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9.1 Introduction

In this lecture we are going to derive Chernoff bounds. We will then look at applications of
Chernoff bounds to coin flipping, hypergraph coloring and randomized rounding.

9.2 Markov’s Inequality

Recall the following Markov’s inequality:

Theorem 9.2.1 For any r.v X ≥ 0,

Pr[X > λ] <
E[X]

λ

Note that we can substitute any positive function f : X → � + for X:

Pr[f(X) > f(λ)] <
E[f(X)]

f(λ)

When f is a non-decreasing function, we get that

Pr[X > λ] = Pr[f(X) > f(λ)] <
E[f(X)]

f(λ)

If we pick f(X) judiciously we can obtain better bounds.

9.3 Chebyshev Bounds

As a first application of the above technique, we derive Chebyshev bounds. To do so we pick
f(X) = X2

Pr[|X −E[X]| ≥ λ] = Pr
[
(X −E[X])2 ≥ λ2

]
≤ E

[
(X −E[X])2

]

λ2
=

var(X)

λ2

9.4 Chernoff Bounds

For the remainder of this lecture we will focus on Chernoff bounds. Chernoff bounds are typically
tighter than Markov’s inequality and Chebyshev bounds but they require stronger assumptions.
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First we will state our assumptions and definitions. Let X be a sum of n independent random
variables {Xi}, with E[Xi] = pi. We assume for simplicity that Xi ∈ {0, 1} for all i ≤ n. Similar
bounds hold for the case when Xis are arbitrary bounded random variables (see Homework 3).

Let µ denote the expected value of X. Then we have

µ = E
[∑

Xi

]

=
∑

E[Xi] =
∑

pi

To establish our bound we pick f(X) = etX , and compute the probability that X deviates signifi-
icantly from µ:

Pr[X > (1 + δ)µ] = Pr
[

etX > e(1+δ)tµ
]

≤ E
[
etX

]

e(1+δ)tµ
(9.4.1)

We will know establish a bound on E
[
etX

]
.

E
[
etX

]
= E

[
et � Xi

]
= E

[∏

i etXi
]

=
∏

i E
[
etXi

]
(by independence)

=
∏

i(pie
t + (1 − pi) · 1)

=
∏

i(1 + pi(e
t − 1))

We now use the following approximation — ∀x ∈ <, 1 + x ≤ ex. Hence:

E
[
etX

]
≤ ∏

i epi(e
t−1)

= e � i pi(e
t−1)

= e(et−1)µ

Substituting E
[
etX

]
≤ e(et−1)µ into Equation 9.4.1, we get that for all t ≥ 0,

Pr[X > (1 + δ)µ] ≤ e(et−1)µ

e(1+δ)tµ

In order to make the bound as tight as possible, we find the value of t that minimizes the above
expression — t = ln (1 + δ). Substituting this into the above expression, we obtain, for all δ ≥ 0:
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Pr[X > (1 + δ)µ] ≤ e((eln (1+δ)−1)−(1+δ) ln (1+δ))µ = [eδ−(1+δ) ln (1+δ)]µ

We will now try to obtain a simpler form of the above bound.

In particular, we use the Taylor series expansion of ln (1 + δ) given by ln (1 + δ) =
∑

i≥1(−1)i+1 δi

i
.

Therefore,

(1 + δ) ln (1 + δ) = δ +
∑

i≥2

(−1)iδi

(
1

i − 1
− 1

i

)

Assuming that 0 ≤ δ < 1, and thereby ignoring the higher order terms, we get

(1 + δ) ln (1 + δ) > δ +
δ2

2
− δ3

6
≥ δ − δ2

3

Plugging this into our original expression we obtain:

Pr[X > (1 + δ)µ] ≤ e
−δ2µ

3 (0 < δ < 1)

A very similar calculation shows that:

Pr[X < (1 − δ)µ] ≤ e
−δ2µ

2 (0 < δ < 1)

9.4.1 A More General Chernoff Bound

We observe that ln (1 + δ) > 2δ
2+δ

∀δ > 0. This implies that

δ − (1 + δ) ln (1 + δ) ≤ −δ2

2 + δ

Hence we obtain the following bound, which works for all positive values of δ.

Pr[X > (1 + δ)µ] ≤ e
−δ2µ
2+δ (δ ≥ 0)

Similarly it can be shown that:

Pr[X < (1 − δ)µ] ≤ e
−δ2µ
2+δ (δ ≥ 0)
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9.5 Examples

9.5.1 Coin-flipping

We will now use Chernoff bounds to analyze n coin flips of an unbiased coin.

Let Xi = 1 if the ith flip is heads and 0 otherwise. Let X =
∑

Xi be the number of heads in n
flips. It is immediate that we expect to see µ = n/2 heads. We now compute the deviation using
Chernoff bounds.

Pr[X ≥ µ + λ] = Pr

[

X ≥ µ

(

1 +
λ

µ

)]

≤ e
− � λ

µ � 2
µ
3 = e−

λ2

3µ

If λ2 = O(n), we get that Pr
[

X ≥ µ(1 + λ
µ
)
]

≤ e−O(1). To obtain a lower probability of error, we

can use λ = O(
√

n log n) getting Pr
[

X ≥ µ(1 + λ
µ
)
]

≤ 1
nC .

Hence, w.h.p., X ∈ µ ± O(
√

n log n).

