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So What's Information Good For?

Transmission through spaca
(a.k.a. Communication)

« Sending Information from here to there

« “Teleporting” (quantum) states

ety -
nagimion feict Dol mp S
(a.k.a. Memory) & ]

« Presening the state of the system 'l llJ
l

Redistribution into convenient forms

(a.k.a. Compytation)
« Combining remote piecss of information into the
answer you seek

But Beware! The Devil can cause ERRORS!

W



Errors: What does the Devil do?

Classically:

e Z;" finite, closed under @ implies Devil applies an XOR at most:



o 73" finite, closed under @ implies Devil applies an XOR at most:

[1O1010  Data
& 0100001  Devil
[OOTOTT  Output

. If we can correct single bit flips, we can
correct any error.



Classical Channel Models

C ]
Two types of channels
are discussed:
XOR e
@ Binary channels \
C, ¢=0 (no error)
r=c®e=<_ | |
C, ¢=1 (error)

@ (Gaussian noise channel
F=CTe,

/e' : zero-mean white Gaussian noise

Standard
addition



Quantum Channel Models

v, )=E|v)

m Quantum operators are unitary: EE” =1.

m Depolarizing channel:

EeG, ={£l,+X,+Y,+7}
/

Pauli rotations in each qubit

@n



Computing Power versus Error
Control

A quantum state ‘l//) with 7 qubits 1s a
(unit-norm) vector in H .

The power of quantum computing increases
exponentially with the number of qubits. .

The dimension of errors also increases ()
exponentially. Error control 1s complicated.

Reliable quantum computers can’t be built
without error control and fault tolerance.




Basic Concepts in Error Control

m LError detection
Error detected

data
ARQ (automatic

Discard
repeat request)

m LError correction
Error detected

Correct
(FEC)




Error Control Everywhere

Parity-check codes tor memory chips

Cyclic redundancy codes (CRC) for packets
or cells in networks

Noise margins in Volts for “0” and “1” 1n
digital circuits
Reed-Solomon codes for satellites and DVD

Stabilizer codes for quantum computing



History of Classical Error
Correction Codes (ECC)

Hamming codes (1948) Bell Lab

Golay codes (1949) voyager, (Jupiter'79, Saturn’s 1)
Reed-Muller (‘6x), Reed-Solomon codes
Convolutional codes

Turbo codes (1993)

Low-density parity check codes
Space-time codes (1993)



Classical Error Correction: Encoding

ldea: Spread the information out

Encoding is a

mapping Please remember our
i hypercube illustration of
o 7y = 77" maps k bits to n bits codes for interpretation

e [L:vi > v, (G forlinear codes. (G is the code generator.)

e Columns of ¢ form a basis for the k£ -dimensional coding subspace of
Zok

e A codeword is a vector in this codespace




The weight of a codeword v, wt(v), is the number of ones in the
codeword

The distance between codewords is the weight of their difference

To correct ¢ errors, the minimum distance between codewords must be
d=2t+1.(d is the distance of the code)

v— ) (—w Draw yourself
hypercube pictures for
these, illustrate our

(3,1,1) code from
Forms an [n, k. d| code previous lecture



Vector Space (»=3) & Subspace

A.

k=1

=2 000 001

IO/ / 10

7 1
110 111
100 10 100
010 0Tl
0O — o 001 000
t=1, correct one error
(3,1,1)
f T X d=2t+1, t=1,
n kd 2t+1=3=d

w=3

001 000

v

000



Classical Error Correction: Decoding

ldea: Measure the error and fix it

e Dual matrix P to G is called the parity check matrix:

transpose

/3

P'G = PG" =0, P has maximal rank n — &

e P and G may be written in standard form:

identity

G=[i,|-4"| = P=[4]1,.]

e P annihilates codewords only!

e P returns the error syndrome =——p




Role of Parity Check Matrix P

Explanation that P returns
only error syndrome since it
anihilates codewords v

e P returns the error syndrome /

(v®e)P=vPDeP=0®eP =eP
e Adistance d code has eP # 0 for all errors e having wt(e) < d

e PT isthe generatorand G is the parity check matrix of the dual code

(The basis vectors of the dual code are those vectors which are L to
each original codeword.)



