Date midterm.

Treaps

Review:

- Dictionaries for ordered sets
- Binary tree.
- Tree balancing by rotations
- drawbacks in geometry: rebuild on rotation

Returning to average case:

- Assign random "arrival orders" to keys
- Build tree as if arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities

- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use $2 \log n$ bits, w.h.p. no collisions

Treaps.

- tree has keys in heap order of priorities
- unique tree given priorities - follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Depth $d(x)$ analysis

- Tree is trace of a quicksort
- We proved $O(\log n)$ w.h.p.
- for x rank $k, E[d(x)]=H_{k}+H_{n-k+1}-1$
- $S^{-}=\{y \in S \mid y \leq x\}$
- $Q_{x}=$ ancestors of x
- Show $E\left[Q_{x}^{-}\right]=H_{k}$.
- to show: $y \in Q_{x}^{-}$iff inserted before all $z, y<z \leq x$.
- deduce: item j away has prob $1 / j$. Add.
- Suppose $y \in Q_{x}^{-}$.
- The inserted before x
- Suppose some z between inserted before y
- Then y in left subtree of z, x in right, so not ancestor
- Thus, y before every z
- Suppose y first
- then x follows y on all comparisons (no z splits
- So ends up in subtree of y

Rotation analysis

- Insert/Delete time
- define spines
- equal left spine of right sub plus right spine of left sub
- proof: when rotate up, on spine increments, other stays fixed.
- R_{x} length of right spine of left subtree
- $E\left[R_{x}\right]=1-1 / k$ if rank k
- To show: $y \in R_{x}$ iff
- inserted after x
- all $z, y<z<x$, arrive after y.
- if z before y, then y goes left, so not on spine
- deduce: if r elts between, r ! of $(r+2)$! permutations work.
- So probability $1 / r^{2}$.
- Expectation $\sum 1 /(1 \cdot 2)+1 /(2 \cdot 3)+\cdots=1-1 / k$
- subtle: do analysis only on elements inserted in real-time before x, but now assume they arrive in random order in virtual priorities.

skip lists

- ruler intuition
- achieve with geometric variables
- backwards analysis of search path
- insert/delete time

Shortest Paths

classical shortest paths.

- dijkstra's algorithm
- floyd's algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by "funny multiplication."
- huge integer implementation
- base- $(n+1)$ integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2 .
- gives n-mul algorithm for problem
- what about recursive?
- well can get to within 2: let T_{k} be boolean "distance less than or equal to 2^{k}. Squaring gives T_{k+1}.
- what about exact?

Seidel's distance algorithm.

- log-size integers:
- parities suffice:
* square G to get adjacency A^{\prime}, distance D^{\prime}
- if $D_{i j}$ even then $D_{i j}=2 D_{i j}^{\prime}$

$$
\text { - if } D_{i j} \text { odd then } D_{i j}=2 D_{i j}^{\prime}-1
$$

- For neighbors i, k,
* $D_{i j}-1 \leq D_{k j} \leq D_{i j}+1$
* exists $k, D_{k j}=D_{i j}-1$
- Parities
* If $D_{i j}$ even, then $D_{k j}^{\prime} \geq D_{i j}^{\prime}$ for every neighbor k
* If $D_{i j}$ odd, then $D_{k j}^{\prime} \leq D_{i j}^{\prime}$ for every neighbor k, and strict for at least one
- Add
* $D_{i j}$ even iff $S_{i j}=\sum_{k} D_{k j}^{\prime} \geq D_{i j} d(i)$
* $D_{i j}$ odd iff $\sum_{k} D_{k j}^{\prime}<D_{i j} d(i)$
* How determine? find $S=A D^{\prime}$

To find paths: Witness product.

- easy case: unique witness
- multiply column c by c.
- read off witness identity
- reduction to easy case:
- suppose r columns have witness, where $2^{k} \leq r \leq 2^{k+1}$
- choose each column with probability 2^{-k}.
- prob. exactly one witness: $r \cdot 2^{-k}\left(1-2^{-k}\right)^{r-1} \geq(1 / 2)\left(1 / e^{2}\right)$

Mod 3:

- Recall some neighbor distance down by one
- so compute distances mod 3 .
- suppose $D_{i j}=1 \bmod 3$
- then look for k neighbor of i such that $D_{k j}=0 \bmod 3$
$-\operatorname{let} D_{i j}^{(s)}=1$ iff $D_{i j}=s \bmod 3$
- than $A D^{(s)}$ has $i j=1$ iff a neighbor k of i has $D_{k j}^{(s)}$
- so, witness matrix mul!

