halting letters, we have made halting for the tag 
system correspond exactly to halting for the given Turing machine. 

We now construct a generalized Turing machine which reflects the 
action of such a tag system, and therefore has an undecidable halting 
problem. We shall use a notation similar to Minsky's, to make it easy 
to compare our machine to his. Let the alphabet of the tag system be 
a~, a2, . . . ,  a,,,, and suppose that the productions are 

a l  -~' r r " " a l n l ,  

612 --+ (12 1 (d22 " '  a2 n2 ,  

a m ~ Uml am2 . . .  a m n , .  

That is, if the first of the two deleted letters is a i, then the letters ail ai2. . ,  a~n ' 

are to be added at the end of the tag word. It is understood that each aij 
is some G. We may suppose that 1 < ni=<4. 
14* 
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The symbols used by the Turing machine will be 0, 1, 2, 3, of which 0 
is the blank. We put 

N~= 1 +(n I + 2)+ ... +(n,_ t +2),  

so that, in particular, N 1 = 1. Any nonempty tag word a r G . . .  az will then 
be coded as 

S = 2  ur 1 2 u" 1 . . . 1  2 re'. 

The productions will be represented in a somewhat different way. Indeed, 
the right side of the i-th production will be coded as 

P /=I  1 O N'", 0 1 . . . 0  1 0 N'~ 0 1 O N '̀ 0 1. 

It is understood that if ais= a~,, then Nij= N~. If the initial tag word is 
coded as S, then the initial tape of the Turing machine will be taken in 
the form 

. . .0  0 Pm. . .e  2 P~ 1 0 . . . 0  S 0 0 .... 

where we may insert any number of zeros preceding S. The different 
initial tapes which need to be considered differ only in the values of S. 

Notice that N, is the number of l 's between P~ and S. Thus the tag 
letter a i is coded in a form 2 N' which contains the information needed 
to locate the corresponding production P~. This idea is borrowed from 
Minsky's treatment of his 4-symbol 7-state universal Turing machine, 
although the details are slightly different here. 

On the tape of the Turing machine, we think of 2 and 3 as disguised 
forms of 0 and 1. At any time, the tape, excluding the blank tails at either 
end, may be divided into three parts, left, middle, and right, using the 
symbols (0, 1), (2, 3), and (2, 1), respectively. That is, the middle part is 
completely disguised, but the right part is only half disguised. To begin 
with, the middle is empty and the right part consists &jus t  S. 

Machine table 

R O  

R I  
R 2  
R 3  
LO 
L1  
L 2  

0 1 2 3 

- 2 L 1  ( L O ) R  - 

1 R R R 

2 R R R 
- 0 R 0  O R  I R  

2L 3 L L 
2(R2) L 3 L 2  L L 
2(R 1) L 1 R 3 - - 
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Our machine will use four right states, R 0, R 1, R 2, R 3, and three 
left states, L0,  L 1, L 2. Each entry in the machine table shows the action 
when a head is in a given state and scanning a given symbol. For  example, 
for a head in state L2  and scanning 0, the entry 2(R I )L  1 means that 
the 0 is changed to 2, and that the head splits into two heads, one in 
state R 1 and one in state L 1. The first of these is transient, so it is more 
convenient to say that the given head emits a transient head in state R 1 
and itself goes into state L 1. The transient state is indicated in paren- 
theses. In the absence of parentheses, no transient head is emitted. Also, 
in the machine table, the initial digit is omitted when the symbol is 
unchanged, and the final digit when the state is unchanged. But the 
omission of the L or R as well as the final digit indicates disappearance 
of the head. The dash indicates a halt. However, the only essential case 
is when the head is in state R 0 and is scanning 0. The other four dashes 
occur in situations which will never be reached if we start with a tape 
of the sort described. 

The machine is started with the permanent  head in state R0 and 
scanning the first symbol of S, which must be 2. A transient head in 
state L0  is emitted, and seeks out the first 1 to the left and changes it 
to 3, changing 0's to 2's on the way.The transient head then disappears. 
As the permanent  head traverses the 2 N, at the beginning of S, this 
process is repealed N r times, which suffices to change all the 0's and l 's 
between P, and S to 2's and Ys. Thus this part  of the tape has been put 
in the disguised form mentioned earlier, and is now considered as the 
middle of the tape. 

