6.1 Occupancy Problem

Bins and Balls Throw n balls into n bins at random.

1. $\operatorname{Pr}[\operatorname{Bin} 1$ is empty $]=\left(1-\frac{1}{n}\right)^{n} \backsim \frac{1}{e}$.
2. $\operatorname{Pr}[\operatorname{Bin} 1$ has k balls $]=\binom{n}{k} \frac{1}{n}{ }^{k}\left(1-\frac{1}{n}\right)^{n-k} \leq \frac{1}{e \cdot k!}$.

Sterling's Approximations

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{n e}{k}\right)^{k}
$$

Thus, letting $A_{i, k}$ be the event that bin i contains at least k balls, we have

$$
\operatorname{Pr}\left(A_{i, k}\right)=\sum_{i=k}^{n}\binom{n}{i}^{i}\left(\frac{i}{n}\right)^{i}\left(1-\frac{i}{n}\right)^{n-k}
$$

Thus, by the union bound,

$$
\operatorname{Pr}(\text { any bin contains more than } k \text { balls }) \leq \sum_{i=1}^{n} \operatorname{Pr}\left(A_{i, k}\right)
$$

In order to approximate this, we need to derive a simple upper bound for $\operatorname{Pr}\left(A_{i, k}\right)$. We'll make use of the following elementary inequality, for any $i \leq n$:

$$
\left(\frac{n}{i}\right)^{i} \leq\binom{ n}{i} \leq\left(\frac{n e}{i}\right)^{i}
$$

Using this we can easily derive the bound

$$
\begin{aligned}
\operatorname{Pr}\left(A_{i, k}\right) & \leq \sum_{i=k}^{n}\left(\frac{n e}{i}\right)^{i}\left(\frac{1}{n}\right)^{i} \\
& =\left(\frac{e}{i}\right)^{k}\left(1+\frac{e}{k}+\left(\frac{e}{k}\right)^{2}+\cdots\right) \\
& =\left(\frac{e}{k}\right)^{k} \frac{1}{1-e / k}
\end{aligned}
$$

Now comes the tedious part. Let $k=\lceil(3 \log n) / \log \log n\rceil$. Then

$$
\begin{aligned}
\operatorname{Pr}\left(A_{i, k}\right) & \leq\left(\frac{e}{k}\right)^{k} \frac{1}{1-e / k} \\
& \leq 2\left(\frac{e}{3 \log n / \log \log n}\right)^{k} \\
& \leq 2\left(e^{1-\log 3-\log \log n+\log \log \log n}\right)^{k} \\
& \leq 2\left(e^{-\log \log n+\log \log \log n}\right)^{k} \\
& \leq 2\left(e^{-3 \log n+3 \frac{\log \log \log n}{\log \log n} \log n}\right) \\
& \leq 2\left(e^{-2 \log n}\right) \\
& =\frac{2}{n^{2}}
\end{aligned}
$$

for n sufficiently large that $(\log \log \log n) / \log \log n<1 / 3$.
It follows that

$$
\begin{aligned}
\operatorname{Pr}(\text { no bin contains more than }\lceil(3 \log n) / \log \log n\rceil \text { balls }) & =1-\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i, k}\right) \\
& \geq 1-\frac{2}{n}
\end{aligned}
$$

Theorem 6.1.1 Max Load

When n balls are thrown into n bins, the maximum number of balls in any bin is $O\left(\frac{\log n}{\log \log n}\right)$ with high probability, i.e.,

$$
\begin{aligned}
& E[\text { max load }]=\frac{\ln n}{\ln \ln n}(1+o(1)) \\
& \max \text { load }=\Theta\left(\frac{\ln n}{\ln \ln n}\right) \quad \text { w.h.p. }
\end{aligned}
$$

It can be shown that this is a tight bound.
Coupon Collector's Problem Suppose I throw $k n$ balls.

$$
\operatorname{Pr}[\text { bin } 1 \text { is empty }] \backsim\left(\frac{1}{e}\right)^{k}
$$

If $k=c \ln n+d$, then
$\operatorname{Pr}[\operatorname{bin} 1$ is empty $] \backsim \frac{1}{e^{d} n^{c}}$

$$
\operatorname{Pr}[\exists \text { some bin empty }] \leq \frac{n}{n^{c} e^{d}} \leq \frac{1}{n^{c-1}}
$$

Therefore, w.h.p. $O(n \log n)$ balls suffice.

