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Handout 3: Facts related to the Chernoff-Hoeffding bounds

1 The bounds

As we saw in class, the Chernoff-Hoeffding bounds help upper-bound the probability that
a sum of bounded and independent random variables deviates much from its mean. Suppose
X =377, X;, where the X; are independent random variables, each taking values in the interval
[0,1]. (In other words, each X; is bounded; the most common case in randomized algorithms
is where each X; takes on values in {0,1}.) Then, for § > 0, the bounds give
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For the “lower tail” with 0 < 6 < 1, we get
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The following simple upper bounds for F'*(u, §) are useful:
for 6 <1, Ft(u,é)< e ml3, for 6 > 1, FT(p,8) < e (+)m0+60/5 (4)

It is useful to be conversant with these bounds; it is especially convenient to remember that:
FT(u,8) (i) decays exponentially in pé? for “small” § (6§ < 1), and (ii) decays exponentially
in (14 6)In(1 4 6) for larger 6 (6 > 1). Also, some of the constants such as 3 and 5 in the
exponents above, can be improved.

As discussed in class and in the book, we often have to solve the following inverse problem:
given g and ¢, find a “good enough” value AT (u,¢) such that F*(u, AT(u,€)) < e. By “good
enough”, we mean a value that is close to (i.e., not much smaller than) the largest real § such
that F*(u,8) < €. Similarly, we often want a value A~ (p,€) such that F~(u, A~ (u,€)) < e.

From the definition of F~(u, ), a natural choice for A=(u,€) is seen to be /2In(1/¢€)/p.
In general, if € is so small that In(1/€) > u, there may be no possible value for A™(u, €).

We must do a little more work to find a good choice for AT (u, €), since, as seen above, the
behavior of F*(u,d8) depends on whether 4 is “small” or “large”. Using (4), it is possible to
show that the following is a suitable choice:

V3W(1/e)/p if p > 3In(1/e); (5)

‘ In(1/¢) ; W(1/e
10 o n(In(1/6)/4) fp<3In(1/e). (6)

Knowing these types of bounds for AT and A~ is of much use in the design and analysis of
randomized algorithms.
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2 Special cases

As mentioned before, many constants seen above, such as the 10 in the definition of the first
case for AT (u,€), are by no means tight. Getting the “right” constants is important in some
situations, typically where the parameter 6 is either “very small” or (relatively) “very large”.
We briefly discuss these situations now.

The bound F~(u,6) on Pr[X < p(l — 6)] is quite good when ¢ is “small” (close to 0).

However, if 6 — 1, one can often take advantage of the fact that (%)M — e Has o — 1.
As for F*(u,d), it can be shown that
PH(u,8) < o /24, (7)

Thus, if ¢ is close to 0, the dominant term in the exponent is —ué?/2. At the other extreme
where 6 is "large”, note that

FF(p,8) = e—ﬂ(1+5)ln(1+5)'[l—m]; ®

as 6 grows large, the dominant term in the exponent is —p(146)In(146). These two observations
lead to improved bounds on A¥(u, €) for the cases of g > In(1/€) and pu < In(1/¢) respectively.
For convenience, let M denote the term In(1/€)/p. Then, for some function f1(M) that tends
to 0 as M — 0, we can set

A* (€)= 2+ A(M)) - M if > In(1/e).
And, for some function f3(M) that tends to 0 as M — oo, we can set

AT, €)= (14 fo(M)M/In M if p < In(1/e).

3 A convenient upper-tail bound when 6 > 1

When 6 > 1, the following union bound-based approach sometimes gives a cleaner-looking

bound. Given reals zq, 23, ..., 2, and a positive integer k < n, define
Si(z1, 22,y 20) = Z Ziy Ziy iy
i1 << <ig
If z1,29,...,2, are constrained to be non-negative reals that add up to some value y, verify
that S(z1,22,...,2,) attains a maximum when all the z; are equal—i.e., equal to y/n. (One

way to do this is as follows. We proceed by induction on n; the case of n = 1 is trivial. So
suppose n > 2. If k = n, we use the arithmetic mean-geometric mean inequality, which states
that under the above constraints on the z;, 2129 - -- 2z, is maximized when all the z; are equal.
Next suppose k < n. In this case, make suitable use of the fact

Sk(ZhZ?v .. '7Zn) = Sk(Zl,ZQ, .. -vZn—l) + 25 - Sk—l(ZhZ?v .. '7Zn—1)7

and of the induction hypothesis.) Thus we have, for any collection of non-negative z;, that
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Suppose X is as defined in the beginning of Section 1, with the further property that each
X; takes on values in {0,1}. Let p; = Pr[X; = 1]; thus, p = Y_; p;. The following is a useful
way to upper-bound Pr[X > «a] if a is an integer that is much greater than u. (However, the
following discussion allows @ to be an arbitrary positive integer.)

We have
PriX >a] = Prldun<iz<---<ig: X=X, =---=X;, =1]
< Z Pr[X;,, = X;, =---= X;, = 1] (union bound)
i1<i2<"'<ia
= S pupn P
i1<i2<"'<ia

= So(p1p2,-- -5 Pn)
< ptfal (by (9)).

Thus we get the inequality that we used in class:

Pr[X > a] < p®/al.