Assume first that the given tag word a r a~... a t has length at least 2. 
We are now ready for the production. The first 1 in S is changed to 2, 
and the permanent  head goes into state L 1. This head moves left to 
the 1 at the right end of P~, changes it to 3, goes into state L 2, finds the 
0 preceding the l, changes it to 2, emits a transient head in state R 1 
which writes a 1 to the right of S, and goes back into state L 1. Each 
additional 0 encountered is changed to 2, and causes a 2 to be written to 
the right of S. If the pair 01 is encountered again, then the whole process 
is repeated. Finally 11 is encountered, which causes the permanent 
head to go into state R 3. The desired addition has been made to the 
right of S. 

In state R 3, the productions P~ . . . . .  P~ are restored to their original 
form, and the following 1 is also restored. Any original 0's preceding S 
are changed back into 0's, and the original 2 Nr 1 2 Ns at the beginning 
of S, which is now 2 N" 2 2 Ns, is also changed to 0's. Following this, there 
will be a 1, whether it was there to begin with or not. This will be changed 
to 0, and the head will go into state R0 scanning the next symbol, which 
is indeed the first symbol of the new S. 
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The above description assumes that the tag word has length at least 2. 
If the tag word consists of a single letter a N, then S = 2 N'. We locate P~ as 
before, but we do not use it. After the 2 ~r is passed, we find 0 instead of 1. 
The head is in slate R0, and the machine halts. Thus the Turing machine 
halts if and only if the tag word is reduced to length 1, that is, if and only 
if the tag productions are halted. 

We add the remark that if the machine is started with an initial tape 
of the sort described, then no matter whether the machine halts or runs 
forever, it will never scan a square to the left of the initially printed 
portion of the tape. Thus a one-way infinite tape could be used just as 
well as a two-way infinite tape. 

w 6. The Completion Problem 

We shall now show how to find a set of 36 tiles for which the comple- 
tion problem is undecidable. This is the smallest set of tiles which I have 
been able to find with this property. 

We sketch briefly the stages by which this result was obtained, but 
make a precise count of pieces only at the final stage. In the first place, 
we could apply the methods o fw to Minsky's 4-symbol 7-state universal 
Turing machine. Since most  states can be entered from only one side, 
many of the merging tiles from Fig. 13 can be omitted. 

A considerable improvement  can be made using instant action. The 
two tiles in Fig. 17 are replaced by the single tile in Fig. 18. A similar 
replacement is made when the motion is to the left. However, when the 
direction of motion changes, a unit of time elapses, and the merging and 
action tiles must  be kept separate. 

Sk 

! 
I 

I 

sj 

Fig. 17. Merging and action tiles 

Sk 

qll  qL 
51 

Fig. 18. Instant action tile 

With this new system of instant action, it will still be true that the 
lower and upper edges of a row of tiles represent the complete con- 
figurations of the Turing machine at two consecutive instants. However, 
many  moves of the Turing machine may have happened in between. We 
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capture the complete configurations of the machine only at those times 
when the head reverses its direction of motion. 

The following exceptional situation can occur for some Turing 
machines, although it does not actually arise when Minsky's machine 
is used. Suppose that, for some initial tape, the head ultimately makes an 
infinite sequence of moves in the same direction. In this case, although 
the Turing machine does not halt, its action is completed in a finite time. 
In the corresponding tiling, only alphabet tiles are used above a certain 
level. However, it is still true that the tiling can be completed if and only 
if the machine does not halt. 

Now consider generalized Turing machines of the sort discussed at 
the beginning of w 5. If the state-symbol pair qi sj requires the head to 
split, then one unit of time is required. Besides a merging tile, we need a 
new tile of the sort shown in Fig. 19. If the state-symbol pair qi si causes 
the head to disappear, then instant action is used. No merging tile is 
required, but we need a new tile like the one in Fig. 20, or its mirror 
image in a vertical line. 

sk 

q~ s I 

Fig. 19. Splitting head 

s k 

sj 

Fig. 20. Disappearing head 

Here also, the lower and upper edges of any row of tiles will represent 
the complete configurations of the machine at two consecutive instants. 
Assuming that there is just one head which is not transient, each complete 
configuration indicates just one scanned square. We capture the complete 
configurations at those times when the permanent  head splits or reverses 
its direction of motion. The exceptional situation mentioned earlier 
occurs if this head ultimately makes an infinite sequence of moves in the 
same direction. 

