Hashing

Review:

- Goal: map s items from size m universe to table of size n
- some items get mapped to same place: "collision"
- Problem: any function has bad set mapping m / n items to same bucket
- Solution: build family of functions, choose one that works well

Hash Families:

- Random function has good behavior, but hard to compute efficiently
- Goal: $O(1)$ access time
- So can only look at constant number of cells.
- Each holds value in range $1, \ldots, m$ ($\log m$ bits)
- So, fixed number of cells can only distinguish poly (m) functions
- This bounds size of hash family we can choose from

Recall random function analysis:

- set S of s items
- what is expected time for i access?
$-C_{i j}=1$ if i, j collide
- Time to find i is $\sum_{j} C_{i j}$
- expected value $(s-1) / n \leq 1$ for $s \leq n$ (and optimal for s)

2-universal family:

- how much independence was used above? pairwise (search item versus each other item)
- so: OK if items land pairwise independent
- pick p in range $m, \ldots, 2 m$ (not random)
- pick random a, b
- map x to $(a x+b \bmod p) \bmod n$
- pairwise independent, uniform before $\bmod m$
- So pairwise independent, near-uniform after $\bmod m$
- argument above holds: $O(1)$ expected search time.
- represent with two $O(\log m)$-bit integers: hash family of poly size.
- em max load?
- expected load in a bin is 1
- so $O(\sqrt{n})$ with prob. 1-1/n (chebyshev).
- this bounds expected max-load
- some item may have bad load, but unlikely to be the requested one

perfect hash families

- perfect hash function: no collisions
- for any S of $s \leq n$, perfect h in family
- eg, set of all functions
- but hash choice in table: $m^{O(1)}$ size family.
- exists iff $m=2^{\Omega(n)}$ (probabilistic method) (hard computationally)
- random function. $\operatorname{Pr}($ perfect $)=n!/ n^{n}$
- So take $n^{n} / n!\approx e^{n}$ functions. $\operatorname{Pr}($ all bad $)=1 / e$
- Number of subsets: at most m^{n}
- So take $e^{n} \cdot \ln m^{n}=n e^{n} \ln m$ functions. $\operatorname{Pr}\left(\right.$ all bad) $\leq 1 / m^{n}$
- So with nonzero probability, no set has all bad functions (union)
- number of functions: $n e^{n} \ln m=m^{O(1)}$ if $m=2^{\Omega(n)}$
- Too bad: only fit sets of $\log m$ items
- also, hard computationally

Alternative try: use more space:

- How big can s be for random s to n without collisions?
- Expected number of collisions is $E\left[\sum C_{i j}\right]=\binom{s}{2}(1 / n) \approx s^{2} / 2 n$
- So $s=\sqrt{n}$ works with prob. $1 / 2$
- Is this best possible?
- Birthday problem: $(1-1 / n) \cdots(1-s / n) \approx e^{-s^{2} / 2 n}$
- So, when $s=\sqrt{n}$ has $\Omega(1)$ chance of collision
- 23 for birthdays

Two level hashing solves problem

- Hash s items into $O(s)$ space
- Build quadratic size hash table on contents of each bucket
- bound $\sum b_{k}^{2}=\sum_{i}\left[i \in b_{k}\right]=\sum C_{i}+C_{i j}=O(s)$
- expected $O(s)$.
- So try till get
- Then build collision-free quadratic tables inside
- Try till get
- Polynomial time in s, Las-vegas algorithm
- Easy: $6 s$ cells
- Hard: $s+o(s)$ cells (bit fiddling)

Derandomization

- Probability $1 / 2$ top-level function works
- Only m^{2} top-level functions
- Try them all!
- Polynomial in m, deterministic algorithm

Treaps

Dictionaries for ordered sets

- New Operations.
- enumerate in order
- successor-of, predecessor-of (even if not in set)
- join (S, k, T), split, $\operatorname{paste}(S, T)$

Binary tree.

- child and parent pointers
- endogenous: leaf nodes empty.
- balanced if depth $O(\log n)$
- average case.
- worst case

Tree balancing

- rotations
- implementing operations.
- red/black, AVL
- splay trees.
- drawbacks in geometry:
- auxiliary structure on nodes in subtree
- rebuild on rotation

Returning to average case:

- Assign random "arrival orders" to keys
- Build tree as if arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities

- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use $2 \log n$ bits, w.h.p. no collisions

Treaps.

- tree has keys in heap order of priorities
- unique tree given priorities-follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Depth $d(x)$ analysis

- Tree is trace of a quicksort
- We proved $O(\log n)$ w.h.p.
- for x rank $k, E[d(x)]=H_{k}+H_{n-k+1}-1$
- $S^{-}=\{y \in S \mid y \leq x\}$
- $Q_{x}=$ ancestors of x
- Show $E\left[Q_{x}^{-}\right]=H_{k}$.
- to show: $y \in Q_{x}^{-}$iff inserted before all $z, y<z \leq x$.
- deduce: item j away has prob $1 / j$. Add.
- Suppose $y \in Q_{x}^{-}$.
- The inserted before x
- Suppose some z between inserted before y
- Then y in left subtree of z, x in right, so not ancestor
- Thus, y before every z
- Suppose y first
- then x follows y on all comparisons (no z splits
- So ends up in subtree of y

Rotation analysis

- Insert/Delete time
- define spines
- equal left spine of right sub plus right spine of left sub
- proof: when rotate up, on spine increments, other stays fixed.
- R_{x} length of right spine of left subtree
- $E\left[R_{x}\right]=1-1 / k$ if rank k
- To show: $y \in R_{x}$ iff
- inserted after x
- all $z, y<z<x$, arrive after y.
- if z before y, then y goes left, so not on spine
- deduce: if r elts between, r ! of $(r+2)$! permutations work.
- So probability $1 / r^{2}$.
- Expectation $\sum 1 /(1 \cdot 2)+1 /(2 \cdot 3)+\cdots=1-1 / k$
- subtle: do analysis only on elements inserted in real-time before x, but now assume they arrive in random order in virtual priorities.