Classical Linear Error Control Codes

m Linear block codes
- CRC, Hamming, Reed-Muller codes

- BCH, Reed-Solomon codes

- algebraic-geometric code

m [.inear convolutional kodes

- recursive/non-recursive

- parallel/serial turbo codes



Linear Operator £

LRa-x+b-xyp=a-L{xf+b- LX)
a,b : constants

X,, X, Inputs

(Example)  linear: y=Ax+b
nonlinear: z=x'Ax+b!x+c



General idea of block linear
codes

(n,k) linear block codes . .
Binary Linear Block Codes (LBC)

m message vector I x k

c codeword c=mG [ xn

e error vector —J lxn

r | received vector r=cte X~

. Rp— : > error
G | generator matrix, GH'™=0 | kxn ik ;

: : : pattern
H parity check matrix (n-k) x n : : ,
- — — X : generation

s | syndrome s=rH"=eH" |1 x(n-k) HT

e’ estimated error vector Il xn

¢’ estimated codeword I xn

m’ | decoded message vector I x k

Matrix vector
multiplication



Vector Space (»=3) & Subspace —

: k=2 000 001
110 111
100 10 100 '0/ / 10
010 011
000 001 000 001 000

/.

000



Galois Field
hypercube

An (n,k) linear block code is a subspace of Z,.

1"
'.Zz

Smaller
space

generator

Subspace of Z )

We denote it by C’



n= length of vector

Features of Binary Ln,?,QL.BC C

Big Smaller distance

space

m (C isavector subspace of Z, .

space

. The addition (subtraction) of any two
codewords remains a codeword.

2. The n-bit all-zero vector 0 is always a
codeword for any linear block code.




Error Detection and Correction
Capability

As in general case

m The weight of a codeword is defined as the
number of nonzero elements in a codeword.

B [he minimum distance d is equal to the minimum
welght of nonzero codewords.

d =mindist(u,v)=min w(u ®v) = m1nw(<)

uvel uvel’ cel’

UEVY UFEV cz0) 3/n our
case

B An (n,kd) linear block code can detect any (d-1)-

bit errors and correct any Vz_lJ -bit errors.

1.in our
\ case




Detection Capability of Linear Block Codes

Only errors 1n C can't be detected.

If codeword
is changed
to another
codeword it
cannot be
detected




Detection & Correction of (n,k)
Linear Block Codes

m LError detection 1s easier than error correction.

m #detectable errors = 2"-2k 23.21=6

m #correctable errors = #nonzero syndromes

= 2mk-] 2312 4-1=3



Linear (n,k) Cyclic Codes over GF(2)

m A computationally efficient subset of linear block

codes. Good linear cyclic codes exist.

m Generator polynomial
n—k

g(X.) :Zgixi < & :(gn—/\-a”'aglvg())

=0

m Par 1ty check polynomlal

h(x)—th & h=(h,--,h,h)

—()

" 4 Easy hardware to

m Constraint:  g(x)i(x)=x"—1 operate on these

polynomials




Encoding a Cyclic Code

c(x)y=m(x)g(x)

general diagram
of linear codes

C=(C, > C15Cp)

j
— o O- A O-
c,=m;rg =) mg,

Polynomial multiplication = Convolution of coefficients



Cyeclic Shifts in Cyclic Codes

m Multiplication by ¥ modulo (x"-1) 1s
equivalent to “atcyclic left shift by j positions.

C(j ) ( X) — X'i . (; ( X) mo d(xﬂ - l)

¢’ =(c OGS Cs C”_‘/-)

n—j—I >’



Cyclic property

m Any cyclic shifted version of a codeword 1s
also a valid codeword.

—( yA 0 L)
Ve =(C, |,C, 5,C 35 5CsCy)=C  =c" €,

n—3?

