Midterm out tuesday. Collaborations.

Shortest Paths

classical shortest paths.

- dijkstra's algorithm
- floyd's algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by "funny multiplication."
 - huge integer implementation
 - base-(n+1) integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2.
- gives nMM(n) algorithm for problem
- what about recursive?
- well can get to within 2: let T_k be boolean "distance less than or equal to 2^k . Squaring gives T_{k+1} .
- $O(\log n)$ squares for unit length
- what about exact?

Seidel's distance algorithm for unit lengths.

- log-size integers:
 - parities suffice:
 - * square G to get adjacency A', distance D'
 - · if D_{ij} even then $D_{ij} = 2D'_{ij}$
 - · if D_{ij} odd then $D_{ij} = 2D'_{ij} 1$
 - For neighbors i, k,
 - * $D_{ij} 1 \le D_{kj} \le D_{ij} + 1$

* exists $k, D_{kj} = D_{ij} - 1$

- Parities
 - * If D_{ij} even, then $D'_{kj} \ge D'_{ij}$ for every neighbor k

* If D_{ij} odd, then $D'_{kj} \leq D'_{ij}$ for every neighbor k, and strict for at least one Add

- Add
 - * D_{ij} even iff $S_{ij} = \sum_k D'_{kj} \ge D_{ij}d(i)$
 - * D_{ij} odd iff $\sum_k D'_{kj} < D_{ij}d(i)$
 - * How determine? find S = AD'

To find paths: Witness product.

- easy case: unique witness
 - multiply column c by c.
 - read off witness identity
- reduction to easy case:
 - Suppose r columns have witness
 - Suppose choose each with prob. p
 - Prob. exactly 1 witness: $rp(1-p)^{r-1} \approx 1/e$
 - Try all values of r
 - Wait, too many.
- Approx
 - Suppose p = 2/r
 - Then prob. exactly 1 is $\approx 2/e^2$
 - So anything in range $1/r \dots 1/2r$ will do.
 - So try p all powers of 2.
 - suppose $2^k \leq r \leq 2^{k+1}$
 - choose each column with probability 2^{-k} .
 - prob. exactly one witness: $r \cdot 2^{-k} (1 2^{-k})^{r-1} \ge (1/2)(1/e^2)$
 - so try $\log n$ distinct powers of 2, each $O(\log n)$ times
- Mod 3:
 - Recall some neighbor distance down by one
 - so compute distances mod 3.
 - suppose $D_{ij} = 1 \mod 3$
 - then look for k neighbor of i such that $D_{kj} = 0 \mod 3$
 - let $D_{ij}^{(s)} = 1$ iff $D_{ij} = s \mod 3$
 - than $AD^{(s)}$ has ij = 1 iff a neighbor k of i has $D_{kj}^{(s)}$
 - so, witness matrix mul!

Minimum Cut

- deterministic algorithms
- Min-cut implementation
- data structure for contractions
- alternative view—permutations.
- deterministic leaf algo
- recursion:

$$p_{k+1} = p_k - \frac{1}{4}p_k^2$$

$$q_k = 4/p_k + 1$$

$$q_{k+1} = q_k + 1 + 1/q_k$$

- cut counting
- Reliability
- Sampling