The best estimate which I have found for the number  of tiles needed 
to make the completion problem undecidable is obtained in this way 
using the machine with an undecidable halting problem which we 
constructed in w 5. 

The tiles corresponding to the machine table are easily counted. We 
need two for each entry involving a turn or a split, and one for each 
other entry except a dash. The entries requiring two tiles occur for the 
state-symbol pairs R 01, R 0 2, L 1 0, L 2 0, L 2 1. These five areju st balanced 
by the five dashes, so that 28 tiles are required. One of the 28 tiles is 
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shown in Fig. 21. It is of the splitting-head type introduced in Fig. 19, and 
represents the first action of the machine when it is started in state R 0 
scanning 2. 

2 

L0 -, ; R0 

R02 

Fig. 21. The first action 

In addition, we need 4 alphabet tiles and some starting tiles. A 
possible set, more economical than those used in w consists of the 
blank tile and the 3 tiles shown in Fig. 22. This makes 36 tiles in all. 

R02 0 0 

Fig. 22. New starting tiles 

It may be of interest to count how many colors we are using. For  
these tiles, arrows with a given label always point in the same direction; 
in particular, unlabelled arrows always point to the right. If we introduce 
the color B for blank edges, A for unlabelled arrows, and otherwise use 
the label as a color, then the tiles will fit if and only if the abutting colors 
match. We see that there are nine colors, B, A, R 0, R 1, R 2, R 3, L 0, 
L 1, L 2, used on vertical edges, and ten colors, B, 0, 1, 2, 3, R 0 1, R 0 2, 
LI0,  L20 ,  L21, used on horizontal edges. Since the two sets of colors 
are completely independent, we may use ten colors in all. 

The initial position for the completion problem is obtained as 
follows. We line up the alphabet tiles corresponding to the tape segment 
0 P,,... Pz Px 1 S. This includes the printed portion of the initial tape as 
described in w where we have chosen the option of inserting no O's 
before S. The tile corresponding to the first 2 in S is replaced by the 
first tile in Fig. 22, indicating that the 2 is scanned in state R 0. The 
initial position is completed by adjoining a blank tile at the left end of 
the row, and the second tile in Fig. 22 at the right end. This row of tiles 
may be represented symbolically as B U C VD, where B is the blank tile, 
C and D are the first two tiles in Fig. 22, U is a fixed string of alphabet 
tiles 0 and 1, and V is a variable string of alphabet tiles 1 and 2. Only six 
different tiles are used in the initial position. 



Undecidabi]ity and Nonperiodicity for Tilings of the Plane 201 

The rightmost tile in this row forces an infinite sequence of tiles like 
the third tile in Fig. 22 to appear to its right. We shall also show that the 
blank tile and the 0 tile at the left end of the row force infinite columns 
of similar tiles to appear above them. We recall that the 0 represented 
by the 0 tile is never scanned by the Turing machine. Hence there is no 
intrusion into the column of 0 tiles from the right. Thus as long as we 
use blank tiles in the first column, we must use 0 tiles in the second. The 
first time that we do not use a blank tile in the first column, we must 
use one of the tiles in Fig. 22. The second and third tiles are impossible, 
since no tile would fit to the right. Thus the first tile must be used, and 
a 0 tile will appear  to its right. However, at the next level, the tile in 
Fig. 21 will appear  in the first column, and no tile can fit to its right. 
Indeed, the machine table shows that the machine halts if it is in state R 0 
scanning 0. Consequently no merging tile or  instant action tile is provided 
for this case. 

So far, we have a horizontal row of tiles extending infinitely far to 
the right, and two vertical columns extending infinitely far upward. The 
horizontal row represents the printed portion of the initial tape and the 
blank portion to its right, which are the only portions of the tape used 
by the Turing machine. The two vertical columns protect the first 
quadrant  from intrusions from the left. Thus the operation of the Turing 
machine is exactly mirrored in the first quadrant,  and this quadrant can 
be completely tiled if and only if the machine never halts. The tiling of 
the rest of the plane can always be completed in a trivial way, using just 
blank tiles and alphabet tiles. Since the machine has an undecidable 
halting problem, this set of 36 tiles has an undecidable completion 
problem, even when we restrict the initial position to a finite row of 
tiles of the special sort described above. 

w 7. New Proof of Berger's Theorem 

We now return to the considerations of w 3, and develop these ideas 
a bit further. At the end of this section, we combine the results ob- 
tained with those of w 4 to obtain a new proof  of Berger's undecidability 
theorem. 