Claim:

$$
E[\text { number of balls to see all bins }]=n \cdot H_{n}
$$

Imagine a counter (starting at 0) that tells us how many boxes have at least one ball in it. Let X_{1} denote the number of throws until the counter reaches 1 (so $X_{1}=1$). Let X_{2} denote the number of throws from that point until the counter reaches 2 . In general, let X_{k} denote the number of throws made from the time the counter hit k-1 up until the counter reaches k .
So, the total number of throws is $X_{1}+\ldots+X_{n}$, and by linearity of expectation, what we are looking for is $E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]$.
How to evaluate $E\left[X_{k}\right]$? Suppose the counter is currently at k-1. Each time we throw a ball, the probability it is something new is $(\mathrm{n}-(\mathrm{k}-1)) / \mathrm{n}$. So, another way to think about this question is as follows:

Coin flipping: we have a coin that has probability p of coming up heads (in our case, $\mathrm{p}=(\mathrm{n}-(\mathrm{k}-$ $1)) / \mathrm{n})$. What is the expected number of flips until we get a heads?
It turns out that the "intuitively obvious answer", $1 / \mathrm{p}$, is correct. But why? Here is one way to see it: if the first flip is heads, then we are done; if not, then we are back where we started, except we've already paid for one flip. So the expected number of flips E satisfies: $\mathrm{E}=\mathrm{p}^{*} 1+(1-\mathrm{p})^{*}(1+$ $E)$. You can then solve for $E=1 / \mathrm{p}$.

Putting this all together, let CC(n) be the expected number of throws until we have filled all the boxes. We then have:

$$
\begin{aligned}
C C(n) & =E\left[X_{1}\right]+\ldots+E\left[X_{n}\right] \\
& =n / n+n /(n-1)+n /(n-2)+\ldots+n / 1 \\
& =n(1 / n+1 /(n-1)+\ldots+1 / 1) \\
& =n H_{n}
\end{aligned}
$$

QED.

$$
\operatorname{Pr}[x \geq n \ln n+c n \text { or } x \leq n \ln n-c n] \backsim\left(e^{-e^{-c}}-e^{-e^{c}}\right)
$$

6.2 Hashing

FORMAL SETUP

- Keys come from some large universe M. (e.g, all < 50-character strings)
- Some set S in M of keys we actually care about (which may be static or dynamic).
- do inserts and lookups by having an array N of size $|N|$, and a HASH FUNCTION $h: M \rightarrow$ $\{0, \ldots,|N|-1\}$. Given element x , store in $\mathrm{N}[\mathrm{h}(\mathrm{x})]$.
- Will resolve collisions by having each entry in A be a linked list. Collision is when $\mathrm{h}(\mathrm{x})=$ $\mathrm{h}(\mathrm{y})$. There are other methods but this is cleanest - called "separate chaining". To insert, just put at top of list. If h is good, then hopefully lists will be small.

