
Intro

Administrivia.

• Signup sheet.

• prerequisites: 6.046, 6.041/2, ability to do proofs

• homework weekly (first next week)

• collaboration

• independent homeworks

• grading requirement

• books.

• question: scribing?

Randomized algorithms: make random choices during run. Main benefits:

• speed: may be faster than any deterministic

• even if not faster, often simpler (quicksort)

• sometimes, randomized is best

• sometime, randomized idea leads to deterministic algorithm

Distinguish average-cast analysis

• Probabilistic analysis assuming random input

• randomized algorithms do not assume random inputs

• so analyses are more applicable

We don’t really use random numbers. But randomized algorithms break
patterns we don’t know are there.

• deterministic algorithm: works well except a few specific cases.

• But those are the ones you will encounter (Murphy)!

1



• randomized: almost always works well on any case

• but sometimes does bad on any case, so risky for life-threatening errors.

Course objective:

• Randomization is a general technique. Applies to all areas of CS.

• Underlying it is a common set of tools.

• Goal is to give familiarity with those tools so you can apply them to
your own problems.

• To present tools, we draw appliations from many areas of CS: data
structures, geometric algos, graph algos, parallel and distributed, num-
ber theory.

• Because so many, only a brief taste of each.

• But sufficient to go on alone.

Basic methodologies.

• Avoiding adversarial inputs

– sorted quicksort list

– a kind of random reordering (geometry—BSP)

– hashing to same buckets

– online algorithms

– note: “adversarial” may mean “well structured” i.e. natural

• fingerprinting/verification

– generate short random fingerprints for things

– faster than comparing things

– almost every fingerprint works

– so a random one works

• random sampling. graph algs, computational geometry, median

2



– fast way to find “typical” members

– solve representative subproblem fast

– extrapolate to solution of original problem

• load balancing

– randomization spreads things out uniformly

– parallel algs, routing, hashing

• symmetry breaking

– random decisions keep everyone from doing the same thing

– ethernet

– deadlocks avoidance in distributed systems (MUST randomize)

• Probabilistic existence proofs

– thought experiment

– prove an object is build with positive probability

– guarantees object exists

– makes search for algo worthwhile.

Today: 2 really basic principles:

• linearity of expectation

• product of event probabilities (independence)

Then some fundamental ideas:

• Kinds of randomized algorithms

• a bit of complexity

3



Quicksort

Items S1, . . . , Sn to be sorted

• suppose could pick middle element:

T (n) = 2T (n/2) +O(n) = O(n log n)

works since divides into much smaller subproblems

• picking middle is hard. But an almost middle element is OK.

• pick random element. “probably” near middle and divides problem in
two

• bound expected number of comparisons C

• Xij = 1 if compare i to j

• linearity of expectation: E[C] =
∑
E[Xij]

• E[Xij] = pij

• Consider smallest recursive call involving both i and j.

• pivot must be one of Si, . . . , Sj. all equally likely

• Si and Sj get compared if pivot is Si or Sj

• probability is at most 2/(j − i+ 1) (may have outer elements)

• analysis:

n∑
i=1

∑
j>i

pij ≤
n∑
i=1

∑
j>i

2/(j − i+ 1)

=
n∑
i=1

n−i+1∑
k=1

2/k

≤ 2
n∑
i=1

n∑
k=1

1/k

≤ 2nHn

4



(Define Hn, claim O(log n).)

= O(n log n).

• analysis holds for every input, doesn’t assume random input

• we proved expected. can show high probability

• how did we pick a random elements? Depends on model.

• algorithm always works, but might be slow.

BSP

• linearity of expectation. hat check problem

• Rendering an image

– render a collection of polygons (lines)

– painters algorithm: draw from back to front; let front overwrite

– need to figure out order with respect to user

• define BSP.

– BSP is a data structure that makes order determination easy

– Build in preprocess step, then render fast.

– Choose any hyperplane (root of tree), split lines onto correct side
of hyperplane, recurse

– If user is on side 1 of hyperplane, then nothing on side 2 blocks
side 1, so paint it first. Recurse.

– time=BSP size

• sometimes must split to build BSP

• how limit splits?

• autopartitions

• random auto

5



• analysis

– index (u, v) = k if k lines block v from u

– u a v if v cut by u auto

– probability 1/(1 + index (u, v)).

– tree size is (by linearity of E)

n+
∑

1/index (u, v) ≤
∑
u

2Hn

• result: exists size O(n log n) auto

• gives randomized construction

• equally important, gives probabilistic existence proof of a small
BSP

• so might hope to find deterministically.

MinCut

• the problem

• contraction

• conditionally independent events

• give/analyze

• repetition for better success probability (independent events)

• faster implementation later

Monte Carlo vs. Las Vegas

• turn LV to MC by truncating

• turn MC to LV by certifying.

• if can’t certify, dangerous!

6


