15-852 Randomized Algorithms
 Notes for 1/20/97

* useful probabilistic inequalities
* Randomized complexity classes

Useful probabilistic inequalities

Say we have a random variable X. Often want to bound the probability that X is too far away from its expectation. [In first class, we went in other direction, saying that with reasonable probability, a random walk on n steps reached at least \sqrt{n} distance away from its expectation]
Here are some useful inequalities for showing this:
Markov's inequality: Let X be a non-negative r.v. Then for any positive k :

$$
\operatorname{Pr}[X \geq k \mathbf{E}[X]] \leq 1 / k
$$

(No need for k to be integer.) Equivalently, we can write this as:

$$
\operatorname{Pr}[X \geq t] \leq \mathbf{E}[X] / t
$$

Proof. $\mathbf{E}[X]=\operatorname{Pr}[X \geq t] \cdot t+\operatorname{Pr}[X<t] \cdot 0 \geq t \cdot \operatorname{Pr}[X \geq t]$.
Defn of Variance: $\operatorname{var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]$. Standard deviation is square root of variance. Can multiply out variance definition to get:

$$
\operatorname{var}[X]=\mathbf{E}\left[X^{2}-2 X \mathbf{E}[X]+\mathbf{E}[X]^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} .
$$

Chebyshev's inequality: Let X be a r.v. with mean μ and standard deviation σ. Then for any positive t, have:

$$
\operatorname{Pr}[|X-\mu|>t \sigma] \leq 1 / t^{2}
$$

Proof. Equivalently asking what is the probability that $(X-\mu)^{2}>t^{2} \operatorname{var}[X]$. Now, just think of l.h.s. as a new non-negative random variable Y. What is its expectation? So, just apply Markov's inequality.

Let's suppose that our random variable $X=X_{1}+\ldots+X_{n}$ where the X_{i} are simpler things that we can understand. Suppose there is not necessarily any independence. Then we can still compute the expectation

$$
\mathbf{E}[X]=\mathbf{E}\left[X_{1}\right]+\ldots+\mathbf{E}\left[X_{n}\right]
$$

and use Markov. (i.e., expectation is same as if they were independent)

Suppose we have pairwise independence. Then, $\operatorname{var}[X]$ is same as if the X_{i} were fully independent. In fact, $\operatorname{var}[X]=\sum_{i} \operatorname{var}\left[X_{i}\right]$.
Proof.

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} & =\sum_{i, j} \mathbf{E}\left[X_{i} X_{j}\right]-\sum_{i, j} \mathbf{E}\left[X_{i}\right] \mathbf{E}\left[X_{j}\right] \\
& =\sum_{i} E\left[X_{i}^{2}\right]-\sum_{i} E\left[X_{i}\right]^{2}
\end{aligned}
$$

where the last inequality holds because $\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]$ for independent random variables, and all pairs here are independent except when $i=j$. So, can apply Chebyshev easily.

Chernoff and Hoeffding bounds

What if the X_{i} 's are fully independent? Let's say X is the result of a fair, n-step $\{-1,+1\}$ random walk (i.e., $\operatorname{Pr}\left[X_{i}=-1\right]=\operatorname{Pr}\left[X_{i}=+1\right]=1 / 2$ and the X_{i} are mutually independent.) In this case, $\operatorname{var}\left[X_{i}\right]=1$ so $\operatorname{var}[X]=n$ and $\sigma(X)=\sqrt{n}$. So, Chebyshev says:

$$
\operatorname{Pr}[|X| \geq t \sqrt{n}] \leq 1 / t^{2}
$$

But, in fact, because we have full independence, we can use the stronger Chernoff and Hoeffding bounds that in this case tell us:

$$
\operatorname{Pr}[X \geq t \sqrt{n}] \leq e^{-t^{2} / 2}
$$

The book contains some forms of these bounds. Here are some forms of them that I have found to be especially convenient.
Let X_{1}, \ldots, X_{n} be a sequence of m independent $\{0,1\}$ random variables with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ not necessarily the same. Let S be the sum of the r.v., and $\mu=\mathbf{E}[S]$. Then, for $0 \leq \delta \leq 1$, the following inequalities hold:

- $\operatorname{Pr}[S>(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}$,
- $\operatorname{Pr}[S<(1-\delta) \mu] \leq e^{-\delta^{2} \mu / 2}$.

Additive bounds:

- $\operatorname{Pr}[S-\mu>\delta n] \leq e^{-2 n \delta^{2}}$.
- $\operatorname{Pr}[S-\mu<-\delta n] \leq e^{-2 n \delta^{2}}$.

Here is a somewhat intuitive proof, for the case of a fair random walk. The book has some less intuitive but shorter proofs too.