UNIVERSAL HASHING

A hash family \mathcal{H} is 2 -universal if for all $x \neq y$ in M ,

$$
\operatorname{Pr}_{h \in H}[h(x)=h(y)] \leq \frac{1}{|N|}
$$

Let $x, y \in M$.

$$
C_{x y}= \begin{cases}1 & \text { if } h(x)=h(y) \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& E\left[C_{x y}\right] \leq \frac{1}{|N|} \\
& E[\text { number of elts of } S \text { that collide with y }]=\sum_{x \neq y} C_{x y} \leq \frac{|S|}{|N|} \\
& =E[\text { amount of time when accessing } \mathrm{y}]
\end{aligned}
$$

If $|N| \geq|S|$, then $E[$ amount of time when accessing y] $=o(1)$.
One way to construct a 2 -universal hash family:
Here, let $M=\{0, \ldots, m-1\}$ and $N=\{0, \ldots, n-1\}$. Pick prime $p \geq m$ (or, think of just rounding m up to nearest prime). Define

$$
\begin{aligned}
& h_{a, b}(x)=((a x+b) \bmod p) \bmod n . \\
& \mathcal{H}=\left\{h_{a b} \mid \text { a,b in } G F(p) \text { and } a \neq 0\right\}
\end{aligned}
$$

It is easy to show that $|\mathcal{H}|=p(p-1)$.

Theorem 6.2.1 Lower Bound

\mathcal{H} is a hash family $M \rightarrow N$, then $\exists x \neq y \in M$, s.t. $\operatorname{Pr}[h(x)=h(y)] \geq \frac{1}{|N|}-\frac{1}{|M|}$.
Pf: via Yao's principle.
Strongly 2-univeral hash family see Anupam's notes
Perfect hash functions Definition: A hash function that maps each different key to a distinct integer. Usually all possible keys must be known beforehand. A hash table that uses a perfect hash has no collisions.
A family of hash functions $H=\{h: M \rightarrow N\}$ is said to be a perfect hash family if for each set $S \subseteq M$ of size $s \leq n$, there exists a hash function $h \in H$ that is perfect for S.
If $|N|=|S|$, every perfect hash family has size $2^{\Omega(|N|)}$.
2-level hashing [Fredman Komlos Szemerd]
Proposal: hash into table of size N. Will get some collisions. Then, for each bin, rehash it, squaring the size of the bin to get zero collisions.
To construct a 2-level hash function:

1. Pick $h \in H$, where H is a 2-universal hash family $M \rightarrow N$ and $|N|=|S|$.
2. If number of collisions $>|N|$, goto step 1
3. If N_{i} elements hashed to bin $i \leq N$, then pick $h_{i}: M \rightarrow N_{i}^{2}$. If any collisions goto step 3 .
4. Do step 3 for all bins.

$$
\begin{aligned}
& \operatorname{Pr}[\mathrm{x}, \mathrm{y} \text { collide }] \leq \frac{1}{|N|} \\
& E[\text { number of collisions }] \leq\binom{|S|}{2} \frac{1}{|N|}
\end{aligned}
$$

1. In step 1 and 2 , since $|N|=|S|$, let C denote number of collisions.

$$
E[C] \leq\binom{|S|}{2} \frac{1}{|S|}<\frac{|S|}{2}
$$

According to Markov Inequality,

$$
\operatorname{Pr}\left[C>2 \cdot \frac{|S|}{2}\right] \leq \frac{1}{2}
$$

2. $C=\sum_{i}\binom{N_{i}}{2} \leq|N|=|S|$
3. If $H_{i}: M \rightarrow N_{i}^{2}$, set S is of size N_{i}.

$$
E\left[C_{i}\right]=\leq\binom{ N_{i}}{2} \cdot \frac{1}{N_{i}^{2}} \leq \frac{1}{2}
$$

Therefore, according to Markov Inequality,

$$
\operatorname{Pr}\left[C_{i} \geq 1\right] \leq \frac{1}{2}
$$

Now let's study the space requirement of this scheme.

$$
\text { Space } \leq|N|+\sum_{i} N_{i}^{2} \leq 2|S|
$$

In addition, to store the hash functions, we need to use $O(|S|)$ more bits.
Unfortunately, this approach works for static dictionary only, but not dynamic dictionaries where we want to support insert/delete operations.