() & ¢ |
c = (Cn—E-’C 501Gy €y ,)E C

n—23°

— C o (Cn—.“s.’ RS EL S PN R )E C

-

(/) . ..
—>C € 67, vj - Thus we can talk about
a group

m| Cyclic group|of a codeword ¢
G = {C(".),j =0,1,---,n—11, ‘GCI <7

c




Cyclic Group G, in Code Subspace

C
0] B B G
in_ = Bls mE
 H B H prul B B
Red
arrows o[oJoJoJofo]o]¢
represent

shifts



Quantum
Error
Correction




Outline

* Sources and types of errors

e Differences between classical and
gquantum error correction

« Quantum error correcting codes



Introduction: why quantum error

correction?
* Quantum states of (which stores
quantum information) extremely
more than

classical error correction.

 |n the field of quantum computation, what is
possible in theory is from what can
be implemented.

 Complex quantum computation impossible
without the ability to



What can go wrong?

 |nternal:
— Initial states on input qubits not prepared properly.

— Quantum gates used may not be accurate

* Quantum gates may introduce small errors which will
accumulate.

« External:
— Dissipation
« A qubit loses energy to the environment.
— Decoherence



Deconerence

* Decoherence is the loss of quantum
information of a quantum system due to its
iInteraction with the environment.

* Almost impossible to isolate a quantum
system from the environment.

* Over time, our quantum system will be
entangled with the environment.



Detrimental role of environment

 Information encoded in our quantum system
will be encoded instead in the correlations
between the quantum system and the
environment.

* The can be seen as measuring
the quantum system, collapsing its
superposition state.

* Hence quantum information (encoded in the
superposition) is irreversibly lost from the
qubit.



How to Deal With Decoherence?

First method to deal with decoherence

r&Design quantum algorithms to
ruins the quantum
information.
— Can be difficult as

« Decoherence occurs very
* Quantum may be very complex and



Dealing With Decoherence
oecond method to deal with decoherence

E@Try to at which
decoherence occurs.

— Accomplished by using a
of:
* Quantum particle type
* Quantum computer size
* Environment



Decoherence times In practice
 Decoherence time refers to the time available
before decoherence ruins quantum information.

« Decoherence time is affected by the of the
system, as well as the

Approximate decoherence time (in seconds) for various system sizes and environment

System size| Cosmic Room Sunlight Vacuum Air
(cm) Radiation |Temperature g (10° particles/cm®)
107 (0 107 1071° 10°1° 10°
107 10" 107 10°8 10719 1023
10°° 10%° 10° 1072 10 10719

— Decoherence time affected by environmental factors

like and amount of surrounding particles
In the environment



Gate completion time

operation is as important as decoherence

-

MH}[% of operations that can be performed before decoherence

decoherence time

time per quantum gate operation

 Different types of quantum systems have
different decoherence time and per gate
operation time.

In next time we will compare these
coefficients for real technologies



Maximum number of operations beto Jéréoherence

ore
for various quantum system

Decoherence time versus time required for a quantum gate operation
for various quantum systems

. Max number of
Decoherence Time per operations
Quantum system time Gate Operation pbe fore
(sec) (sec) decoherence

Electrons from gold atom 1078 10714 106
Trapped indium atoms 101 10714 1073
Optical microcavity 10°° 10-14 10°
Electron spin 103 1077 104
Electron quantum dot 1073 107 103
Nuclear spin 104 103 107

 The better the decoherence time, the
slower the quantum gate operations.



Dealing With Decoherence and
other sources of errors

Third method to deal with decoherence

E@lUse Quantum Error correcting codes

(together with extra ancillary
qubits) in a state where subsequent errors can
be corrected.

* Allows long algorithms requiring many operations
to run, as errors can be



History of Quantum Error
Correction Codes (QECC)

Dark age (before 1995) (No-cloning theorem)

Calderbank-Shor-Steane (CSS) coc

C

- Shor (19935) (unitary quantum o
- Steane (1996)

Stabilizer code

Quantum block code

- Reed-Muller, Reed-Solomon, algebraic-geometric, ...

