
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla
Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 2004
Scribe: Florin Oprea

8.1 Introduction

In this lecture we will consider the problem of counting the number of solutions of a problem in
NP. This is obviously NP-hard for problems that are NP-complete, but not necessarily easy for
problems in P. The class of such counting problems is denoted by #P .

Definition 8.1.1 The class #P (called “Sharp-P”) is the class of all functions f for which there
exists an NP language L with a non-deterministic Turing machine M such that f(x) equals the
number of accepting paths in M on input x.

Counting problems have several interesting applications: estimating the volume of a body in space,
counting the number of perfect matchings of a graph, counting the number of satisfying assignments
for a DNF formula, approximating the permanent of a matrix. In this lecture we will look at the
last two.

A counting problem, in its most general form, can be described as follows: Given a universe U and
a set S ⊂ U , determine the size of S. When it is easy to determine the size of U , then this problem
translates to estimating the ratio |S|

|U | in an efficient way. For functions in the class #P , we can
think of the universe U as being the set of all solutions to the problem, or the set of all accepting
paths.

Example: #SAT is a canonical problem in #P (i.e., it is #P -complete). A SAT formula is a
formula in CNF form: (x1∨x2∨ x̄3)∧ (x4∨ x̄1∨x5)∧ #SAT estimates the number of satisfying
assignments for a SAT formula.

8.2 The DNF Counting Problem

A DNF formula is a conjunction of clauses, each of which is a disjunction of literals of the form x

or x̄. An example is: (x1 ∧ x2 ∧ x̄3) ∨ Our goal is to estimate the number of assignments to
the variables that satisfy this formula.

Note that it is easy to determine whether a DNF formula is satisfiable or not — the formula
is unsatisfiable if and only if each clause in it contains a contradiction. We will now show the
surprising result that #DNF is in fact #P complete. This indicates that counting can be much
harder than the corresponding decision problem.

Theorem 8.2.1 #DNF is #P complete

Proof: We reduce #SAT to this problem. Consider a CNF formular f of polynomial size. Let
g = f̄ . Note that g can be expressed in DNF form with the same size as f .1 Now any assignment

1Think about why this is true.

1

that satisfies f does not satisfy g and vice versa. Thus we have 2n − #g = #f , and solving #g

gives an answer to #f , which is a #P complete problem.

Although we do not know how to compute #DNF in polynomial time, our aim will be to estimate
it to within a reasonable accuracy. In order to do so, our first attempt is to use sampling. Let
U be the universe of possible assignments for a DNF formula f , and S ⊆ U the set of satisfying
assignments. The algorithm is the following:

1. Repeat the following t times:

(a) Pick x uniformly at random from U .

(b) If x belong to S, count 1.

(c) If not, count 0.

2. Take an average of the above counts and return that as an estimate of |S|
|U | .

Let p = |S|
|U | and consider the random variable Xi denote the output of i-th iteration. Clearly

E[Xi] = |S|
|U | = p.

Let X denote our estimate at the end of the algorithm, that is, X = 1
t

t
∑

i=1
Xi. Then E[X] = p and

one can use the value X · |U | as an estimator for the size of |S|. There exists a trade-off between
the value of t and the accuracy of the estimator. To determine after how many steps it is safe to
stop the algorithm we’ll use Chebyshev’s inequality.

Chebyshev:

Pr[|X − µ| ≥ yσ] ≤ 1
y2 , or using y = εµ

σ
, Pr[|X − µ| ≥ εµ] ≤ σ2

ε2µ2

The first and second moments of the estimator x are given as follows.

µ(X) = |S|
|U |

σ2(Xi) = p(1 − p)

σ2(X) = 1
t2

t
∑

i=1
σ2(Xi) = tp(1−p)

t2
= p(1−p)

t

Using these bounds, we can bound the probability that our estimate is very far from the true value
of |S|

|U | .