We again consider tilings using copies of the five basic tiles obtained 
by translation, rotation, and reflection, subject to the constraint that 
crosses appear  in alternate positions in alternate rows. As we saw in w 3, 
every (2 n+~-  1)-square has a cross at the center with arms radiating 
out, and four (2 ~ -  1)-squares in the corners. At the centers of  these 
(2 ~ -  1)-squares are four crosses, each of which faces two of the others 
at the distance 2 n. These crosses together with the arms in between them 
form a hollow square of outer dimension 2n+ 1 and inner dimension 
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2" - 1. This hollow square will be called a border of side 2", or a 2n-border. 
Every pair of crosses which face each other at the distance 2" will lie at 
two corners of a 2"-border. 

The only cross in the (2 n+l - l)-square which does not face another 
cross within this square is the one at the center. Thus each of the other 
crosses determines a 2~-border with k < n, and we see that k = n only for 
the 2n-border described above. Thus this 2"-border does not intersect 
any other 2"-border, and the only larger border which it intersects is 
the 2"+l-border one of whose corner crosses is at the center of the 
2"-border. It follows that two borders can intersect only if the side of 
one is twice the side of the other. To every border, there is another border 
whose side is twice as long and which has one corner at the center of 
the given border, the larger border passing through the middle of two 
sides of the smaller border. On the other hand, every border of side at 
least 4 has four borders whose sides are half as long which are centered 
at its four corner crosses. They intersect it one-quarter and three-quarters 
of the way along the sides. 

We shall modify the five basic tiles by coloring the side arrows red 
or green. There is, however, one tile with nothing to color. For each of 
the other four tiles, we allow two colorings, according to the following 
rules. At most one color may be used horizontally, and at most one color 
may be used vertically. For  the cross, the same color shall be used in 
both directions. For  the arm which has side arrows both ways, one color 
shall be used horizontally and the other color vertically. The nine tiles 
obtained in this way will be called the colored basic tiles. 

We now consider tilings of the plane using copies of the nine colored 
basic tiles obtained by translation, rotation, and reflection, subject to 
the constraint that green crosses appear in alternate positions in alternate 
rows, and perhaps elsewhere. If we ignore the colors, then the filings will 
be of the type previously considered. 

Notice that the colors will go completely around the borders, so 
that each border is either red or green. Intersecting borders must be of 
different colors. But the constraint on the green crosses forces 2-borders 
to be green. Hence 4-borders are red, 8-borders green, etc. That is, 
every 2"-border is green when n is odd, but is red when n is even. 

Conversely, if we are given any tiling of the plane by the five basic 
tiles subject to the constraint that crosses appear in alternate positions 
in alternate rows, then the side arrows may be colored red or green in 
such a way that we use only the nine colored basic tiles and satisfy the 
constraint mentioned above. We simply color the 2"-borders green 
when n is odd and red when n is even. If, outside of all the borders, there 
are one or two corridors containing side arrows, then these may be 
colored in either of two ways. 
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We can realize the constraint on the green crosses by using either 
corner markings or parity markings. We shall describe both of these, 
though only the parity markings will be useful for the proof of Berger's 
theorem. In the case of the corner markings, we allow all nine tiles to 
have dented corners, but only the green cross can have bumps at the 
corners. This makes a total often tiles. In the case of the parity markings, 
the constraint on the green crosses is enforced by allowing the green 
cross to have either the odd-odd or the even-even marking, as was done 
previously for the cross, but forcing the red cross to have the even-even 
marking. The two tiles with red in arrows may also be restricted to the 
even-even marking, since they can occur only at the middle of the edges 
of red borders, or at the junction of corridors. The other tiles are allowed 
two parity markings as usual. Thus there are fifteen tiles in all. 

