Hashing

Review:

- Goal: map s items from size m universe to table of size n
- some items get mapped to same place: "collision"
- Problem: any function has bad set mapping m/n items to same bucket
- Solution: build family of functions, choose one that works well

Hash Families:

- Random function has good behavior, but hard to compute efficiently
- Goal: O(1) access time
- So can only look at constant number of cells.
- Each holds value in range $1, \ldots, m (\log m \text{ bits})$
- So, fixed number of cells can only distinguish poly(m) functions
- This bounds size of hash family we can choose from

Recall random function analysis:

- set S of s items
 - what is expected time for *i* access?
 - $-C_{ij} = 1$ if i, j collide
 - Time to find *i* is $\sum_{j} C_{ij}$
 - expected value $(s-1)/n \le 1$ for $s \le n$ (and optimal for s)

2-universal family:

- how much independence was used above? pairwise (search item versus each other item)
- so: OK if items land *pairwise independent*
- pick p in range $m, \ldots, 2m$ (not random)
- pick random a, b
- map x to $(ax + b \mod p) \mod n$
 - pairwise independent, uniform before mod m
 - So pairwise independent, near-uniform after mod m
- argument above holds: O(1) expected search time.

- represent with two $O(\log m)$ -bit integers: hash family of poly size.
- em max load?
 - expected load in a bin is 1
 - so $O(\sqrt{n})$ with prob. 1-1/n (chebyshev).
 - this bounds expected max-load
 - some item may have bad load, but unlikely to be the requested one

perfect hash families

- perfect hash function: no collisions
- for any S of $s \leq n$, perfect h in family
- eg, set of all functions
- but hash choice in table: $m^{O(1)}$ size family.
- exists iff $m = 2^{\Omega(n)}$ (probabilistic method) (hard computationally)
 - random function. $\Pr(\text{perfect}) = n!/n^n$
 - So take $n^n/n! \approx e^n$ functions. Pr(all bad) = 1/e
 - Number of subsets: at most m^n
 - So take $e^n \cdot \ln m^n = n e^n \ln m$ functions. Pr(all bad) $\leq 1/m^n$
 - So with nonzero probability, no set has all bad functions (union)
 - number of functions: $ne^n \ln m = m^{O(1)}$ if $m = 2^{\Omega(n)}$
- Too bad: only fit sets of $\log m$ items
- also, hard computationally

Alternative try: use more space:

- How big can s be for random s to n without collisions?
 - Expected number of collisions is $E[\sum C_{ij}] = {s \choose 2}(1/n) \approx s^2/2n$
 - So $s = \sqrt{n}$ works with prob. 1/2
- Is this best possible?
 - Birthday problem: $(1 1/n) \cdots (1 s/n) \approx e^{-s^2/2n}$
 - So, when $s = \sqrt{n}$ has $\Omega(1)$ chance of collision
 - 23 for birthdays

Two level hashing solves problem

- Hash s items into O(s) space
- Build quadratic size hash table on contents of each bucket
- bound $\sum b_k^2 = \sum_i [i \in b_k] = \sum C_i + C_{ij} = O(s)$
- expected O(s).
- So try till get
- Then build collision-free quadratic tables inside
- Try till get
- Polynomial time in s, Las-vegas algorithm
- Easy: 6s cells
- Hard: s + o(s) cells (bit fiddling)

Derandomization

- Probability 1/2 top-level function works
- Only m^2 top-level functions
- Try them all!
- Polynomial in m, deterministic algorithm

Treaps

Dictionaries for **ordered** sets

- New Operations.
 - enumerate in order
 - successor-of, predecessor-of (even if not in set)
 - join(S, k, T), split, paste(S, T)

Binary tree.

- child and parent pointers
- endogenous: leaf nodes empty.
- balanced if depth $O(\log n)$
- average case.
- worst case

Tree balancing

- rotations
- implementing operations.
- red/black, AVL
- splay trees.
 - drawbacks in geometry:
 - auxiliary structure on nodes in subtree
 - rebuild on rotation

Returning to average case:

- Assign random "arrival orders" to keys
- Build tree **as if** arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities

- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use $2 \log n$ bits, w.h.p. no collisions

Treaps.

- tree has keys in heap order of priorities
- unique tree given priorities—follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Depth d(x) analysis

- Tree is trace of a quicksort
- We proved $O(\log n)$ w.h.p.
- for x rank k, $E[d(x)] = H_k + H_{n-k+1} 1$
- $S^- = \{y \in S \mid y \le x\}$
- Q_x = ancestors of x

- Show $E[Q_x^-] = H_k$.
- to show: $y \in Q_x^-$ iff inserted before all $z, y < z \le x$.
- deduce: item j away has prob 1/j. Add.
- Suppose $y \in Q_x^-$.
 - The inserted before x
 - Suppose some z between inserted before y
 - Then y in left subtree of z, x in right, so not ancestor
 - Thus, y before every z
- Suppose y first
 - then x follows y on all comparisons (no z splits
 - So ends up in subtree of y

Rotation analysis

- Insert/Delete time
 - define spines
 - equal left spine of right sub plus right spine of left sub
 - proof: when rotate up, on spine increments, other stays fixed.
- R_x length of right spine of left subtree
- $E[R_x] = 1 1/k$ if rank k
- To show: $y \in R_x$ iff
 - inserted after x
 - all z, y < z < x, arrive after y.
 - if z before y, then y goes left, so not on spine
- deduce: if r elts between, r! of (r+2)! permutations work.
- So probability $1/r^2$.
- Expectation $\sum 1/(1 \cdot 2) + 1/(2 \cdot 3) + \dots = 1 1/k$
- subtle: do analysis only on elements inserted in real-time before x, but now assume they arrive in random order in virtual priorities.