Pr[failure] = Pr[estimate is off by more than 1 + ε] =

≤
p(1 − p)

tε2p2
=

1 − p

tε2p

So it is sufficient to take t = 4(1−p)
ε2p

to have a failure probability of at most 1
4 . In general, after t

steps of sampling from a random variable with mean µ and variance σ2, we have:

2

µt = µ

σt =
σ2

t

Pr[failure] ≤
σ2

tε2µ2
<

1

4
for t =

(

4σ2

ε2µ2

)

An estimator with the property E[X] = µ (where µ is the quantity to be estimated) is called an
unbiased estimator. Thus X given by the above algorithm is an unbiased estimator. The quantity
σ2

µ2 is called the critical ratio.

If σ2

µ2 is poly(size of problem, 1
ε
) the above algorithm is a FPRAS (fully polynomial randomized

approximation scheme).

Definition 8.2.2 A fully polynomial randomized approximation scheme (FPRAS) is a randomized
algorithm A running in time poly (n, 1

ε
) such that:

Pr[(1 − ε)f(x) ≤ A(x) ≤ (1 + ε)f(x)] ≥
3

4

The algorithm A is called a PRAS if its running time is poly n.

As mentioned before, if the critical ratio is polynomial in n the above algorithm is a FPRAS for
µ = E[X]. If we want Pr[failure] ≤ σ2

tε2µ2 < δ we can take t = σ2

δε2µ2 . When δ is large, choosing t

this way is sufficient. However, if δ is very small, t becomes large. To do better we would like t to
be of the order of O(log(1

δ
)).

Here is an algorithm that achieves this. This technique is known as the median of means method.

Denoting by A the previous algorithm, we will run 2s + 1 copies of A for some value of s to be
determined later. Denote by Ai(x) the output of the i-th instance of A. Our new algorithm outputs
the median of all these 2s + 1 values.

A natural question here is why we don’t take the mean. Note however that the algorithm A is not
guaranteed to be within (1 + ε) of µ with probability 1, so there may be cases when its output is
far away from the true value of µ. Taking the mean in this case might have a bad impact on the
final estimate, and our accuracy decreases only as 1

t
and not as 1

exp(t) .

Let us now compute the probability of failure of the new algorithm. First note that failure in this
case means that the median fell outside of the [(1− ε)µ, (1 + ε)µ] interval, an event which happens
when at least s+1 instances of A have failed. We can use this fact to upper bound the probability
of failure as follows:

3

Pr[new algorithm fails] ≤ Pr[s + 1 runs of algorithm of A fail]

≤
∑

i≥s+1

(

2s + 1

i

)(

1

4

)i (3

4

)2s+1−i

≤

(

1

4

)s+1 (

3

4

)s
∑

i≥s+1

(

2s + 1

i

)

=
1

22δ+2

(

3

4

)s

22s

≤

(

3

4

)s

We can now choose s = log 3

4

1
δ

to obtained the desired bound.

Note that the new estimator may be biased, however we boosted the probability that A(x) ∈
[(1 − ε)µ, (1 + ε)µ].

Let us see how can we apply the previous results to #DNF. Recall that U denotes the set of all
assignments and S denotes the set of satisfying assignments, |S|

|U | = p. Then after t ' Ω(1−p
ε2p

) steps,

the probability of failure is below 1
4 .

Now, if p is large, the algorithm has a high chance of succeeding, however when p is small (say 1
2n),

then it may happen that no element from S is sampled within any polynomial number of steps.
This is an inherent problem to this approach, due to the fact that the size of the sampling universe is
very large. In the following subsection we will see a different sampling technique, called importance
sampling. The idea will be to shrink the size of the sampling universe to only a sub-population of
interest, thereby increasing the value of p.

8.2.1 Importance Sampling

This method is due to Karp, Luby and Madras.

We assume that σ2

µ2 is small. The algorithm will boost p by “decreasing” the size of the universe U .

Let Si be the set of assignments satisfying clause Ci, i = 1 . . . m. Then S =
m
⋃

i=1
Si is the set whose

size we need to estimate.