The green borders will now be forgotten, only the red borders being 
considered. Red borders have sides of the form 4 ". No two red borders 
can intersect, although one may lie completely within another. Every 
tiling of the plane contains arbitrarily long sequences of borders of 
sides 4, 4 2, 4 3 . . . . .  4 ~, each lying within the next. Hence there are some 
tilings of the plane which contain infinite sequences of borders of sides 
4, 4 2, 4 3 . . . . .  each lying within the next. For such a tiling, every tile will 
lie within some red border. 

The region within a red border but outside of all red borders within 
it will be called a board. By what we have just said, some tilings of the 
plane consist solely of boards and borders. On a board, it will be important 
to locate the free rows and columns of tiles, that is, the ones which run 
completely across the board, from outer border to outer border, without 
running into any of the smaller borders inside. 

First we count the number of free rows or columns. Let F,, be this 
number for a board of side 4 " -  1. Now the positions of the 4k-borders 
repeat with the period 2 - 4 k, hence the pattern of free rows or columns 
of a (4" -  1)-board is exactly repeated in the middle of a (4" +1 _ 1)-board. 
In addition, if we omit the center row or column, the remaining half 
patterns are repeated at the sides. Thus we find that F,+~ = 2 F , -  1. But 
F~ = 3, hence F, = 2 ~ + 1 in general. It may be noted that, aside from the 
center row and colamn, all of the other fi'ee rows and columns have odd 
numbers. 

To locate the free rows and columns, we shall use a new type of 
marking. It is convenient to think of these markings as a signal which 
travels along the rows and columns. We shall call this the obstruction 
signal, since its purpose is to determine whether there is any obstruction 
along the line. The obstruction signals will be transmitted unchanged 
along the rows and columns of the board. They will be emitted and 
absorbed by the red borders. Specifically, if a tile is part of a red border, 
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then we agree that each edge of the tile along the outer boundary of the 
border must either emit or absorb an obstruction signal, whereas an 
edge along an inner boundary may absorb but cannot  emit an obstruction 
signal. 

We see that no obstruction signals run along the free rows. Now 
look at any tile on the board which is not in a free row. It will have the 
outer boundary of a red border to either its right or left, or both. If 
there is an outer boundary on one side and an inner boundary on the 
other, then there will be an obstruction signal running from the outer 
boundary to the inner boundary. If there are outer boundaries on both 
sides, then the sense of the obstruction signal is ambiguous;  it may run 
either from left to right or from right to left. In any case, a tile lies in a 
free row if and only if no obstruction signal runs through it horizontally. 
Similarly, a tile lies in a free column if and only if no obstruction signal 
runs through it vertically. The obstruction signals may be indicated by 
means of symmetrical markings which can be added to our ten tiles 
with corner markings or our fifteen tiles with parity markings before 
they are rotated or reflected. 

We take the tiles just constructed, using the variant based on 
parity markings (and hence involving no corner markings), and rotate 
and reflect them in all possible ways. Hereafter, we allow only trans- 
lation. 

We are now ready to give a proof  of Berger's theorem that there is 
no decision method for the problem of tiling the plane with copies of  a 
finite number  of tiles with colored edges so that abutting edges match, 
translation only being used. The proof  will be based on the above 
results and on w 4. As in w 4, we shall show how to make a set of tiles 
correspond to each Turing machine in such a way that the plane can be 
tiled with these tiles if and only if the Turing machine never halts if 
started on a blank tape. The new difficulty in the proof  is to find a part  
of the plane in which to picture the operation of the machine. Just as 
was the case with Berger Eli, what we actually do is to find parts of  the 
plane in which we can picture arbitrarily large finite portions of the 
machine operation. For  this purpose, we shall use the boards con- 
structed above. 

Let an arbitrary Turing machine be given. On each board tile which 
is free both horizontally and vertically, we superpose each of the Turing 
machine signals in Figs. 12-14. These signals, which were indicated in 
the figures by central arrows, can be shifted so as not to interfere with 
the other markings on these tiles. The board tiles which are free in one 
direction but not in the other will simply transmit signals unchanged 
in the free direction. The board then acts exactly as if it were a square of 
side 2"+ 1 with the free rows and columns being contiguous. 
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We need some boundary conditions. We agree that every arm with 
a horizontal red marking below the center which does not absorb an 
obstruction signal along its upper edge shall emit a Turing machine 
signal there, and that this signal shall be s o unless we have red in arrows, 
in which case it shall be qo So. This will force the center tile along the 
lower side of a red border to emit qo So from its top edge, and the other 
tiles at the bot tom of free columns to emit s o. In a similar way, we mark 
the other red arms so the left, right, and upper parts of the border may 
absorb any Turing machine signals along their inner edges. 

