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Useful probabilistic inequalities

Say we have a random variable X� Often want to bound the probability that X is too
far away from its expectation� �In �rst class� we went in other direction� saying that with
reasonable probability� a random walk on n steps reached at least

p
n distance away from

its expectation�

Here are some useful inequalities for showing this�

Markov
s inequality� Let X be a non�negative r�v� Then for any positive k�

Pr�X � kE�X�� � ��k�

	No need for k to be integer�
 Equivalently� we can write this as�

Pr�X � t� � E�X��t�

Proof� E�X� � Pr�X � t� � t�Pr�X � t� �  � t �Pr�X � t��

Defn of Variance� var�X� � E�	X �E�X�
��� Standard deviation is square root of vari�
ance� Can multiply out variance de�nition to get�

var�X� � E�X� � �XE�X� �E�X��� � E�X��� 	E�X�
��

Chebyshev
s inequality� Let X be a r�v� with mean � and standard deviation �� Then
for any positive t� have�

Pr�jX � �j � t�� � ��t��

Proof� Equivalently asking what is the probability that 	X � �
� � t�var�X�� Now�
just think of l�h�s� as a new non�negative random variable Y � What is its expectation�
So� just apply Markov�s inequality�

Let�s suppose that our random variable X � X�� � � ��Xn where the Xi are simpler things
that we can understand� Suppose there is not necessarily any independence� Then we can
still compute the expectation

E�X� � E�X�� � � � ��E�Xn�

and use Markov� 	i�e�� expectation is same as if they were independent


�



Suppose we have pairwise independence� Then� var�X� is same as if the Xi were fully
independent� In fact� var�X� �

P
i var�Xi��

Proof�

E�X��� 	E�X�
� �
X

i�j

E�XiXj ��
X

i�j

E�Xi�E�Xj�

�
X

i

E�X�

i ��
X

i

E�Xi�
�

where the last inequality holds because E�XY � � E�X�E�Y � for independent random vari�
ables� and all pairs here are independent except when i � j� So� can apply Chebyshev
easily�

Cherno� and Hoe�ding bounds

What if the Xi�s are fully independent� Let�s say X is the result of a fair� n�step f�����g
random walk 	i�e��Pr�Xi � ��� � Pr�Xi � ��� � ��� and theXi are mutually independent�

In this case� var�Xi� � � so var�X� � n and �	X
 �

p
n� So� Chebyshev says�

Pr�jXj � t
p
n� � ��t��

But� in fact� because we have full independence� we can use the stronger Cherno� and
Hoe�ding bounds that in this case tell us�

Pr�X � t
p
n� � e�t����

The book contains some forms of these bounds� Here are some forms of them that I have
found to be especially convenient�

Let X�� � � � �Xn be a sequence ofm independent f� �g random variables with Pr�Xi � �� � pi
not necessarily the same� Let S be the sum of the r�v�� and � � E�S�� Then� for  � � � ��
the following inequalities hold�

� Pr�S � 	� � �
�� � e�������

� Pr�S � 	� � �
�� � e�������

Additive bounds�

� Pr�S � � � �n� � e��n�
�

�

� Pr�S � � � ��n� � e��n�
�

�

Here is a somewhat intuitive proof� for the case of a fair random walk� The book has some
less intuitive but shorter proofs too�
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Theorem � Let X � X��� � ��Xn with Pr�Xi � �� � Pr�Xi � ��� � ���� and Xi mutually

independent� Then

Pr�X � 	
p
n� � e�����

for 	 � �

Proof� Let�s look at a multiplicative version of the random walk� Let�s say that we start at
�� and on a heads we multiply our current position by 	� � 

 and on a tails we divide our
current position by 	� � 

� So� we can write the random variable Y for this walk as�

Y � Y� � Y� � � � Yn

where Pr�Yi � 	� � 

� � Pr�Yi � ��	� � 

� � ��� and the Yi are independent� What does
the distribution on Y look like� Just like in the standard additive random walk� the median
of the distribution is our starting point 	i�e�� there is a ��� chance we will end up below �
and a ��� chance we will end up above �
� But� the expectation is much larger� since only
a few additional steps to the right can move us large distances� Formally� doing a simple
calculation gives us�

E�Yi� � � � e��	� � �

 � � � 
���

and therefore 	using the fact that the Yi are independent
�

E�Y � � 	� � 
���
n�

Let�s now think about what Markov�s inequality applied to Y � i�e��

Pr�Y � k �E�Y �� � ��k

tells us about our original 	additive
 version of the random walk� What happens is we lose
something 	compared to applying Markov to X directly
 in that E�Y � is pretty far to the
right � we think it is �expected� for X to be as large as log���	E�Y �
 � but we gain

something critical� if X is just� say� ��
 steps larger than this value� then that corresponds
to Y being a huge 	� � 

���� � e�� times larger than its expectation� which by Markov has
probability only ��e��� Formally�

Pr�X � log���	k �E�Y �
� � ��k

Pr�X � log���	k
 � log���		� � 
���
n
� � ��k

Pr�X � log���	k
 � n
��� � ��k

	where a bit of calculation gets you from the second�to�last to the last line
� If we now set
k � 	� � 

n��� � en�

���� we get��

Pr�X � n
� � e�n����

and setting 
 � 	�
p
n gives us�

Pr�X � 	
p
n� � e�����

as desired�

�Actually� I believe this approximation is slightly o� in the wrong direction� So� to do this formally we

need to have been more careful with our approximations above���
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Randomized complexity classes

Let A denote a poly time algorithm that takes two inputs� a 	regular
 input x and an
�auxiliary� input y where y has length l	jxj
 where l is a polynomial and is poly�time
computable� Think of y as the random bits�

� RP� One�sided error� Language L 	decision problem
 is in RP if there exists a poly
time A�

For all x � L� Pry�A	x� y
 � �� � ����

For all x �� L� Pry�A	x� y
 � �� � �

	x � L means x is something the algorithm is supposed to output � on�


For instance� there are algorithms for primality that have the following property� If
the number is prime� then they output �PRIME�� If it is composite� then they output
�PRIME� with prob� at most ���� So� this is RP for compositeness�

� BPP� Like RP� but�

For all x � L� Pry�A	x� y
 � �� � ����

For all x �� L� Pry�A	x� y
 � �� � ����

� It is believed that BPP 	 P � I�e�� Randomness is useful for making things simpler
and faster 	or for protocol problems
 but not for polynomial versus non�polynomial�

� P�poly� L is in P�Poly if there exists a poly time A such that for every n � jxj�
there exists a �xed y such that A	x� y
 is always correct� I�e�� y is an �advice� string�
	Remember� jyj has to be polynomial in n� etc�
 Also� can view as class of polynomial�
size circuits�

RP in P�poly� Say A is an RP algorithm for L that uses � random bits� Consider an
algorithm �A that uses an auxiliary input y of length �	n � �
 to run n � � copies of
A� and then outputs � if any of them produced a � and outputs  otherwise� Then�
the probability 	over y
 that �A fails on a given input x of length n is at most ���n���
Therefore� with probability at least ���� a single random string y will cause �A to
succeed on all inputs of length n� Therefore� such a y must exist�

Another kind of distinction� Algs like quickselect where always give right answer� but
running time varies are called Las�Vegas algs� Another type are Monte�Carlo algs where
always terminate in given time bound� but say have only ��� prob� of producing the desired
solution 	like RP or BPP or primality testing
�
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