Define U ′ = {(i, ai)|ai ∈ Si}. Then |U ′| =
∑

i

|Si|. The sets |Si| have the following properties:

1. For all i, |Si| is computable in polynomial time.

2. It is possible to sample uniformly at random from each Si.

3. For any a ∈ U it can be determined in polynomial time whether a ∈ Si.

4

To understand how the sampling process works we will use the following construction. Imagine a
table with the rows indexed by the elements of U and the columns indexed by the sets Si.

S1 S2 S3 . . . Sm

a1 ∗ ∗
a2 ∗ ∗
a3 ∗
...

We place a ∗ at the intersection of each row corresponding to an element of a ∈ U and a column
corresponding to a set Si such that a ∈ Si (implying that a satisfies clause Ci). Thus all assignments
satisfying a clause will have a corresponding row containing at least one ∗. To determine the size
of S it would be sufficient to count all such rows. For that we use the following procedure: for
each row containing at least one star, make one of its stars a ”special” star (∗). Now the number
of special stars will be equal to the size of |S|.

To count the number of special stars we use the same idea as before: sample a ∗ uniformly at
random from the set of all ∗’s (U ′) and then test if it is special. If so, count 1, otherwise count 0.
After a number of steps stop and output X · |U ′|, where X is the total number of 1’s.

To complete the description of the algorithm we need two more things:

(i) A method to pick up a ∗ uniformly at random from the table.

(ii) Determine when a star is special.

For (ii) we define a ∗ as being special, if it is the first one in its row. Now it becomes easy to
test in polynomial time that a ∗ is special by using property 3 from above: if the corresponding
assignment satisfies the ∗’s column but no other column before that, then it is special. Otherwise
it is not.

For (i) (picking up a ∗ u.a.r.) we use the following algorithm:

• Compute |Si|.

• Pick i with probability |Si|�

i

|Si|
.

• Pick a random assignment satisfying Ci.

This is again easy to do, by the properties of the sets |Si|.

There is one more thing we need to check before we are done: the fact that p is sufficiently large.
But,

p =
|S|

|U ′|
=

of special ∗′ s

of ∗′ s
≥

1

m
.

Therefore, after t ' Ω(m
ε2

) steps we have a fairly good estimator for the size of S.

5

8.3 Permanent of a matrix M

Let M be a n × n {0, 1} matrix. Its permanent is defined as follows:

Perm(M) =
∑

π∈Sn

n
∏

i=1

Miπ(i)

This is very similar to the determinant of M less the sign of each permutation π.

Det(M) =
∑

π∈Sn

sgn(π)

n
∏

i=1

Miπ(i)

Computing Perm is #P-complete. Note that Perm is equivalent to counting the number of perfect
matchings in a bipartite graph. If we take the two sets of vertices to be the row numbers and
the column numbers respectively, each non-zero term in the permanent corresponds to a perfect
matching in the associated bipartite graph GM .

An unbiased estimator for Perm

Replace each 1 in M by +1 or -1 independently at random and let M ′ be the newly obtained
matrix. Denote by X = (Det(M ′))2.

Claim 8.3.1 E[X]=Perm(M)

Proof: Let S be the set of permutations for which
n
∏

i=1
Miπ(i) = 1. Then Perm(M) = |S|.

For each πi ∈ S, denote by Xi = sgn(πi)
n
∏

j=1
M ′

jπi(j)
∈ {−1, 1}.

Then we have the following:

Det(M ′) =
∑

πi∈S

Xi.

X = (Det(M ′))2 =
∑

i

Xi
2 +

∑

i6=j

XiXj

E[X] =
∑

i

E
[

Xi
2
]

+
∑

i6=j

E[Xi]E[Xj]

= |S| + 0

= Perm(M)

where we used the fact that the variables Xi and Xj are pairwise independent for i 6= j and each
of them has zero mean.

This estimator has a high variance, therefore in pactice we use something different. This will be
presented later in the class.

6