With these agreements, we shall be able to tile arbitrarily large 
boards if and only if the Turing machine never halts. Since some tilings 
of the plane consist solely of boards and borders, we can tile the plane 
if and only if the Turing machine never halts. This completes the new 
proof of Berger's theorem. 

An examination of the possibilities when some tiles are outside of 
all borders shows that no matter what tiling of the plane we make with 
the tiles which we had before the Turing machine signals were added, 
these signals can be added if and only if the machine never halts. There 
may be a complete model of the action of the Turing machine, but there 
is no way to force such a model to exist. More details about  this are 
given in w 8. 

w 8. Tilings and 2-adic Numbers 

We showed in w 3 that any tiling of the plane by the five basic tiles 
with the constraint that crosses appear  in alternate positions in alternate 
rows must be nonperiodic. This result may be applied both to the six 
tiles with corner markings and to the ten tiles with parity markings. In 
this section, we shall determine all possible tilings of the plane using 
these tiles. 

It will be convenient to think of the tiles placed with their centers 
at lattice points, and to locate a tile by giving the coordinates of its 
center. When we speak, for example, of  tiling the region x > 0 ,  y >  0 
(the first quadrant), we shall mean that a tile is to be placed at each 
lattice point (x, y) with x > 0 ,  y > 0 .  Notice that the union of these tiles, 
ignoring the notches, will cover just the point set x>�89 y>�89  

First we look at a special tiling of the first quadrant. Take an 
expanding sequence of (2 n -  1)-squares, in the sense of w 3, determined 
by 0 < x < 2 " ,  0 < y < 2  n, for n =  1, 2, 3 . . . . .  The center cross of each square 
will face up and to the right. The union of these squares will determine 
a tiling of the first quadrant,  x > 0 ,  y > 0 .  In this tiling, it is easily seen 
that there is a cross at (x, y) if and only i fx  and y contain the same power 
of 2. Conversely, this condition completely determines the tiling. The 
constraint is satisfied as soon as we put down the odd-odd crosses. The 
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fact that  there are crosses for x - y -  2 (mod 4) determines the orientat ion 
of  the odd-odd  crosses, etc. The arms are completely determined by the 
c r o s s e s .  

The characterization of  the tilings in general requires the use of  
2-adic integers. A 2-adic integer A has the form 

A = a o + a  1 - 2+c~ z �9 2:z 4- a 3  �9 2 3 q- "", 

where each a, is 0 or 1. The value of A is determined as soon as we know 
in which residue class rood 2" it falls for each n. The ordinary integers 
are included a m o n g  the 2-adic integers. Indeed, the natural  numbers  
are obtained by taking a, = 0 for large n, and the negative integers are 
obtained by taking a, = 1 for large n. In particular, - 1 = 1 + 2 + 2 2 + 2 3 q_ .... 

N o w  consider the union of  any expanding sequence of(2" - 1)-squares. 
We know that this union is either a plane, a half plane, or  a quar ter  plane. 
Determine 2-adic integers A and B by the condit ion that the next co lumns  
of  tiles to the left and right of  the (2" - D-square satisfy A + x = 0 (rood 2"), 
and that  the next rows of  tiles below and  above the ( 2 " -  l)-square satisfy 
B + y - 0  (mod 2"). If the union  has a vertical boundary ,  it will lie along 
the line A + x = 0, and hence A will be an ordinary  integer. If  the union 
has a hor izontal  boundary ,  then it will lie a long the line B + y = 0 ,  and 
hence B will be an ordinary integer. In any case, crosses will appear  at 
just those posit ions in the union for which A + x  and B + y  contain the 
same power  of  2. 