Let us now compare this with the bound given by Chebyshev’s inequality. Note that σ2(Xi) =
p(1 − p) = 1

4 . Therefore, σ2(X) = n
4 . So we get

Pr[X ≥ µ + λ] ≤ σ2

λ2
=

1

log n
with λ = O(

√

n log n)

Chernoff gives a much stronger bound on the probability of deviation than Chebyshev. This is
because Chebyshev only uses pairwise independence between the r.v.s whereas Chernoff uses full
independence. Full independence can some times imply exponentially better bounds.

9.5.2 Coloring a hypergraph

Consider the following problem. Let U be a universe of n elements, and S1, S2, . . . Sm be subsets
of U . Let E =

⋃{Si}. Consider the hypergraph G = (U,E), that is, where the set of vertices is
the universe U and each set Si is an edge in the graph.

We want to find a 2-coloring of G that balances each edge, or colors roughly half the elements
in each set red, and half the elements blue. In particular, our goal is to minimize the following
quantity:

Discrepancy = maxi |#reds in Si − #blue in Si|
︸ ︷︷ ︸

Discrepancy of set Si

Claim 9.5.1 If each element is colored red w.p. 1
2 independently then w.h.p. disc(Si) ≤

√
12n log m.

Proof: We use the random variables Yv to denote the color of the vertex v. Let

Yv =

{
1 if vertex v is colored red
0 if vertex v is colored blue
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Let Y =
∑

v∈Si
Yv. Then Disc(Si) = 2|k/2 − Y |, where k = |Si|. Note that E[Y ] = k

2 . Applying
Chernoff bounds:

Pr

[

|Y − k

2
| ≥ λ

]

≤ e−
2λ2

3k

Substituting λ =
√

3
k

log m,

Pr
[

Disc(Si) ≥
√

12k log m
]

≤ 1

m2

Applying union bound:

Pr
[

∃i | Disc(Si) ≥
√

12n log m
]

≤
∑

i

Pr
[

Disc(Si) ≥
√

12n log m
]

≤ m
1

m2
=

1

m

9.5.3 Randomized Rounding

Let G = (V,E) be an undirected graph. We are given a set of vertex pairs D = {(si, ti)}i=1···n.
We are required to connect each pair of vertices in D with a path, such that no single edge in G is
overloaded.

In particular, the solution consists of paths {Pi}, such that Pi is a path from si to ti in G. Let the
congestion on edge e be the number of paths containing e.

Problem: Pick Pi such that maxe(cong(e)) is minimized.

This problem is NP-hard, but we will give an approximation algorithm for it based on randomized
rounding.

We begin by expressing this problem as an integer program. Let Pi be the set of all paths from si

to ti. Let f i
P denote whether we pick path P ∈ Pi or not. That is, f i

P = 1 if path P is picked, else
f i

P = 0. Let C denote the congestion in the graph.

We minimize C subject to the following constraints:

1. Exactly one path from si to ti is picked.

∑

P∈Pi

f i
P = 1 ∀i

2. The congestion on every edge is less than C.

∑

i

∑

e∈P

f i
P ≤ C ∀e

3. f i
P ∈ {0, 1} ∀i, P .
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Solving this program is NP-Complete, so a natural way to relax the problem is to allow f i
P ∈

[0, 1] ∀i, P , transforming the above program into a linear program.

Note that the congestion of the optimal solution to the LPless than or equal to the best possible
congestion. Therefore an approximation to the congestion of this solution implies an approximation
to the problem.

We solve the LP to obtain a fraction solution and then round it to obtain an integral solution. The
solution to the LP is a unit flow between every pair of vertices in D. Suppose that this solution
has congestion C∗. In order to round this, for every i, we pick a path Pi ∈ Pi with probability f i

Pi
.

Now let us analyze the congestion on an edge e. Note that flow i picks e w.p.
∑

{P∈Pi , e∈P} f i
P .

Let Xe
i = 1 if flow i uses e. Then the congestion on e is given by X e =

∑

i X
e
i .

E[Xe
i ] =

∑

{P∈Pi , e∈P}

f i
P

E[Xe] = E

[
∑

i

Xe
i

]

=
∑

i

E[Xe
i ] =

∑

i

∑

{P∈Pi , e∈P}

f i
P ≤ C

We want to pick a value of k such that Pr[Xe > kC∗] < 1
n3 . Then, taking a union bound over all

edges, we get a k-approximation. (Think about this!)

Claim 9.5.2 If C >> log n then the above rounding gives a (1 + ε)-approximation.

Proof: If k = 1 + ε then using the simpler form of Chernoff, we get Pr[Xe > kC] ≤ e−
ε2C
3 ≤

1

nconst .

When C is small, we do not get a 1 + ε approximation with a high probability. Instead, we know

that for any k = 1 + δ, δ > 0, Pr[Xe > kC] ≤ e−
δ2C
2+δ ' e−δC for δ >> 2. δ = O(log n) suffices and

we get an O(log n) approximation.

In order to get a better approximation, we use the stronger form of Chernoff. For any k = 1 + δ:

Pr[Xe > kC] ≤
[

eδ

(1 + δ)(1+δ)

]C

≤ eδ

(1 + δ)(1+δ)
as C ≥ 1

Now if we pick δ = O( log n
log log n

), then (1 + δ) ln (1 + δ) = O(lnn), and therefore, (1 + δ)(1+δ) > nc

for some constant c. Therefore we get that with a high probability, the congestion is at most
1 + δ = O( log n

log log n
).

This is essentially the best possible bound achievable using randomized rounding.
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