Theorem 1 Let $X=X_{1}+\ldots+X_{n}$ with $\operatorname{Pr}\left[X_{i}=1\right]=\operatorname{Pr}\left[X_{i}=-1\right]=1 / 2$, and X_{i} mutually independent. Then

$$
\operatorname{Pr}[X>\lambda \sqrt{n}]<e^{-\lambda^{2} / 2}
$$

for $\lambda>0$.
Proof. Let's look at a multiplicative version of the random walk. Let's say that we start at 1 , and on a heads we multiply our current position by $(1+\epsilon)$ and on a tails we divide our current position by $(1+\epsilon)$. So, we can write the random variable Y for this walk as:

$$
Y=Y_{1} \cdot Y_{2} \cdots Y_{n}
$$

where $\operatorname{Pr}\left[Y_{i}=(1+\epsilon)\right]=\operatorname{Pr}\left[Y_{i}=1 /(1+\epsilon)\right]=1 / 2$ and the Y_{i} are independent. What does the distribution on Y look like? Just like in the standard additive random walk, the median of the distribution is our starting point (i.e., there is a $50 / 50$ chance we will end up below 1 and a $50 / 50$ chance we will end up above 1). But, the expectation is much larger, since only a few additional steps to the right can move us large distances. Formally, doing a simple calculation gives us:

$$
\mathbf{E}\left[Y_{i}\right]=1+e^{2} /(2+2 \epsilon) \leq 1+\epsilon^{2} / 2
$$

and therefore (using the fact that the Y_{i} are independent):

$$
\mathbf{E}[Y] \leq\left(1+\epsilon^{2} / 2\right)^{n} .
$$

Let's now think about what Markov's inequality applied to Y, i.e.,

$$
\operatorname{Pr}[Y>k \cdot \mathbf{E}[Y]] \leq 1 / k
$$

tells us about our original (additive) version of the random walk. What happens is we lose something (compared to applying Markov to X directly) in that $\mathbf{E}[Y]$ is pretty far to the right - we think it is "expected" for X to be as large as $\log _{1+\epsilon}(\mathbf{E}[Y])$ - but we gain something critical: if X is just, say, $20 / \epsilon$ steps larger than this value, then that corresponds to Y being a huge $(1+\epsilon)^{20 / \epsilon} \approx e^{20}$ times larger than its expectation, which by Markov has probability only $1 / e^{20}$. Formally,

$$
\begin{aligned}
\operatorname{Pr}\left[X>\log _{1+\epsilon}(k \cdot \mathbf{E}[Y])\right] & \leq 1 / k \\
\operatorname{Pr}\left[X>\log _{1+\epsilon}(k)+\log _{1+\epsilon}\left(\left(1+\epsilon^{2} / 2\right)^{n}\right)\right] & \leq 1 / k \\
\operatorname{Pr}\left[X>\log _{1+\epsilon}(k)+n \epsilon / 2\right] & \leq 1 / k
\end{aligned}
$$

(where a bit of calculation gets you from the second-to-last to the last line). If we now set $k=(1+\epsilon)^{n \epsilon / 2} \approx e^{n \epsilon^{2} / 2}$, we get: ${ }^{1}$

$$
\operatorname{Pr}[X>n \epsilon] \leq e^{-n \epsilon^{2} / 2}
$$

and setting $\epsilon=\lambda / \sqrt{n}$ gives us:

$$
\operatorname{Pr}[X>\lambda \sqrt{n}] \leq e^{-\lambda^{2} / 2}
$$

as desired.

[^0]
Randomized complexity classes

Let A denote a poly time algorithm that takes two inputs: a (regular) input x and an "auxiliary" input y where y has length $l(|x|)$ where l is a polynomial and is poly-time computable. Think of y as the random bits.

- RP: One-sided error. Language L (decision problem) is in RP if there exists a poly time A :

For all $x \in L, \operatorname{Pr}_{y}[A(x, y)=1] \geq 1 / 2$.
For all $x \notin L, \operatorname{Pr}_{y}[A(x, y)=1]=0$.
($x \in L$ means x is something the algorithm is supposed to output 1 on.)
For instance, there are algorithms for primality that have the following property: If the number is prime, then they output "PRIME". If it is composite, then they output "PRIME" with prob. at most $1 / 2$. So, this is RP for compositeness.

- BPP: Like RP, but:

For all $x \in L, \operatorname{Pr}_{y}[A(x, y)=1] \geq 3 / 4$.
For all $x \notin L, \operatorname{Pr}_{y}[A(x, y)=1] \leq 1 / 4$.

- It is believed that $B P P \subseteq P$. I.e., Randomness is useful for making things simpler and faster (or for protocol problems) but not for polynomial versus non-polynomial.
- $\mathbf{P} /$ poly: L is in $\mathrm{P} /$ Poly if there exists a poly time A such that for every $n=|x|$, there exists a fixed y such that $A(x, y)$ is always correct. I.e., y is an "advice" string. (Remember, $|y|$ has to be polynomial in n, etc.) Also, can view as class of polynomialsize circuits.

RP in P/poly: Say A is an RP algorithm for L that uses ℓ random bits. Consider an algorithm \tilde{A} that uses an auxiliary input y of length $\ell(n+1)$ to run $n+1$ copies of A, and then outputs 1 if any of them produced a 1 and outputs 0 otherwise. Then, the probability (over y) that \tilde{A} fails on a given input x of length n is at most $1 / 2_{\tilde{A}}^{n+1}$. Therefore, with probability at least $1 / 2$, a single random string y will cause \tilde{A} to succeed on all inputs of length n. Therefore, such a y must exist.

Another kind of distinction: Algs like quickselect where always give right answer, but running time varies are called Las-Vegas algs. Another type are Monte-Carlo algs where always terminate in given time bound, but say have only $3 / 4$ prob. of producing the desired solution (like RP or BPP or primality testing).

[^0]: ${ }^{1}$ Actually, I believe this approximation is slightly off in the wrong direction. So, to do this formally we need to have been more careful with our approximations above...