Conversely,  suppose that  any two 2-adic integers A and B are given. 
If A is an ordinary  integer, also choose  one of the two inequalities 
A + x > 0 or A + x < 0. If B is an ordinary  integer, also choose  one of  the 
two inequalities B + y > 0  or  B + y < 0 .  The tiling of  the plane, half  plane, 
or  quar ter  plane defined by these inequalities will be uniquely deter- 
mined if we insist that  crosses shall appear  at just those posit ions for 
which A + x  and  B + y  contain the same power of  2. If  A = B = 0 ,  and 
we choose  the inequalities x > 0 ,  y > 0 ,  then this tiling is just the one 
first considered. 

I fA  and B are not  ord inary  integers, we obtain  at once a tiling of  the 
whole plane. On  the other hand, if A is an ordinary  integer but B is not, 
then we obtain a tiling of one of  the half  planes A + x > 0  or A + x < 0 .  
We could  define a tiling of  the right half  plane A + x > 0 using some B t, 
and a tiling of  the left half  plane A + x < 0  using some B 2 . if  B 1 :# B 2, 
then the line A + x =  0 is a fault. If corner  markings are used, then B 1 
and B 2 are arbitrary,  but if pari ty markings  are used, then B 1 - B  z must  
be even. (This is the first time that a difference between the two problems 
has appeared.) A sequence of  arms can be filled in a long the corr idor  
A + x = 0. Either all of the a rms  will point  up, or  else all will point  down. 
Besides the central  vertical arrows, there m a y  be no  other vertical 
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arrows, or  each tile in the corr idor  may  have a vertical a r row at the left, 
or each m a y  have one at the right. 

Either of the numbers  Bt or  B 2 m a y  be an ordinary integer. We  
would then have an addit ional  cor r idor  along A + x > 0 ,  B 1 + y = 0 ,  or  
along A + x < 0 ,  B 2 + y = 0 ,  but this cannot  be a fault. The  corr idors  
can be filled with arms,  which point  out  at one end of  one corr idor ,  and  
point  in elsewhere. The only case when there is any other possibility is 
when B 1 = B 2 = B, and B is an ord inary  integer. Suppose,  for example,  
that  A = B = 0 .  In all four quadrants ,  we place a cross at (x, y) if and only 
if x and y contain the same power  of  2. There are corr idors  along the 
coord ina te  axes. The  tile at the origin is completely  arbi t rary .  After it 
has  been chosen, all of the o ther  tiles a long the axes are determined.  If 
the tile at  the origin is a cross, then arms radiate out  in all four directions. 

It may  be no ted  that  the last tiling considered is invar iant  under  
rotat ion through 90 ~ about  the origin until the tiles along the axes are 
added, but  that this symmet ry  is then destroyed. Indeed, it is easily 
seen that  no tiling can have rota t ional  symmetry.  On the other  hand,  
the tiling m a y  be symmetr ic  to one of  the axes or  to the line y =  _+x, 
depending on which tile is used a t  the origin. N o  other  tiling has  greater  
symmet ry  than this, so the g roup  of isometries of  the tiling has order at 
mos t  2. We  can prevent  nontr ivial  isometries by using more  tiles. 

The only other  possible titings besides those described above  are 
the ones in which the roles of hor izonta l  and vertical are interchanged.  

We shall  now make  a further study of  the red borders  in t roduced 
in w 7. We want  to know whether  the red borders  and the boards  bounded  
by  them comple te ly  fill the plane, or whether  there are some tiles outside 
of  all the red borders .  If so, we also ask  whether  there are comple te  
columns or complete  rows outside the red borders.  

Consider  a tiling with no fault, so that  the same 2-adic integers A 
and  B are used th roughou t  the plane to determine the tiling. If the tiling 
has  a fault, then the considerat ions below may be applied separately to  
the half planes on either side of  the fault. 

Any borde r  of  side 4 k is centered at  a point  (x, y) for which A + x  
and B + y  are odd  mult iples of  4 k, say A + x = ( 2 u + l ) . 4  k and B + y =  
( 2 v +  1)-4 k. The borde r  together  with its interior is then defined by the 
inequalities 

[2(A ~ -X) - - (4U+2) -4k [<4  k, 

I2(B + y ) - ( 4  v + 2 ) "  4kl < 4  k. 