Quantum convolutional code

herators)



Quantum Error Correcting Codes

CSS (Calderbank-Shor-Steane) code

- special case of stabilizer codes

Stabilizer codes

____________________________________________________________________________________

Quantum| linear block codes

Quantum linear convolutional |codes




Quantum Errors

e E:H?® — H?* can be any (not necessarily injective) map

e Usual model simplification: Tensor products of single qubit errors: Q u a n t u m
Errors

)
I

A DA DA @A,

v o= ool b

e Single qubit error operators have a finite basis:

o) ()

| T A |

I+a,0, +0,0, +a.0. |

o)
I
|

I~

I
U.—- L]

I+a-o|



General representation of single qubit

(1 0 0 1 0 i 10
+O!| +O!2 _ +O(3
1o 1 1 0 —i 0 0 -1

-

ey
[l
]

. <
[+ alo.,\' + a2 O v + aSGZ ]

ta]—  to|—

/+a-o]

e Note that if we take X =0,,Y = iia},, and Z = ¢, that the error basis
{I, X.Y, Z} forms a representation of the quaternion group

-. If we can correct oy, 6,, 6, we can correct
any error! (more about this later)



Quantum Error Correction: Naive Encoding

First approach: Let's try classical codes

0 000

“Repetition” [3, 1. 3]code
=111

vy lvie|v)e|vy 7

Butwait! The quantum world is a




Cloning (copying) operator U does
not exist

\Wh y’? Assume that

(o) 09) =] ) )

U |
= U(|e)+[ 5))] 0) = | e )+ BY )
#([e)+| B ) +] BY)

So we apply it to
general
superposed state

But this is still useful. Although not copying , this is a redundancy introducing operator so
it may be used for error correcting codes. This was one of main ideas



Commuting and Anti-Commuting
Quantum Operators

Defmltlons/[ A,Bl=AB — BA
{A,B} = AB+ BA

Anti-commutator of A
and B

A and B commute : [A,B]=0

A and B anti-commute: {A4,B} =0



(1-qubit) Pauli Operators

global phase

o Y_'o | |
Bit tlip: - __l 0
Phase thip: 7= L0
0 -1 |
— - We express Y in
terms of X and Z
Bit & phase flip: /
0 —i 0 1]
Y = =—1 == XZ
1 0 _—l 0|



Properties of Pauli Operators

X'=Z"=Y" =
X=X"=X",

XZ =-7X =iY,

XY =-YX =iZ,

Y/ =-/Y =iX,

[ =

y=Y" =y
(X.Z'=0
(X.Y' =0

WY, Z1=0

Adjoint
operator

Z=7"=7"

anticommutative

Pauli operators are self-
inverses and anti-
commute



1-qubit Pauli Group G,

A (non-abelian) group of cardinality 8:

G] Z{i],iX,iY,iZ} 4 * 2 = 8 elements

in this group

Any two operators in G, either commute or anti-commute:

[A,B]=0 or {A,B{=0, VA,BeG,

Please remember, this is important | === Pauli operators are a group




Now we extend to group G,

Group Gni n-qubit Paul1 group
containing all the n-fold tensor products of
one-bit Pauli operators.

Xn

Gn — i{[,X, Y, Z} We model faults

in channels by
G

n

e

n-qubit Depolarizing Channels:
error operators € G,



Example: error operator in G;

Tensor product

/

E=X®I®RZ®X®Y=XZX,Y.

!
qudit operation
\

1|/ Bit flip

| o
2 ] 140 cITol This will be our
3 Phase ﬂlp error model from
now
4 Bit flip

5 Bit and phase flip




Quantum network for
correcting errors

 Assume that e, +e, +¢ =<1 e, €10,1}

S D b)
b @ e;{e . N :
PO ' Dk
‘ O> <><> 9 ® Sl>
o A N S
Input signal with error \R Decoder and t
ales)le;)e) +fl@e;)l@e, |l®e) —
0. O>‘ O>‘ O> + B‘ 1> 1>‘ 1> Input signal after error corre|cting




Equivalently

b® €;)—e ® b>
bde, * b
b® e, * 4
0) —BD : s,
0) SPISPRS 45 S2)




Perform operations on logical
bits

* e.g. Hadamard gate

b) ——fH—y—— b))+
) T p)b)je)



Quantum Error Correcting
by Peter Shor

* In 1995, Peter Shor developed an
improved procedure using 9 qubits to
encode a single qubit of information

* His algorithm was a majority vote type
of system that allowed all single qubit
errors to be detected and corrected

This was a starting point to great research area,
although his paper had many bugs



