Midterm out tuesday.
Collaborations.

Shortest Paths

classical shortest paths.

- dijkstra's algorithm
- floyd's algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by "funny multiplication."
- huge integer implementation
- base- $(n+1)$ integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2 .
- gives $n M M(n)$ algorithm for problem
- what about recursive?
- well can get to within 2: let T_{k} be boolean "distance less than or equal to 2^{k}. Squaring gives T_{k+1}.
- $O(\log n)$ squares for unit length
- what about exact?

Seidel's distance algorithm for unit lengths.

- log-size integers:
- parities suffice:
* square G to get adjacency A^{\prime}, distance D^{\prime}
- if $D_{i j}$ even then $D_{i j}=2 D_{i j}^{\prime}$
- if $D_{i j}$ odd then $D_{i j}=2 D_{i j}^{\prime}-1$
- For neighbors i, k,
* $D_{i j}-1 \leq D_{k j} \leq D_{i j}+1$
* exists $k, D_{k j}=D_{i j}-1$
- Parities
* If $D_{i j}$ even, then $D_{k j}^{\prime} \geq D_{i j}^{\prime}$ for every neighbor k
* If $D_{i j}$ odd, then $D_{k j}^{\prime} \leq D_{i j}^{\prime}$ for every neighbor k, and strict for at least one
- Add
* $D_{i j}$ even iff $S_{i j}=\sum_{k} D_{k j}^{\prime} \geq D_{i j} d(i)$
* $D_{i j}$ odd iff $\sum_{k} D_{k j}^{\prime}<D_{i j} d(i)$
* How determine? find $S=A D^{\prime}$

To find paths: Witness product.

- easy case: unique witness
- multiply column c by c.
- read off witness identity
- reduction to easy case:
- Suppose r columns have witness
- Suppose choose each with prob. p
- Prob. exactly 1 witness: $r p(1-p)^{r-1} \approx 1 / e$
- Try all values of r
- Wait, too many.
- Approx
- Suppose $p=2 / r$
- Then prob. exactly 1 is $\approx 2 / e^{2}$
- So anything in range $1 / r \ldots 1 / 2 r$ will do.
- So try p all powers of 2 .
- suppose $2^{k} \leq r \leq 2^{k+1}$
- choose each column with probability 2^{-k}.
- prob. exactly one witness: $r \cdot 2^{-k}\left(1-2^{-k}\right)^{r-1} \geq(1 / 2)\left(1 / e^{2}\right)$
- so try $\log n$ distinct powers of 2 , each $O(\log n)$ times
- Mod 3:
- Recall some neighbor distance down by one
- so compute distances mod 3 .
- suppose $D_{i j}=1 \bmod 3$
- then look for k neighbor of i such that $D_{k j}=0 \bmod 3$
$-\operatorname{let} D_{i j}^{(s)}=1$ iff $D_{i j}=s \bmod 3$
- than $A D^{(s)}$ has $i j=1 \mathrm{iff}$ a neighbor k of i has $D_{k j}^{(s)}$
- so, witness matrix mul!

Minimum Cut

- deterministic algorithms
- Min-cut implementation
- data structure for contractions
- alternative view-permutations.
- deterministic leaf algo
- recursion:

$$
\begin{array}{rcc}
p_{k+1} & = & p_{k}-\frac{1}{4} p_{k}^{2} \\
q_{k} & = & 4 / p_{k}+1 \\
q_{k+1} & =q_{k}+1+1 / q_{k} &
\end{array}
$$

- cut counting
- Reliability
- Sampling