N o w  expand  2 A + 2 x  and 2 B + 2 y  as 4-adic integers;  that  is, we write 

2 A + 2 x = a o + a  I . 4 + a  2 �9 42 + a 3 . 4 3  q-.. . ,  

2 B + 2 y = b  o+b t �9 4 + b  2 �9 4 2 + b  3 .43 + . . . ,  
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where 0 < a , < 3  and 0 < b , < 3  for all n. The first inequality above will 
be satisfied for some u if a k = 1 or  2, or  if a k = 3 and a o = a~ . . . . .  a k_ ~ = 0, 
but  in no  other  case. Co lumn  x will be outside of  all red borders  if this 
condi t ion is not  satisfied for any k > 0 .  This will be the case if and only if 
either A + x =  0 or  else the unit digit in the 4-adic expansion of  2A + 2x  
is 2 and each other digit is 0 or 3. 

If  A is given, we want  to know in what  ways x can be chosen so tftat 
this last condit ion is satisfied. If  A is an ordinary  integer, we can choose x 
so that A + x = 0, and we can choose x in infinitely many  ways so that 
the other  alternative is satisfied, all but  a finite number  of  the digits of 
2A + 2x being 0, or  all but  a finite number  being 3. I fA  is not  an ordinary  
integer, then adding 2x  to 2A can change only a finite number  of the 
digits of  2A. Thus  we cannot  satisfy the condi t ion unless the 4-adic 
expansion of  2A contains only a finite number  of  l 's  and 2's. If this 
happens, then infinitely many  values of  x may be chosen. 

It follows that  there are some complete columns outside of  all the 
red borders if and only if the 4-adic expansion of 2A contains only a 
finite number  of  r s  and  2's. In this case, there are indeed infinitely many  
columns outside of  the red borders. Similarly, there are some complete  
rows (and then infinitely many)  outside of  all red borders if and only if 
the 4-adic expansion of  2B contains only a finite number  of  l 's  and 2's. 

There  is a peculiar case which should he noted. If A is an ordinary  
integer, then a l though the column x defined by A + x =  0 is outside of  
all red borders,  it may  actually be red. Indeed, it may  look like part  of  
the left or  right side of  a red border.  Similarly, i fB  is an ordinary integer, 
then the row y with B + y = 0  may  look like par t  of  the bo t tom or top  
side of  a red border.  

There may  be some tiles outside of  all red borders without  there 
being any  complete  columns or any complete rows outside. The tile (x, y) 
will be inside or  on some border  of  side 4 k if and only if 

a k= 1 or 2, or  i/k---- 3 and a o= a1 . . . . .  a k - t  = 0 ,  
and 

b k- -  1 o r  2 ,  o r  b k-- 3 and bo = b l  . . . . .  bk-1 ----0" 

We can find such a value of k for every tile (x, y) if and only if there are 
infinitely many  posit ions in which the 4-adic expansions of both 2A 
and 2B contain  1 or 2. In other  words, some tiles will lie outside of  all 
red borders  just  in case there are only a finite number  of  posit ions in 
which both  expansions contain 1 or 2. However ,  if each expansion 
contains  infinitely m a n y  l 's  or  2's, then there will not  be any complete 
column or  complete row outside of the red borders. 

Finally, we examine briefly the problem of  adding Tur ing machine  
signals to the tiles outside of  the red borders. If  there are no complete  
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columns or rows outside, then each outside tile must have vertical and 
horizontal obstruction signals, and no Turing machine signals are to 
be added. Even when there are complete columns or rows outside, we 
may add such obstruction signals. Thus no matter  what tiling of the 
plane by the colored basic tiles with parity markings is given, we can 
add the obstruction and Turing machine signals if and only if the Turing 
machine never halts. No  action of the Turing machine need be shown 
outside of the red borders. 

But we can say more. Suppose that we are given a tiling of the plane 
with the obstruction signals already added in any permissible way. Then 
we can still add Turing machine signals if and only if the machine never 
halts. This is trivial for the portion of the plane outside of the red borders 
unless there is a down arm with red in arrows there with no obstruction 
signal absorbed on its upper edge. Only if there is such a tile will we have 
a complete or partial model of the operation of the Turing machine 
outside of the red borders. A case in which a complete model of  the 
Turing machine will appear  is that in which we use A = B =  0 throughout 
the plane, place a down arm with red in arrows at the origin, and do not 
introduce any unnecessary obstruction signals. 
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